留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同热解活化条件下制备的污泥炭常温催化氧化NO

周易 邓文义 胡明涛 许铈尧 苏亚欣

周易, 邓文义, 胡明涛, 许铈尧, 苏亚欣. 不同热解活化条件下制备的污泥炭常温催化氧化NO[J]. 燃料化学学报(中英文), 2022, 50(3): 366-375. doi: 10.1016/S1872-5813(21)60160-3
引用本文: 周易, 邓文义, 胡明涛, 许铈尧, 苏亚欣. 不同热解活化条件下制备的污泥炭常温催化氧化NO[J]. 燃料化学学报(中英文), 2022, 50(3): 366-375. doi: 10.1016/S1872-5813(21)60160-3
ZHOU Yi, DENG Wen-yi, HU Ming-tao, XU Shi-yao, SU Ya-yin. Low temperature catalytic oxidation of NO over sludge char under different pyrolysis activation conditions[J]. Journal of Fuel Chemistry and Technology, 2022, 50(3): 366-375. doi: 10.1016/S1872-5813(21)60160-3
Citation: ZHOU Yi, DENG Wen-yi, HU Ming-tao, XU Shi-yao, SU Ya-yin. Low temperature catalytic oxidation of NO over sludge char under different pyrolysis activation conditions[J]. Journal of Fuel Chemistry and Technology, 2022, 50(3): 366-375. doi: 10.1016/S1872-5813(21)60160-3

不同热解活化条件下制备的污泥炭常温催化氧化NO

doi: 10.1016/S1872-5813(21)60160-3
基金项目: 上海自然科学基金(19ZR1400700),中央高校基本科研业务费专项资金(2232019D3-24)和上海市科委科研计划(19DZ1204900)资助
详细信息
    作者简介:

    周易:zhouyi201508@163.com

    通讯作者:

    Tel:021-67792555,E-mail:dengwy@dhu.edu.cn

  • 中图分类号: X511

Low temperature catalytic oxidation of NO over sludge char under different pyrolysis activation conditions

Funds: The project was supported by the Shanghai Natural Science Foundation (19ZR1400700), the Fundamental Research Funds for the Central Universities (2232019D3-24), and the Scientific Research Project from Science and Technology Commission of Shanghai Municipality (19DZ1204900)
  • 摘要: 以市政污泥为原料制备污泥炭(SC),开展了SC常温催化氧化NO的实验研究。通过对不同热解温度(600 、700 和800 ℃)和不同干基污泥(DS)/KOH混合质量比下(4∶1、3∶1、2∶1和1∶1)的NO脱除特性研究,探究了污泥裂解活化工艺对NO常温催化氧化的影响规律和作用机理。结果表明,热解温度和KOH活化均对SC的催化活性有显著影响,当热解温度由600 ℃升至800 ℃,裂解样的NO转化率由12%升至36%;不同热解温度下,SC的催化活性均随KOH用量增加呈先增大后减小趋势;当热解温度为700 ℃、DS/KOH = 3∶1时,SC的催化活性最优,达到56%;对该样品进一步进行氢气还原处理后,其脱硝效率进一步提升,达到76.5%。研究发现,SC的催化活性与其比表面积有强相关性,其反应机理遵循Eley-Rideal(E-R)模型。
  • FIG. 1391.  FIG. 1391.

    FIG. 1391.  FIG. 1391.

    图  1  常温催化氧化NO反应系统

    Figure  1  Reaction system of catalytic oxidation of NO at ambient temperature

    1: Mass flow meter; 2: Gas mixer; 3: Switching valve; 4: Quartz tube; 5: Temperature controller; 6: Gas analyzer; 7: Thermocouple; 8: Bypass tube; 9: SC sample; 10: Heating belt

    图  2  不同成品SC的照片

    Figure  2  Images of different SCs (a): SC-600 ℃ (1∶1); (b): SC-700 ℃ (2∶1); (c): SC-700 ℃ (1∶1)

    图  3  不同SC样品的XRD谱图

    Figure  3  XRD profiles of SCs

    (a): SC-600 ℃ (1∶1); (b): SC-700 ℃ (2∶1); (c): SC-700 ℃ (1∶1)

    图  4  SC表面形貌的SEM照片

    Figure  4  SEM images of SCs

    (a): SC-600 ℃; (b): SC-700 ℃; (c): SC-800 ℃; (d): SC-600 ℃ (2∶1); (e): SC-700 ℃ (3∶1); (f): SC-800 ℃ (4∶1)

    图  5  不同SC的碘值

    Figure  5  Iodine value of different SCs

    图  6  不同SC的脱硝曲线

    Figure  6  Denitration curves of different SCs

    (a): SC without KOH addition; (b) DS/KOH = 4∶1; (c): DS/KOH = 3∶1; (d): DS/KOH = 2∶1; (e): DS/KOH = 1∶1; (f): SC-700(3∶1)-H2 Reaction temperature of 30 ℃, total flow rate of 0.5 L/min, inlet NO = 450 μL/L, O2 = 20%

    图  7  不同SC的稳态NO转化率

    Figure  7  NO conversion of different SC at stable stage

    图  8  SC的NO转化率与其碘值的联系

    Figure  8  Correlation between NO conversions and iodine values of SCs

    图  9  SCs脱硝前后的FT-IR谱图

    Figure  9  FT-IR of SCs before and after catalytic oxidation of NO

    表  1  DS及不同工况样品的工业成分分析

    Table  1  Proximate analysis of DS and SCs

    SampleProximate analysis w/%
    AVFC
    DS 43.24 49.64 7.12
    SC-600 ℃ 67 22.69 10.31
    SC-600 ℃(4∶1) 54.33 17.39 28.27
    SC-600 ℃(3∶1) 53.12 20.93 25.95
    SC-600 ℃(2∶1) 59.42 22.12 18.46
    SC-600 ℃(1∶1) 64.26 24.96 10.78
    SC-700 ℃ 73.22 14.08 12.7
    SC-700 ℃(4∶1) 54.23 18.16 27.61
    SC-700 ℃(3∶1) 53.74 20.22 26.04
    SC-700 ℃(2∶1) 56.76 22.77 20.47
    SC-700 ℃(1∶1) 73.87 16.23 9.9
    SC-800 ℃ 75.09 10.89 14.02
    SC-800 ℃(4∶1) 53.97 17.61 28.42
    SC-800 ℃(3∶1) 55.83 18.94 25.23
    SC-800 ℃(2∶1) 61.93 19.21 18.86
    SC-800 ℃(1∶1) 69.82 19.23 10.95
    下载: 导出CSV

    表  2  DS的灰分分析

    Table  2  Ash components in DS

    Content w/%
    Fe2O3SiO2Al2O3SO3P2O5TiO2CaOK2O
    36.64 ± 0.2428.31 ± 0.2310.61 ± 0.159.58 ± 0.157.29 ± 0.132.03 ± 0.071.82 ± 0.071.21 ± 0.05
    下载: 导出CSV
  • [1] WOJCIECHOWSKA M, LOMNICKI S. Nitrogen oxides removal by catalytic methods[J]. Clean Technol Environ Policy,1999,1(4):237−247. doi: 10.1007/s100980050037
    [2] BARMAN S, PHILIP L. Integrated system for the treatment of oxides of nitrogen from flue gases[J]. Environ Sci Technol,2005,40(3):1035−1041.
    [3] SKALSKA K, MILLER J S, LEDAKOWICZ S. Trends in NOx abatement: A review[J]. Sci Total Environ,2010,408(19):3976−3989. doi: 10.1016/j.scitotenv.2010.06.001
    [4] TOPSOE N Y, TOPSOE H, DUMESIC J A. Vanadia/titania catalysts for selective catalytic reduction (SCR) of nitric-oxide by ammonia[J]. J Catal,1995,151:226−240. doi: 10.1006/jcat.1995.1024
    [5] 刘华彦. NO的常温催化氧化及碱液吸收脱除NOx过程研究[D]. 杭州: 浙江大学, 2011.

    LIU Hua-yan. Studies on NOx removal by catalytic oxidation and alkali solution absorption at ambient temperature[D]. Hangzhou: Zhejiang University, 2011.
    [6] WANG G H, ZHANG R Y, GOMEZ M E, YANG L X, ZAMORA M L, HU M, LIN Y, PENG J F, GUO S, MENG J J. Persistent sulfate formation from London Fog to Chinese haze[J]. Proc Natl Acad Sci U S A,2016,113(48):13630−13635. doi: 10.1073/pnas.1616540113
    [7] FU M, LI C, PEI L, LONG Q, ZHANG M, YANG Z, YU M, YANG F. A review on selective catalytic reduction of NOx by supported catalysts at 100−300 ℃ catalysts mechanism, kinetics[J]. Catal Sci Technol,2014,4(1):14−25. doi: 10.1039/C3CY00414G
    [8] LI Q, YANG H S, NIE A M, FAN X Y, ZHNAG X B. Catalytic reduction of NO with NH3 over V2O5-MnOX/TiO2 carbon nanotube composites[J]. Catal Lett,2011,141(8):1237−1242. doi: 10.1007/s10562-011-0622-2
    [9] XU Q, FANG Z L, CHEN Y Y, GUO Y L, GUO Y, WANG L, WANG Y S, ZHNG J S, ZHAN W C. Titania-samarium-manganese composite oxide for the low-temperature selective catalytic reduction of NO with NH3[J]. Environ Sci Technol,2020,54:2530−2538. doi: 10.1021/acs.est.9b06701
    [10] WANG J, ZHU J Z, ZHOU X X, DU Y Y, HANG W M, LIU J J, ZHANG W Q, SHI J L, CHEN H R. Nanoflower-like weak crystallization manganese oxide for efficient removal of low-concentration NO at room temperature[J]. J Mater Chem A,2015,3(14):7631−7638. doi: 10.1039/C5TA00468C
    [11] CHOI J, LEE K S, CHOI Y J, KIM Y J, KIM S S. Dry De-NOx process via gas-phase photochemical oxidation using an ultraviolet and aerosolized H2O/H2O2 hybrid system[J]. Energy Fuels,2014,28(8):5270−5276. doi: 10.1021/ef500645a
    [12] ELLMERS I, VELEZ R P, BENTRUP U, BRUCKNER A, GRUNERT W. Oxidation and selective reduction of NO over Fe-ZSM-5 How related are these reactions[J]. J Catal,2014,311:199−211. doi: 10.1016/j.jcat.2013.11.024
    [13] VERMA A A, BATES S A, ANGGARA T, PAOLUCCI C, PAREKH A A, KAMASAMUDRAM A, YEZERETS A, YEZERETS A, MILLER J T, DELGASS W N, SCHNEIDER W F. NO oxidation: A probe reaction on Cu-SSZ-13[J]. J Catal,2014,312:179−190. doi: 10.1016/j.jcat.2014.01.017
    [14] BODENSTEIN M. Die Ermittlung des Mechanismus chemischer Reaktionen[J]. Helv Chim Acta,1935,18(1):743−759. doi: 10.1002/hlca.193501801102
    [15] WILLIAM S E, LARRY E C, ALEKSEY Y, NEALW C, JAMESE P. Overview of the fundamental reactions and degradation mechanisms of NOx storage/reduction catalysts[J]. Catal Rev,2004,46(2):163−245. doi: 10.1081/CR-200031932
    [16] GUO Z C, XIE Y S, IKPYO H, KIM J Y. Catalytic oxidation of NO to NO2 on activated carbon[J]. Energy Convers Manage,2001,42(15/17):2005−2018. doi: 10.1016/S0196-8904(01)00058-9
    [17] SOUSA J P S, PEREIRA M F R, FIGUEIREDO J L. Catalytic oxidation of NO to NO2 on N-doped activated carbons[J]. Catal Today,2011,176(1):383−387. doi: 10.1016/j.cattod.2010.11.040
    [18] ESRAFILI M D, SAEIDI N. Si-embedded boron-nitride nanotubes as an efficient and metal-free catalyst for NO oxidation[J]. Superlattices Microstruct,2015,81:7−15. doi: 10.1016/j.spmi.2015.01.014
    [19] GORGULHO H F, GONCALVES F, PEREIRA M F R, FIGUEIREDO J L. Synthesis and characterization of nitrogen-doped carbon xerogels[J]. Carbon,2009,47(8):2032−2039. doi: 10.1016/j.carbon.2009.03.050
    [20] MIYWAKI J, SHIMOHARA T, SHIRAHAMA N, YASUTAKE A, YOSHIKAWA M, MOCHIDA I, YOON S H. Removal of NOx from air through cooperation of the TiO2 photocatalyst and urea on activated carbon fiber at room temperature[J]. Appl Catal B: Environ,2011,110:273−278. doi: 10.1016/j.apcatb.2011.09.012
    [21] WANG W C, MCCOOL G, KAPUR N, YUAN G, SHAN B, NGUYEN M, GREHAM U M, DAVIS B H, JACOBS G, CHO K, HAO X H. Mixed-phase oxide catalyst based on Mn-mullite (Sm, Gd) Mn2O5 for NO oxidation in diesel exhaust[J]. Science,2012,337:832−835. doi: 10.1126/science.1225091
    [22] MANOCHA L M, WARRIER A, MANOCHA S, EDIE D D, OGALE A A. Microstructure of carbon/carbon composites reinforced with pitch-based ribbon-shape carbon fibers[J]. Carbon,2003,41(7):1425−1436. doi: 10.1016/S0008-6223(03)00087-3
    [23] SOUSA J P S, PEREIRA M F R, FIGUEIREDO J L. Carbon xerogel catalyst for NO oxidation[J]. Catalysis,2012,2(4):447−465.
    [24] 周易, 邓文义, 苏亚欣. 常温下碳基活性材料催化氧化NO的研究进展[J]. 化工进展,2021,40(2):857−867.

    ZHOU Yi, DENG Wen-yi, SU Ya-xin. Research progress in catalytic oxidation of NO by carbon-based active materials at room temperature[J]. Chem Ind Eng Prog,2021,40(2):857−867.
    [25] DENG W Y, YAN J H, LI X D, WANG F, ZHU X W, LU S Y, CEN K F. Emission characteristics of volatile compounds during sludges drying process[J]. J Hazard Mater,2009,162(1):186−192. doi: 10.1016/j.jhazmat.2008.05.022
    [26] 邓文义, 陶聪, 田诗娟, 印安东, 苏亚欣. 不同热解条件下制备的污泥炭低温还原NO[J]. 化工进展,2020,39(S1):263−269.

    DENG Wen-yi, TAO Cong, TIAN Shi-juan, YIN An-dong, SU Ya-xin. Low temperature reduction of NO over sludge char prepared under different pyrolysis conditions[J]. Chem Ind Eng Prog,2020,39(S1):263−269.
    [27] DENG W Y, YIN A D, MA C J, SU Y X. Investigation of NO conversion by different types of sewage sludge chars under low temperature[J]. J Environ Manage,2018,209:236−244. doi: 10.1016/j.jenvman.2017.12.065
    [28] DENG W Y, HU M H, MA J C, SU Y X, RUAN S P, RONG S B. Structural and functional relationships of activated char briquettes from pyrolysis of sewage sludge for methylene blue removal[J]. J Cleaner Prod,2020,259:120907. doi: 10.1016/j.jclepro.2020.120907
    [29] ZOU J L, DAI Y, WANG X, RE Z Y, TIAN G G, PAN K, LI S, ABUOBEIDAND M, FU H G. Structure and adsorption properties of sewage sludge-derived carbon with removal of inorganic impurities and high porosity[J]. Bioresour Technol,2013,142:209−217. doi: 10.1016/j.biortech.2013.04.064
    [30] HADI P, XU M, NING C, LIN C S K, MCKAY G. A critical review on preparation, characterization and utilization of sludge-derived activated carbons for wastewater treatment[J]. Chem Eng J,2015,260:895−906. doi: 10.1016/j.cej.2014.08.088
    [31] MIAN M M, LIU G J, FU B, SONG Y. Facile synthesis of sludge-derived MnOx-N-biochar as an efficient catalyst for peroxymonosulfate activation[J]. Appl Catal B: Environ,2019,255:117765. doi: 10.1016/j.apcatb.2019.117765
    [32] 陶聪. 常温下炭化污泥催化氧化脱除NO的实验研究[D]. 上海: 东华大学, 2020.

    TAO Cong. Experimental study on catalytic oxidation of NO at ambient temperature over the chars from pyrolysis of sewage sludge[D], Shanghai: Master's degree thesis of Donghua University, 2020.
    [33] DENG W Y, TAO C, COBB K, ZHOU H F, RUAN R. Catalytic oxidation of NO at ambient temperature over the chars from pyrolysis of sewage sludge[J]. Chemosphere,2020,251:126429. doi: 10.1016/j.chemosphere.2020.126429
    [34] GB/T 12496.8—2015, 木质活性炭试验方法—碘吸附值的测定[S].

    GB/T 12496.8—2015, Test methods of wooden activated carbon—Determination of iodine number[S].
    [35] TOSHIRO O, RITSUO T, MASAO I. Production and adsorption characteristics of MAXSORB: high-surface-area active carbon[J]. Gas Sep Purif,1993,7(4):241−245. doi: 10.1016/0950-4214(93)80024-Q
    [36] CHINGOMBE P, SAHA B, WAKEMAN R J. Surface modification and characteristics of a coal-based activated carbon[J]. Carbon,2005,43(15):3132−3243. doi: 10.1016/j.carbon.2005.06.021
    [37] ZHANG H, TU Y J, DUAN Y P, LIN J, ZHI W D, TANG Y, XIAO L S, MENG L. Production of biochar from waste sludge/leaf for fast and efficient removal of diclofenac[J]. J Mol Liq,2020,299:112193. doi: 10.1016/j.molliq.2019.112193
    [38] ZHANG W J, RABIEA S, BAGREEV A, ZHUANG M S, RASOULI F. Study of NO adsorption on activated carbons[J]. Appl Catal B: Environ,2008,83(1/2):63−71. doi: 10.1016/j.apcatb.2008.02.003
    [39] SHEN W Z, FAN W B. Nitrogen-containing porous carbons: Synthesis and application[J]. J Mater Chem A,2013,1(4):999−1013. doi: 10.1039/C2TA00028H
    [40] SEYED A D, HAFIZ S, TINA L, JUSTIN M. NO oxidation by activated carbon catalysts: Impact of carbon characteristics, pressure, and the presence of water[J]. ACS Omega,2020,33:21172−21180.
    [41] CLAUDINO A, SOARES J L, MOREIRA R F P M, JOSE H J. Adsorption equilibrium and breakthrough analysis for NO adsorption on activated carbons at low temperatures[J]. Carbon,2004,42(8/9):1483−1490. doi: 10.1016/j.carbon.2004.01.048
    [42] FIGUEIREDO J L, PEREIRA M F R, FREITAS M M A, ORFAO J J M. Modification of the surface chemistry of activated carbons[J]. Carbon,1999,37(9):1379−1389. doi: 10.1016/S0008-6223(98)00333-9
    [43] 李圆圆, 陈少华, 张召基, 石建稳, 汤凤霞. KOH活化丝瓜络制备高比表面积活性炭[J]. 化工进展,2012,31(6):1274−1279.

    LI Yuan-yuan, CHEN Shao-hua, ZHANG Zhao-ji, SHI Jian-wen, TANG Feng-xia. Preparation of high surface area activated carbons from Luffa cylindrical sponge by KOH activation[J]. Chem Ind Eng Prog,2012,31(6):1274−1279.
    [44] ADAPA S, GAUR V, VERMA N. Catalytic oxidation of NO by activated carbon fiber (ACF)[J]. Chem Eng J,2006,116(1):25−37. doi: 10.1016/j.cej.2005.10.007
    [45] FAN H J, HE K J, ZHOU H, WANG J. Pyrolysis of municipal sewage in a slowly heating and gas sweeping fixed-bed reactor[J]. Energy Convers Manage,2014,88:1151−1158. doi: 10.1016/j.enconman.2014.05.043
    [46] SANDOVAL S, KUMAR N, ORO-SOLE J. Tuning the nature of nitrogen atoms in N-containing reduced graphene oxide[J]. Carbon,2016,96:594−602. doi: 10.1016/j.carbon.2015.09.085
    [47] LIU J, LI G Q, CHEN L, WANG Y, XU Y, QIAO X X, ZHANG Y F. Effects of atmospheric gas on pyrolysis characteristics of briquetted lignite and surface properties of semi-char[J]. Fuel Process Technol,2016,151:40−49. doi: 10.1016/j.fuproc.2016.05.035
    [48] YIN Y S, YIN J, ZHANG W, TIAN H, HU Z M, RUAN M, XU H F, LIU L, YAN X Z, CHEN D L. FT-IR and micro-Raman spectroscopic characterization of minerals in high-calcium coal ashes[J]. Energy Inst,2018,91(3):389−396. doi: 10.1016/j.joei.2017.02.003
    [49] ZHANG Z Q, ATKINSON J D, JIANG B Q, ROOD M J, YAN Z F. Nitric oxide oxidation catalyzed by microporous activated carbon fiber cloth: an updated reaction mechanism[J]. Appl Catal B: Environ,2014,148–149:573−581.
    [50] YANG H, LIU H, ZHOU K, YAN Z Q, ZHAO R, LIU Z H, LIU Z H, QIU J R. Oxidation path analysis of NO in the adsorption and removal process using activated carbon fibers[J]. J Fuel Chem Technol,2012,40(8):1002−1008.
    [51] ATKINSON J D, ZHANG Z Q, YAN Z F, ROOD M J. Evolution and impact of acidic oxygen functional groups on activated carbon fiber cloth during NO oxidation[J]. Carbon,2013,54:444−453. doi: 10.1016/j.carbon.2012.11.060
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  304
  • HTML全文浏览量:  135
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-16
  • 修回日期:  2021-08-24
  • 网络出版日期:  2021-09-20
  • 刊出日期:  2022-03-28

目录

    /

    返回文章
    返回