留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Growth of high performance coal tar-based carbon film and its application in Joule heating

DU Zhi-ming LEI Zhi-ping YU Wen-hao YAN Jing-chong LI Zhan-ku SHUI Heng-fu REN Shi-biao WANG Zhi-cai KANG Shi-gang

杜志明, 雷智平, 于文浩, 颜井冲, 李占库, 水恒福, 任世彪, 王知彩, 康士刚. 煤焦油基碳膜的制备及其焦耳电热性能研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60162-7
引用本文: 杜志明, 雷智平, 于文浩, 颜井冲, 李占库, 水恒福, 任世彪, 王知彩, 康士刚. 煤焦油基碳膜的制备及其焦耳电热性能研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60162-7
DU Zhi-ming, LEI Zhi-ping, YU Wen-hao, YAN Jing-chong, LI Zhan-ku, SHUI Heng-fu, REN Shi-biao, WANG Zhi-cai, KANG Shi-gang. Growth of high performance coal tar-based carbon film and its application in Joule heating[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60162-7
Citation: DU Zhi-ming, LEI Zhi-ping, YU Wen-hao, YAN Jing-chong, LI Zhan-ku, SHUI Heng-fu, REN Shi-biao, WANG Zhi-cai, KANG Shi-gang. Growth of high performance coal tar-based carbon film and its application in Joule heating[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60162-7

煤焦油基碳膜的制备及其焦耳电热性能研究

doi: 10.1016/S1872-5813(21)60162-7
详细信息
  • 中图分类号: TQ536.9

Growth of high performance coal tar-based carbon film and its application in Joule heating

Funds: The project was supported by the Natural Scientific Foundation of China (21878001, 22078002, 21776001, 21875001, 21978002, 21808002, 22008001, and U1710114)
More Information
  • 摘要: 导电碳薄膜在电加热、能源存储设备和太阳能电池等方面具有较大范围的应用前景。煤焦油是制备碳薄膜的理想前驱体。为了提高煤焦油即碳薄膜的性能,有必要研究煤焦油的组成对所制备的碳薄膜的结构与性能的影响规律。本文采用芳烃化合物、杂原子化合物和焦油为碳源制备了碳膜。研究发现芳烃基碳膜载流子浓度均高于1022/cm3,但其载流子迁移率低于1 cm2/Vs。芳烃基碳膜的电阻率和方块电阻均低于煤焦油基碳膜,其中萘基碳膜的导电性能和电热性质最好,碳膜在30 V下的最大发热温度超过300 °C。碳膜的厚度对碳膜的方块电阻具有决定性影响。杂原子化合物基碳膜中,对羟基联苯基碳膜的电阻率略小于煤焦油基碳膜,而吡啶基和苯并噻吩基碳膜的电阻率均高于煤焦油基碳膜。杂原子化合物基碳膜的焦耳加热性能明显低于芳烃化合物基膜。
  • Figure  1  Joule heating devices fabricated from arene or coal tar

    Figure  2  XRD pattern ((a),(b)) and Raman spectrum ((c),(d)) of carbon films prepared with arene/coal tar and different heteroatom compound

    Figure  3  TEM, HRTEM, and surface morphology of carbon film prepared with arene

    (a)-(c): TL; (d)-(f): PH; (h)-(k): coal tar; (g)-(m): Py

    Figure  4  Film thickness ((a),(c)) and surface roughness ((b),(d)) of carbon films prepared with arene, coal tar and heteroatom compound

    Figure  5  Carrier concentration (a),(c) and mobility (b),(d) of carbon films prepared by different arene, tar and heteroatom compound

    Figure  6  Resistivity (a),(c) and sheet resistance (b),(d) of carbon films prepared with arene, tar and heteroatom compound.

    Figure  7  Electrothermal properties of arene/coal tar-based and heteroatom compound -based carbon film carbon films. (a),(c): at a voltage of 30 V; (b),(d): at different voltages

    Figure  8  Relationship between sheet resistance, temperature at a voltage of 30 V, and films thickness of carbon films

  • [1] FAN Z J, LIU Y, YAN J, NING G Q, WANG Q, WEI T, ZHI L J, WEI F. Template-directed synthesis of pillared-porous carbon nanosheet architectures: High-performance electrode materials for supercapacitors[J]. Adv Energy Mater,2012,2(4):419−424. doi: 10.1002/aenm.201100654
    [2] HE X J, LI X J, MA H, HAN J F, ZHANG H, YU C, XIAO N, QIU J S. ZnO template strategy for the synthesis of 3D interconnected graphene nanocapsules from coal tar pitch as supercapacitor electrode materials[J]. J Power Sources,2017,340:183−191. doi: 10.1016/j.jpowsour.2016.11.073
    [3] WANG Y W, XIAO N, WANG Z Y, LI H J, YU M L, TANG Y C, HAO M Y, LIU C, ZHOU Y, QIU J S. Rational design of high-performance sodium-ion battery anode by molecular engineering of coal tar pitch[J]. Chem Eng J,2018,342:52−60. doi: 10.1016/j.cej.2018.01.098
    [4] HAN Y J, KIM J D, YEO J S, AN J C, HONG I P, NAKABAYASHI K J, MIYAWAKI J, JUNG J D, YOON S H. Coating of graphite anode with coal tar pitch as an effective precursor for enhancing the rate performance in Li-ion batteries: Effects of composition and softening points of coal tar pitch[J]. Carbon,2015,94:432−438. doi: 10.1016/j.carbon.2015.07.030
    [5] ZHANG J J, LIU Q R, HE H, SHI F, HUANG G X, XING B L, JIA J B, ZHANG C X. Coal tar pitch as natural carbon quantum dots decorated on TiO2 for visible light photodegradation of rhodamine B[J]. Carbon,2019,152:284−294. doi: 10.1016/j.carbon.2019.06.034
    [6] DONG F, LIU C, WU M J, GUO J N, LI K X, QIAO J L. Hierarchical porous carbon derived from coal tar pitch containing discrete Co-Nx-C active sites for efficient oxygen electrocatalysis and rechargeable Zn-Air batteries[J]. ACS Sustainable Chem Eng,2019,7(9):8587−8596. doi: 10.1021/acssuschemeng.9b00373
    [7] ASHCHEULOV P, TAYLOR A, VLČKOVÁ ŽIVCOVÁ Z, HUBÍK P, HONOLKA J, VONDRÁČEK M, REMZOVÁ M, KOPEČEK J, KLIMŠA L, LORINČIK J, DAVYDOVA M, REMEŠ Z, KOHOUT M, BELTRAN A M, MORTET V. Low temperature synthesis of transparent conductive boron doped diamond films for optoelectronic applications: Role of hydrogen on the electrical properties[J]. Appl Mater Tody,2020,19:100633. doi: 10.1016/j.apmt.2020.100633
    [8] HU P, MENG D H, REN G H, YAN R X, PENG X S. Nitrogen-doped mesoporous carbon thin film for binder-free supercapacitor[J]. Appl Mater Tody,2016,5:1−8. doi: 10.1016/j.apmt.2016.08.001
    [9] SEO H K, KIM T S, PARK C, XU W, BAEK K, BAE S H, AHN J H, KIM K, CHOI H C, LEE T W. Value-added synthesis of graphene: recycling industrial carbon waste into electrodes for high-performance electronic devices[J]. Sci Rep,2015,5:16710. doi: 10.1038/srep16710
    [10] KELLER B D, FERRALIS N, GROSSMAN J C. Rethinking coal: thin films of solution processed natural carbon nanoparticles for electronic devices[J]. Nano Lett,2016,16(5):2951−2957. doi: 10.1021/acs.nanolett.5b04735
    [11] MORRIS O P, ZANG X, GREGG A, KELLER B, GETACHEW B, INGERSOLL S, ELSEN H A, DISKO M M, FERRALIS N, GROSSMAN J C. Natural carbon by-products for transparent heaters: the case of steam-cracker tar[J]. Adv Mater,2019,31(35):e1900331. doi: 10.1002/adma.201900331
    [12] LEI Z P, DU Z M, YU W H, YAN J C, LI Z K, SHUI H F, REN S B, WANG Z C, KONG Y, KANG S G. Facile synthesis of carbon film with high carrier concentration using coal tar and the application in joule heating[J]. ACS Appl Electron Mater,2021,3(7):3271−3277. doi: 10.1021/acsaelm.1c00434
    [13] MA R, HUAN Q, WU L, YAN J, GUO W, ZHANG Y Y, WANG S, BAO L, LIU Y, DU S, PANTELIDES S T, GAO H J. Direct four-probe measurement of grain-boundary resistivity and mobility in millimeter-sized graphene[J]. Nano Lett,2017,17(9):5291−5296. doi: 10.1021/acs.nanolett.7b01624
    [14] YIN Y, CHENG Z, WANG L, JIN K, WANG W. Graphene, a material for high temperature devices-intrinsic carrier density, carrier drift velocity, and lattice energy[J]. Sci Rep,2014,4:5758.
    [15] WEI D, LIU Y, WANG Y, ZHANG H, HUANG L, YU G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties[J]. Nano Lett,2009,9(5):1752−1758. doi: 10.1021/nl803279t
    [16] KANG T J, KIM T, SEO S M, PARK Y J, KIM Y H. Thickness-dependent thermal resistance of a transparent glass heater with a single-walled carbon nanotube coating[J]. Carbon,2011,49(4):1087−1093. doi: 10.1016/j.carbon.2010.11.012
  • 加载中
图(8)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  5
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-24
  • 修回日期:  2021-07-25
  • 网络出版日期:  2021-09-26

目录

    /

    返回文章
    返回