留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

山梨醇快速热解特性与反应机理研究

胡斌 郭学文 李洋 程安帅 刘吉 陆强

胡斌, 郭学文, 李洋, 程安帅, 刘吉, 陆强. 山梨醇快速热解特性与反应机理研究[J]. 燃料化学学报(中英文), 2021, 49(12): 1821-1831. doi: 10.1016/S1872-5813(21)60150-0
引用本文: 胡斌, 郭学文, 李洋, 程安帅, 刘吉, 陆强. 山梨醇快速热解特性与反应机理研究[J]. 燃料化学学报(中英文), 2021, 49(12): 1821-1831. doi: 10.1016/S1872-5813(21)60150-0
HU Bin, GUO Xue-wen, LI Yang, CHENG An-shuai, LIU Ji, LU Qiang. Reaction characteristics and mechanisms of sorbitol fast pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1821-1831. doi: 10.1016/S1872-5813(21)60150-0
Citation: HU Bin, GUO Xue-wen, LI Yang, CHENG An-shuai, LIU Ji, LU Qiang. Reaction characteristics and mechanisms of sorbitol fast pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1821-1831. doi: 10.1016/S1872-5813(21)60150-0

山梨醇快速热解特性与反应机理研究

doi: 10.1016/S1872-5813(21)60150-0
基金项目: 国家自然科学基金(52006069, 51922040),中国博士后科学基金(2021T140202)和新能源电力系统国家重点实验室自主课题(LAPS202111)资助
详细信息
    作者简介:

    胡斌:binhu92@126.com

    通讯作者:

    Tel: 01061771335,E-mail: qianglu@mail.ustc.edu.cn,qlu@ncepu.edu.cn

  • 中图分类号: TK6

Reaction characteristics and mechanisms of sorbitol fast pyrolysis

Funds: The project was supported by the National Natural Science Foundation of China (52006069, 51922040), China Postdoctoral Science Foundation (2021T140202) and State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (LAPS202111)
  • 摘要: 本研究结合快速热解实验和密度泛函理论(DFT)计算,深入探究了山梨醇快速热解主要产物的生成机理与竞争关系。结果表明,山梨醇快速热解产物主要包括:小分子产物羟基乙醛(HAA)、羟基丙酮(HA)等,呋喃类产物糠醛(FF)、1-(2-呋喃基)-乙酮(2-FE)等和脱水糖产物异山梨醇(IS)。小分子产物HA和HAA生成路径的反应能垒较低,因此, 产率最高,且HA生成过程中伴随着HAA的生成。呋喃类产物2-FE和FF生成能垒相对较高,其能量最优路径与小分子产物生成路径具有相同中间体,但竞争性较弱,因而产率低于小分子产物。脱水糖产物IS生成路径较为简单,不与其他产物共享相同中间体,但反应能垒很高,导致产率很低。本研究为山梨醇选择性热解的机理研究和技术开发奠定了一定的理论基础。
  • FIG. 1147.  FIG. 1147.

    FIG. 1147.  FIG. 1147.

    图  1  优化的山梨醇3D结构

    Figure  1  Optimized 3D geometry of sorbitol

    图  2  山梨醇500 ℃快速热解产物的离子总图(a)与主要产物绝对峰面积(b)

    Figure  2  Total ion chromatogram of the sorbitol fast pyrolysis at 500℃ (a) and the absolute peak areas of the main products (b)

    图  3  山梨醇快速热解初始反应

    Figure  3  Categories of initial reaction pathways for the fast pyrolysis of sorbitol (unit: kJ/mol)

    图  4  HA生成的可能路径(A类路径)

    Figure  4  Possible pathways for HA generation (Type A pathways)

    图  5  HAA生成的可能路径(B类路径)

    Figure  5  Possible pathways for HAA generation (Type B pathways)

    图  6  小分子产物生成的优势路径势能图(a)及过渡态的3D结构(b)

    Figure  6  Energy diagrams (a) and 3D geometries of transition states (b) for the favorable formation pathways of low molecular weight compounds

    图  7  2-FE生成的可能路径(C类路径)

    Figure  7  Possible pathways for 2-FE generation (Type C pathways)

    图  8  FF生成的可能路径(D类路径)

    Figure  8  Possible pathways for FF generation (Type D pathways)

    图  9  呋喃类产物生成的优势路径势能图(a)及过渡态的3D结构(b)

    Figure  9  Energy diagrams (a) and 3D geometries of transition states (b) for the favorable formation pathways of furan products

    图  10  IS生成的可能路径 (E 类路径)

    Figure  10  Possible pathways for IS generation (Type E pathways, unit: kJ/mol)

    图  11  各类型反应路径竞争关系

    Figure  11  Competing relationship of various types of pathways

    表  1  山梨醇快速热解产物

    Table  1  Products in sorbitol fast pyrolysis

    Time/minName
    2.1643-hydroxy-butanal
    2.3022,3-butanedione
    2.357hydroxyacetaldehyde (HAA)
    2.528propylene glycol
    2.704benzene
    3.112hydroxyacetone (HA)
    4.1691-hydroxy-2-butanone
    4.902unknown
    5.1172-furanmethanol
    5.166furfural (FF)
    5.3102-methyl-furan
    5.6902-butanone
    6.0421-(2-furanyl)-ethanone (2-FE)
    6.2901,2-cyclopentanedione
    6.555phenol
    6.7645-methyl-2-furancarboxaldehyde
    7.4363-methyl-(1,2-cyclopentanedione)
    10.581isosorbitol (IS)
    下载: 导出CSV

    表  2  小分子产物生成路径决速步及能垒

    Table  2  Rate-determining steps and energy barriers of formation pathways for low molecular weight compounds

    Type A
    pathways
    Rate-determining
    step
    Energy barrier
    G/(kJ·mol−1)
    Type B
    pathways
    Rate-determining
    step
    Energy barrier
    G/(kJ·mol−1)
    A1Sorbitol→A1-i1305.8B1Sorbitol→B1-i1267.2
    A2Sorbitol→A2-i1281.7B2Sorbitol→B2-i1275.6
    A3Sorbitol→A3-i1314.7B3EG→B3-i3275.2
    A4Sorbitol→A4-i1276.1B4Sorbitol→B4-i1296.3
    A5Sorbitol→A5-i1305.7B5Sorbitol→B5-i1285.5
    A6Sorbitol→A6-i1303.5B6Sorbitol→B6-i1305.9
    A7Sorbitol→A7-i1314.7B7Sorbitol→B7-i1306.2
    A8Sorbitol→A8-i1292.2B8Sorbitol→B8-i1296.2
    B9Sorbitol→B9-i1304.4
    B10Sorbitol→B10-i1303.5
    下载: 导出CSV

    表  3  呋喃类产物生成路径决速步及能垒表

    Table  3  Rate-determining steps and energy barriers of formation pathways for furan products

    Type C
    pathways
    Rate-determining
    step
    Energy barrier
    G/(kJ·mol−1)
    Type D
    pathways
    Rate-determining
    step
    Energy barrier
    G/(kJ·mol−1)
    C1Sorbitol→C1-i1305.7D1D1-i3→D1-i4366.0
    C2Sorbitol→C2-i1305.7D2D2-i1→D2-i2382.0
    C3Sorbitol→C3-i1292.3D3D3-i3→D3-i4392.6
    C4Sorbitol→C4-i1305.9D4D4-i1→D4-i2374.1
    C5Sorbitol→C5-i1305.9D5Sorbitol→D5-i1369.8
    C6C6-i4→C6-i5325.4D6Sorbitol→D6-i1381.3
    下载: 导出CSV

    表  4  呋喃类产物优势路径与具有相同中间体的竞争路径比较

    Table  4  Comparison of the favorable formation pathways for furan products and the competing pathways with the same intermediates

    Competitive pathwaysSame intermediateEnergy barriers in subsequent reactions
    A8, C3, D2A8-i1A8 (A8-i2→A8-i3, 219.4)

    C3 (A8-i1→C3-i2, 262.4)

    D2 (A8-i1→D3-i2, 382.4)
    B10, D1B10-i1B10 (B10-i3→B10-i4, 232.4)

    D1 (D1-i2→D1-i3, 366.0)
    下载: 导出CSV
  • [1] BAR-ON Y M, PHILLIPS R, MILO R. The biomass distribution on Earth[J]. Proc Natl Acad Sci USA,2018,115(25):6506−6511. doi: 10.1073/pnas.1711842115
    [2] 毛俏婷, 胡俊豪, 赵雨佳, 闫舒航, 杨海平, 陈汉平. 生物质和废塑料混合热解协同特性研究[J]. 燃料化学学报,2020,48(3):286−292. doi: 10.3969/j.issn.0253-2409.2020.03.004

    MAO Qiao-ting, HU Jun-hao, ZHAO Yu-jia, YAN Shu-hang, YANG Hai-ping, CHEN Han-pin. Synergistic effect during biomass and waste plastics co-pyrolysis[J]. J Fuel Chem Technol,2020,48(3):286−292. doi: 10.3969/j.issn.0253-2409.2020.03.004
    [3] FANG T, CAI Y, YANG Q, OGUTU C O, LIAO L, HAN Y P. Analysis of sorbitol content variation in wild and cultivated apples[J]. J Food Sci.,2020,100(1):139−144. doi: 10.1002/jsfa.10005
    [4] RIBEIRO L S, ÓRFãO J J, PEREIRA M F R. Enhanced direct production of sorbitol by cellulose ball-milling[J]. Green Chem,2015,17(5):2973−2980. doi: 10.1039/C5GC00039D
    [5] YAMAGUCHI S, FUJITA S, NAKAJIMA K, YAMAZOE S, YAMASAKI J, MIZUGAKI T, MITSUDOME T. Air-stable and reusable nickel phosphide nanoparticle catalyst for the highly selective hydrogenation of d-glucose to d-sorbitol[J]. Green Chem,2021,23(5):2010−2016. doi: 10.1039/D0GC03301D
    [6] 张涛, 刘琪英, 张彩红, 张琦, 马隆龙. Ni/La2O2CO3催化剂对山梨醇氢解产物的选择性调控[J]. 化工学报,2017,68(6):2359−2367.

    (ZHAO Tao, LIU Qi-yin, ZHANG Chai-hong, ZHANG Qi, MA Long-long. Selective hydrogenolysis of sorbitol on Ni/La2O2CO3 catalysts[J]. J Chem Ind Eng,2017,68(6):2359−2367.
    [7] 曹晓峰, 张琦, 姜东, 刘琪英, 马隆龙, 王铁军, 李德宝. 焙烧温度对Ni/La(Ⅲ)催化剂氢解山梨醇制备低碳二元醇性能的影响[J]. 燃料化学学报,2015,43(8):970−979. doi: 10.3969/j.issn.0253-2409.2015.08.010

    CHAO Xiao-feng, ZHAO Qi, JIANG Dong, LIU Qi-yin, MA Long-long, WAN Tie-jun, LI De-bao. Influence of calcination temperature on the performance of Ni/La (III) catalyst in the hydrogenolysis of sorbitol to low-carbon glycols[J]. J Fuel Chem Technol,2015,43(8):970−979. doi: 10.3969/j.issn.0253-2409.2015.08.010
    [8] 董慧焕, 郭星翠, 秦张峰, 韩生, 牟新东. 官能化碳纳米管负载Ru催化山梨醇氢解制备低碳二元醇[J]. 燃料化学学报,2015,43(12):1454−1460. doi: 10.3969/j.issn.0253-2409.2015.12.008

    DONG Hui-huan, GUO Xing-cui, QIN Zhang-feng, HAN Shen, MOU Xin-dong. Effect of modified groups of carbon nanotubes on catalytic properties of Ru/CNTs catalysts for hydrogenolysis of sorbitol[J]. J Fuel Chem Technol,2015,43(12):1454−1460. doi: 10.3969/j.issn.0253-2409.2015.12.008
    [9] ZHANG X, RABEE A I, ISAACS M, LEE A, WILSON K. Sulfated zirconia catalysts for d-sorbitol cascade cyclodehydration to isosorbide: Impact of zirconia phase[J]. ACS Sustainable Chem Eng,2018,6(11):14704−14712. doi: 10.1021/acssuschemeng.8b03268
    [10] YUAN D, LI L, LI F, WANG F, ZHAO N, XIAO F. Solvent-free production of isosorbide from sorbitol catalyzed by a polymeric solid acid[J]. ChemSusChem,2019,12(22):4986−9495. doi: 10.1002/cssc.201901922
    [11] ZHANG Q, TAN J, WANG T, ZHANG Q, MA L, QIU S, WENG Y. Sorbitol transformation into aromatics: A comparative evaluation of Ni/HZSM-5 and Ni/Hβ[J]. Fuel,2016,165:152−158. doi: 10.1016/j.fuel.2015.10.071
    [12] WANG S, DAI G, YANG H, LUO Z. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review[J]. Prog Energy Combust Sci,2017,62:33−86. doi: 10.1016/j.pecs.2017.05.004
    [13] 尚双, 郭朝强, 兰奎, 李泽善, 秦振华, 贺维韬, 李建芬. Ni/Zr-MOF催化剂的制备及其在生物质热解中的应用[J]. 燃料化学学报,2019,47(9):1067−1074. doi: 10.3969/j.issn.0253-2409.2019.09.005

    SHANG Shuang, GUO Zhao-qiang, LAN Kui, LI Ze-shan, QIN Zhen-hua, HE Wei-tao, LI Jian-fen. Preparation of Ni/Zr-MOF catalyst and its application in pyrolysis of biomass[J]. J Fuel Chem Technol,2019,47(9):1067−1074. doi: 10.3969/j.issn.0253-2409.2019.09.005
    [14] GóMEZ-SIURANA A, MARCILLA A, BELTRAN M, MARTINEZ I, BERENGUER D, GARCÍA-MARTÍNEZ R, HERNÁNDEZ-SELVA T. Study of the oxidative pyrolysis of tobacco-sorbitol-saccharose mixtures in the presence of MCM-41[J]. Thermochim Acta,2012,530:87−94. doi: 10.1016/j.tca.2011.12.008
    [15] BAKER R R, BISHOP L J. The pyrolysis of tobacco ingredients[J]. J Anal Appl Pyrolysis,2004,71(1):223−311. doi: 10.1016/S0165-2370(03)00090-1
    [16] GUNAWAN M, HUDAYA T, SOERAWIDJAJA T H. Synthesis of bio-hexane and bio-hexene from sorbitol using formic acid as reducing agent[J]. J Eng Technol Sci,2021,53(1):17−28.
    [17] EASTON M W, NASH J J, KENTTÄMAA H I. Dehydration pathways for glucose and cellobiose during fast pyrolysis[J]. J Phys Chem A,2018,122(41):8071−8085.
    [18] LONG Y, YU Y, SONG B, WU H W. Polymerization of glucose during acid-catalyzed pyrolysis at low temperatures[J]. Fuel,2018,230:83−88. doi: 10.1016/j.fuel.2018.05.022
    [19] HUTCHINSON C P, LEE Y J. Evaluation of primary reaction pathways in thin-film pyrolysis of glucose using 13C labeling and real-time monitoring[J]. ACS Sustainable Chem Eng,2017,5(10):8796−8803. doi: 10.1021/acssuschemeng.7b01601
    [20] FRISCH M, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 16[CP]. Gaussian, Inc. Wallingford, CT, 2016.
    [21] HU B, XIE W L, LI H, LI K, LU Q, YANG Y P. On the mechanism of xylan pyrolysis by combined experimental and computational approaches[J]. Proc Combust Inst,2021,38(3):4215−4223. doi: 10.1016/j.proci.2020.06.172
    [22] HU B, LU Q, JIANG X Y, LIU J, CUI M S, DONG C Q, YANG Y P. Formation mechanism of hydroxyacetone in glucose pyrolysis: A combined experimental and theoretical study[J]. Proc Combust Inst,2019,37(3):2741−2748. doi: 10.1016/j.proci.2018.05.146
    [23] BANERJEE A, MUSHRIF S H. Reaction pathways for the deoxygenation of biomass-pyrolysis-derived bio-oil on Ru: A DFT study using furfural as a model compound[J]. ChemCatChem,2017,9(14):2828−2838. doi: 10.1002/cctc.201700036
    [24] YU Z, MURRIA P, EASTON M W, DEGENSTEIN J C, ZHU H, XU L, AGRAWAL R, NICHOLASS W N, RIBEIRO H F, KENTTÄMAA H I. Exploring the reaction mechanisms of fast pyrolysis of xylan model compounds via tandem mass spectrometry and quantum chemical calculations[J]. J Phys Chem A,2019,123(42):9149−9157. doi: 10.1021/acs.jpca.9b04438
    [25] LU Q, TIAN H Y, HU B, JIANG X Y, DONG C Q, YANG Y P. Pyrolysis mechanism of holocellulose-based monosaccharides: the formation of hydroxyacetaldehyde[J]. J Anal Appl Pyrolysis,2016,120:15−26. doi: 10.1016/j.jaap.2016.04.003
    [26] ARORA J S, ANSARI K B, CHEW J W, DAUENHAUER P, MUSHRIF S. Unravelling the catalytic influence of naturally occurring salts on biomass pyrolysis chemistry using glucose as a model compound: A combined experimental and DFT study[J]. Catal Sci Technol,2019,9(13):3504−3524. doi: 10.1039/C9CY00005D
    [27] HU B, LU Q, JIANG X Y, DONG X C, CUI M S, DONG C Q, YANG Y P. Insight into the formation of anhydrosugars in glucose pyrolysis: A joint computational and experimental investigation[J]. Energy Fuels,2017,31(8):8291−8299. doi: 10.1021/acs.energyfuels.7b01250
    [28] KOSTETSKYY P, COILE M W, TERRIAN J M, COLLINS J W, MARTIN K J, BRAZDIL J F, BROADBELT L J. Selective production of glycolaldehyde via hydrothermal pyrolysis of glucose: Experiments and microkinetic modeling[J]. J Anal Appl Pyrolysis,2020,149:104846. doi: 10.1016/j.jaap.2020.104846
    [29] HU B, LU Q, JIANG X Y, DONG X C, CUI M S, DONG C Q, YANG Y P. Pyrolysis mechanism of glucose and mannose: the formation of 5-hydroxymethyl furfural and furfural[J]. J Energy Chem,2018,27(2):486−501. doi: 10.1016/j.jechem.2017.11.013
    [30] FANG Y, LI J, CHEN Y, LU Q, YANG H P, WANG X H, CHEN H P. Experiment and modeling study of glucose pyrolysis: formation of 3-hydroxy-γ-butyrolactone and 3-(2H)-furanone[J]. Energy Fuels,2018,32(9):9519−9129. doi: 10.1021/acs.energyfuels.8b01877
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  778
  • HTML全文浏览量:  179
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-30
  • 修回日期:  2021-07-29
  • 网络出版日期:  2021-09-03
  • 刊出日期:  2021-12-29

目录

    /

    返回文章
    返回