留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半焦原位气化气对淖毛湖煤热解焦油产率和品质的影响

孔娇 王欢 于彦旭 程亚楠 王美君 常丽萍 鲍卫仁

孔娇, 王欢, 于彦旭, 程亚楠, 王美君, 常丽萍, 鲍卫仁. 半焦原位气化气对淖毛湖煤热解焦油产率和品质的影响[J]. 燃料化学学报(中英文), 2022, 50(4): 385-395. doi: 10.1016/S1872-5813(21)60164-0
引用本文: 孔娇, 王欢, 于彦旭, 程亚楠, 王美君, 常丽萍, 鲍卫仁. 半焦原位气化气对淖毛湖煤热解焦油产率和品质的影响[J]. 燃料化学学报(中英文), 2022, 50(4): 385-395. doi: 10.1016/S1872-5813(21)60164-0
KONG Jiao, WANG Huan, YU Yan-xu, CHEN Ya-nan, WANG Mei-jun, CHANG Li-ping, BAO Wei-ren. Effects of syngas from semi-coke in-situ gasification on yield and quality of tar from pyrolysis of Naomaohu coal[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 385-395. doi: 10.1016/S1872-5813(21)60164-0
Citation: KONG Jiao, WANG Huan, YU Yan-xu, CHEN Ya-nan, WANG Mei-jun, CHANG Li-ping, BAO Wei-ren. Effects of syngas from semi-coke in-situ gasification on yield and quality of tar from pyrolysis of Naomaohu coal[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 385-395. doi: 10.1016/S1872-5813(21)60164-0

半焦原位气化气对淖毛湖煤热解焦油产率和品质的影响

doi: 10.1016/S1872-5813(21)60164-0
基金项目: 国家自然科学基金(21808152, 21878208)资助
详细信息
    作者简介:

    孔娇:kongjiao06@163.com

    通讯作者:

    Tel: 0351-6010482, E-mail: wangmeijun@tyut.edu.cn

  • 中图分类号: TQ530.2

Effects of syngas from semi-coke in-situ gasification on yield and quality of tar from pyrolysis of Naomaohu coal

Funds: The project was supported by National Natural Science Foundation of China (21808152, 21878208)
  • 摘要: 本研究采用实验室自制的热解气化一体化反应器,考察了气化合成气对煤热解焦油产率和品质的影响。结果表明,淖毛湖煤热解焦油产率在600 ℃时达到最大,气化合成气对提高低温(550–600 ℃)煤焦油的产率更有利,其中,550 ℃时焦油产率较N2下提高了4.4%。气化合成气气氛下,高温(650–800 ℃)焦油的产率较N2低,但650–700 ℃热解焦油的品质明显改善,其中,轻质组分的产率有明显提升;低于600 ℃热解挥发分中脂肪烃和含氧化合物的裂解反应加剧,使焦油中其含量降低,而苯系和萘系化合物的生成量增加;650 ℃以上的热解挥发分中酚类化合物的二次裂解反应会加剧,导致焦油中其生成量降低;对800 ℃热解挥发分中多环芳烃二次裂解反应的发生更有利,但对提高低于700°热解焦油中多环芳烃的生成量则更加有利。
  • FIG. 1460.  FIG. 1460.

    FIG. 1460.  FIG. 1460.

    图  1  实验装置示意图[25]

    1-feeder; 2-reactor; 3-fumace; 4-mass flow controller; 5-water tank; 6-pump; 7-steam generator; 8-condenser; 9-constant temperature circulator; 10-ice-water trap; 11-dry ice trap; 12-THF trap; 13-cotton filter; 14-wet gas flowmeter; 15- high molecular cellulose filter; 16-desiccant; 17-raman laser gas analyzer

    Figure  1  Schematic diagram of experimental equipment [25]

    图  2  热解气化耦合实验示意图

    Figure  2  Schematic diagram for coupling pyrolysis and char gasification

    图  3  淖毛湖煤在不同温度下热解的产物分布

    Figure  3  Product distribution of NMH coal pyrolysis at different temperatures

    图  4  淖毛湖煤热解焦油的产率

    Figure  4  Yield of tar formed during NMH coal pyrolysis

    图  5  淖毛湖煤热解气体的产率

    Figure  5  Yield of gas formed during NMH coal pyrolysis

    图  6  淖毛湖煤热解焦油中各组分的生成量

    Figure  6  Amount of group composition in NMH coal tar

    图  7  不同气氛下淖毛湖煤热解焦油的组分分布

    Figure  7  Distribution of group composition in NMH coal tar

    图  8  不同气氛下淖毛湖煤热解积炭的生成量

    Figure  8  Amount of coke generated during NMH coal pyrolysis

    图  9  不同气氛下淖毛湖煤热解焦油的组成

    Figure  9  Composition of NMH coal tar obtained with different atmospheres

    表  1  淖毛湖煤的工业分析和元素分析[25]

    Table  1  Proximate and ultimate analyses of Naomaohu coal [25]

    Proximate analysis w/%Ultimate analysis wdaf/%Gray-King wdaf/%
    MarAdVdafCHNSOatar yield
    19.5 5.8 50.12 74.35 5.13 0.72 0.31 19.49 15.4
    ar: as received basis, d: dry basis, daf: dry and ash free basis, a: by difference
    下载: 导出CSV

    表  2  淖毛湖煤碳结构类型及含量[28]

    Table  2  Proportion of different structural carbons in solid-state 13C NMR spectra[28]

    SymbolChemical shiftCarbon typeProportion of different carbon types in coal
    ${f}_{{\rm{al}}}^{1}$0−25methyl0.11
    ${f}_{{\rm{al}}}^{2}$25−50methylene0.19
    ${f}_{ {\rm{al} } }^{{\rm{o1}}}$50−67methoxy0.21
    ${f}_{ {\rm{al} } }^{{\rm{o2}}}$67−90oxy-methine, saccharide, alcohol, ether0.05
    ${f}_{{\rm{a}}}^{1}$90−129aromatic atoms bound to hydrogen0.19
    ${f}_{{\rm{a}}}^{2}$129−137bridging ring junction
    aromatic carbon
    0.10
    ${f}_{{\rm{a}}}^{3}$137−148branched aromatic carbon0.07
    ${f}_{ {\rm{a} } }^{{\rm{o1}}}$148−171oxy-aromatic carbon0.03
    ${f}^{{\rm{co}}}$171−187carboxyl, ester, quinone0.01
    ${f}^{{\rm{co}}}$187−220ketone, quinine, aldehyde0.04
    下载: 导出CSV
  • [1] 王建国, 赵晓红. 低阶煤清洁高效梯级利用关键技术与示范[J]. 中国科学院院刊,2012,27(3):382−388. doi: 10.3969/j.issn.1000-3045.2012.03.018

    WANG Jian-guo, ZHAO Xiao-hong. Demonstration of key technologies for clean and efficient utilization of low-rank coal[J]. Bull Chin Acad Sci,2012,27(3):382−388. doi: 10.3969/j.issn.1000-3045.2012.03.018
    [2] 韩永滨, 刘桂菊, 赵慧斌. 低阶煤的结构特点与热解技术发展概述[J]. 中国科学院院刊,2013,28(6):772−780.

    HAN Yong-bin, LIU Gui-ju, ZHAO Hui-bin. Structural characteristics of low-rank coal and its pyrolysis technology development[J]. Bull Chin Acad Sci,2013,28(6):772−780.
    [3] ZHANG C, WU R C, HU E F, LIU S Y, XU G W. Coal pyrolysis for high-quality tar and gas in 100 kg fixed bed enhanced with internals[J]. Energy Fuels, 2014, 28: 7294–7302.
    [4] EDWARDS J H, SCHLUTER K, TYLER R J. Upgrading of flash pyrolysis tars to synthetic crude oil: 1. First stage hydrotreatment using a disposable catalyst[J]. Fuel, 1985, 64: 594–599.
    [5] SOLOMON P R, FLETCHER T H, PUGMIRE R J. Progress in coal pyrolysis[J]. Fuel,1993,72(5):587−597. doi: 10.1016/0016-2361(93)90570-R
    [6] GREENE M I. Engineering development of a short residence time, coal hydropyrolysis process[J]. Fuel Process Technol,1978,1(3):169−185. doi: 10.1016/0378-3820(78)90017-6
    [7] WANG P F, JIN L, LIU J, ZHU S, HU H. Analysis of coal tar derived from pyrolysis at different atmospheres[J]. Fuel,2013,104(2):14−21.
    [8] JIN L J, ZHOU X, HE X F, HU H Q. Integrated coal pyrolysis with methane aromatization over Mo/HZSM-5 for improving tar yield[J]. Fuel,2013,114:l87−190.
    [9] DONG C, JIN L J, LI Y, ZHOU Y. Integrated process of coal pyrolysis with steam reforming of methane for improving the tar yield[J]. Energy Fuels,2014,28:7377−7384. doi: 10.1021/ef501796a
    [10] ZHONG M, ZHANG Z K, ZHOU Q, YUE J R. Continuous high-temperature fluidized bed pyrolysis of coal in complex atmospheres: Product distribution and pyrolysis gas[J]. J Anal Appl Pyrolysis,2012,97(6):123−129.
    [11] STEINBERG M, FALLON P T. Make ethylene and benzene by flash methanolysis of coal[J]. Hydrocarb Process,1982,61(11):92−96.
    [12] 郭志航. 褐煤热解分级转化多联产工艺的关键问题研究[D]. 杭州: 浙江大学, 2015.

    GUO Zhi-hang. Research on key issues of lignite pyrolysis-based staged conversion polygeneration technology[D]. Hangzhou: Zhejiang University, 2015.
    [13] 李保庆. 我国煤加氢热解研究Ⅲ. 神府煤加氢、催化加氢及H2-CH4气氛下热解的研究[J]. 燃料化学学报,1995,23(2):192−197.

    LI Bao-qing. Hydropyrolysis of Chinese coals Ⅲ. Catalytic and non-catalytic hydropyrolysis and pyrolysis under H2-CH4 of Shenfu bituminous coal[J]. J Fuel Chem Technol,1995,23(2):192−197.
    [14] 胡浩权, 狄敏娜, 王明义, 靳立军, 王德超. 煤热解焦油催化裂解和乙烷水蒸气重整耦合提高焦油品质[J]. 煤炭学报,2020,45(1):386−392.

    HU Hao-quan, DI Min-na, WANG Ming-yi, JIN Li-jun, WANG De-chao. Upgrading of coal pyrolysis tar by catalytic cracking coupled with steam reforming of ethane[J]. J China Coal Soc,2020,45(1):386−392.
    [15] 廖洪强, 张碧江, 李保庆, 刘泽常. 煤-焦炉气共热解特性研究IV. 甲烷和一氧化碳对热解的影响[J]. 燃料化学学报,1998,26(1):13−17.

    LIAO Hong-qiang, ZHANG Bi-jiang, LI Bao-qing, LIU Ze-chang. Copyrolysis of coal with coke-oven gas IV. Influence of CH4 and CO on pyrolysis yields[J]. J Fuel Chem Technol,1998,26(1):13−17.
    [16] JIN L J, ZHAO H B, WANG M Y, WEI B Y, HU H Q. Effect of temperature and simulated coal gas composition on tar production during pyrolysis of a subbituminous coal[J]. Fuel,2019,241:1129−1137. doi: 10.1016/j.fuel.2018.12.093
    [17] ZHANG X F, DONG L, ZHANG J W, TIAN Y J, XU G W. Coal pyrolysis in a fluidized bed reactor simulating the process conditions of coal topping in CFB boiler[J]. J Anal Appl Pyrolysis,2011,91(1):241−250. doi: 10.1016/j.jaap.2011.02.013
    [18] ARIUNAA A, LI B Q, LI W, PUREVSUREN B, MUNKHJARGAL S, LIU F R, BAI Z Q, WANG G. Coal pyrolysis under synthesis gas, hydrogen and nitrogen[J]. J Fuel Chem Technol,2007,35(1):1−4. doi: 10.1016/S1872-5813(07)60007-3
    [19] CHEN Z H, SHI Y, LAI D G, GAO S Q, SHI Z, TIAN Y, XU G W. Coal rapid pyrolysis in a transport bed under steam-containing syngas atmosphere relevant to the integrated fluidized bed gasification[J]. Fuel,2016,176:200−208. doi: 10.1016/j.fuel.2016.02.082
    [20] LIAO H Q, LI B Q, ZHANG B J. Co-pyrolysis of coal with hydrogen-rich gases. 1. Coal pyrolysis under coke-oven gas and synthesis gas[J]. Fuel,1998,77(8):847−851. doi: 10.1016/S0016-2361(97)00257-3
    [21] LIAO H Q, LI B Q, ZHANG B J. Pyrolysis of coal with hydrogen-rich gases. 2. Desulfurization and denitrogenation in coal pyrolysis under coke-oven gas and synthesis gas[J]. Fuel,1998,77(14):1643−1646. doi: 10.1016/S0016-2361(98)00076-3
    [22] FIDALGO B, NIEKERK D V, MILLAN M. The effect of syngas on tar quality and quantity in pyrolysis of a typical South African inertinite-rich coal[J]. Fuel,2014,134(9):90−96.
    [23] MURAKAMI T, YASUDA H, NORISADA K. Comparison of tar components in syngas generated by gasification conditions of lignite in a fluidized bed gasifier[J]. Energy Fuels,2018,32(2):1110−1114. doi: 10.1021/acs.energyfuels.7b02579
    [24] CHEN Z H, LAI D G, BAI L Q, TIAN Y, GAO S Q, XU G W. Methane-rich syngas production in an integrated fluidized bed by coupling pyrolysis and gasification of low-rank coal[J]. Fuel Process Technol,2015,140:88−95. doi: 10.1016/j.fuproc.2015.08.028
    [25] 靳鑫, 王倩, 李晓荣, 李挺, 王美君, 孔娇, 闫伦靖, 常丽萍, 王建成, 鲍卫仁. 煤热解挥发分在活性炭上的积炭行为及其过程分析[J]. 燃料化学学报,2021,49(5):609−616. doi: 10.1016/S1872-5813(21)60047-6

    (JIN Xin, WANG Qian, LI Xiao-rong, LI Ting, WANG Mei-jun, KONG Jiao, YAN Lun-jing, CHANG Li-ping, WANG Jian-cheng, BAO Wei-ren. Coke formation on activated carbon during catalytic upgrading of coal pyrolysis volatiles[J]. J Fuel Chem Technol,2021,49(5):609−616. doi: 10.1016/S1872-5813(21)60047-6
    [26] SOLOMON P R, HAMBLEN D G, CARANGELO R M, SERIO M A, DESHPANDE G V. Models of tar formation during coal devolatilization[J]. Combust Flame,1988,71(2):137−146. doi: 10.1016/0010-2180(88)90003-X
    [27] SHI L, LIU Q Y, LIU Z Y, WU W Z. Oils and phenols-and-water-free tars produced in pyrolysis of 23 Chinese coals in consecutive temperature ranges[J]. Energy Fuels,2013,27(10):5816−5822. doi: 10.1021/ef401215h
    [28] 王欢. 热场温度与填料介质对淖毛湖煤挥发分反应的影响[D]. 太原: 太原理工大学, 2019.

    WANG Huan. Effect of thermal field temperature and packing medium on reactions of volatiles from Naomaohu coal[D]. Taiyuan: Taiyuan University of Technology, 2019.
    [29] LIU P, ZHANG D X, WANG L L, ZHOU Y, PAN T Y, LU X L. The structure and pyrolysis product distribution of lignite from different sedimentary environment[J]. Appl Energy,2016,163:254−262. doi: 10.1016/j.apenergy.2015.10.166
    [30] LIU P, LE J W, WANG L L, PAN T Y, LU X L, ZHANG D X. Relevance of carbon structure to formation of tar and liquid alkane during coal pyrolysis[J]. Appl Energy,2016,183:470−477. doi: 10.1016/j.apenergy.2016.08.166
    [31] KOUICHI M. Mild conversion of coal for producing valuable chemicals[J]. Fuel Process Technol,2000,62(2):119−135.
    [32] WANG P F, JIN L J, LIU J H, ZHU S W, HU H Q. Analysis of coal tar derived from pyrolysis at different atmospheres[J]. Fuel,2013,104:14−21. doi: 10.1016/j.fuel.2010.06.041
    [33] TAKAHASHI H, IWATSUKI M, ESSAKI K, TSUTSUMI A, CHIBA T. Rapid conversion of tar and char from pyrolysis of a brown coal by reactions with steam in a drop-tube reactor[J]. Fuel, 2000, 79: 439-447.
    [34] SONG Y, WANG Y, HU X, XIANG J, HU S, MOURANT D, LI T, WUL, LI C Z. Effects of volatile-char interactions on in-situ destruction of nascent tar during the pyrolysis and gasification of biomass. Part II. Roles of steam[J]. Fuel,2015,143:555−562. doi: 10.1016/j.fuel.2014.11.096
    [35] LIU Z Y, GUO X J, SHI L, HE W J, WU J F, LIU Q Y, LIU J H. Reaction of volatiles - A crucial step in pyrolysis of coals[J]. Fuel,2015,154:361−369. doi: 10.1016/j.fuel.2015.04.006
    [36] SILBERNAGELl B G, GEBHARD L A, DYRKACZ G R, BLOOMQUIST C A A. Electron spin resonance of isolated coal macerals[J]. Fuel,1986,65(4):558−565. doi: 10.1016/0016-2361(86)90049-9
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  2258
  • HTML全文浏览量:  192
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-26
  • 修回日期:  2021-09-14
  • 网络出版日期:  2021-10-13
  • 刊出日期:  2022-04-26

目录

    /

    返回文章
    返回