留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

In-situ catalytic upgrading of tar from integrated process of coal pyrolysis with steam reforming of methane over carbon based Ni catalyst

WANG Zheng-wei WEI Bao-yong LÜ Jian-nan WANG Yi-ming WU Yun-fei YANG He HU Hao-quan

王政委, 魏宝勇, 吕剑楠, 王一鸣, 武云飞, 杨赫, 胡浩权. 煤热解与甲烷蒸汽重整耦合过程焦油在碳基镍催化剂上的原位催化提质[J]. 燃料化学学报(中英文), 2022, 50(2): 129-142. doi: 10.1016/S1872-5813(21)60169-X
引用本文: 王政委, 魏宝勇, 吕剑楠, 王一鸣, 武云飞, 杨赫, 胡浩权. 煤热解与甲烷蒸汽重整耦合过程焦油在碳基镍催化剂上的原位催化提质[J]. 燃料化学学报(中英文), 2022, 50(2): 129-142. doi: 10.1016/S1872-5813(21)60169-X
WANG Zheng-wei, WEI Bao-yong, LÜ Jian-nan, WANG Yi-ming, WU Yun-fei, YANG He, HU Hao-quan. In-situ catalytic upgrading of tar from integrated process of coal pyrolysis with steam reforming of methane over carbon based Ni catalyst[J]. Journal of Fuel Chemistry and Technology, 2022, 50(2): 129-142. doi: 10.1016/S1872-5813(21)60169-X
Citation: WANG Zheng-wei, WEI Bao-yong, LÜ Jian-nan, WANG Yi-ming, WU Yun-fei, YANG He, HU Hao-quan. In-situ catalytic upgrading of tar from integrated process of coal pyrolysis with steam reforming of methane over carbon based Ni catalyst[J]. Journal of Fuel Chemistry and Technology, 2022, 50(2): 129-142. doi: 10.1016/S1872-5813(21)60169-X

煤热解与甲烷蒸汽重整耦合过程焦油在碳基镍催化剂上的原位催化提质

doi: 10.1016/S1872-5813(21)60169-X
详细信息
  • 中图分类号: TQ530.2

In-situ catalytic upgrading of tar from integrated process of coal pyrolysis with steam reforming of methane over carbon based Ni catalyst

Funds: The project was supported by NSFC and Shanxi Provincial Government of China (U1710105)
More Information
  • 摘要: 本研究采用Ni/KD-9催化剂,对CP-SRM过程焦油进行原位催化提质研究。结果表明,在650 ℃热解温度下,CP-SRM在5Ni/KD-9催化作用下的焦油产率为24.4%,略低于不进行催化提质的焦油产率,而轻质焦油产率(18.9%)是未提质时的1.4倍。相比未提质焦油,用5Ni/KD-9提质后焦油中的C2、C3和C4烷基取代苯含量分别增加0.5、0.6和4.0倍;酚和萘的含量也明显提高。采用同位素示踪方法结合典型组分质谱图,探究了催化提质过程的反应机理。结果表明,5Ni/KD-9可以同时催化焦油裂解和甲烷蒸汽重整(SRM),SRM过程产生的小分子自由基,如·CHx,·H和·OH可以与焦油裂解产生的自由基结合,从而避免焦油的过度裂解。
  • FIG. 1259.  FIG. 1259.

    FIG. 1259. 

    Figure  1  Schematic diagram of the fixed-bed reactor system

    Figure  2  Yields of tar and light tar (a) light tar content (b) over Ni/KD-9 with different Ni loading under S&M atmosphere

    Figure  3  Distillation curves (a) and changes in each distillation fraction content (b) of tar obtained under S&M atmosphere with and without Ni/KD-9 with different Ni loading

    Figure  4  Gas yield (a) and average conversion of feed gas (b) in CP-S&M over xNi/KD-9

    Figure  5  Tar and light tar yield, CH4 and H2O conversion and light tar content under CP-S&M and CP-SRM with and without 5Ni/KD-9

    Figure  6  Benzenes (a), phenols (b), naphthalenes (c) and aliphatic hydrocarbons (d) in tars from CP-SRM with or without 5Ni/KD-9

    Figure  7  XRD patterns of fresh (a) and spent (b) catalysts

    Figure  8  N2 adsorption/desorption isotherms of fresh (a) and spent (c) xNi/KD-9 catalysts, and corresponding pore size distribution (b) and (d)

    Figure  9  Benzenes (a), phenols (b), naphthalenes (c), aliphatic hydrocarbons (d), 3-ring aromatics (e) and 4-ring aromatics (f) in tars obtained from CP-S&M with or without 5Ni/KD-9

    Figure  10  1H NMR spectra of tars from CP-S&M with or without 5Ni/KD-9

    Figure  11  13C NMR spectra of tars from CP-S&M with or without 5Ni/KD-9

    Figure  12  D-NMR spectra of tars obtained by using D2O (a) or CD4 (b) with and without 5Ni/KD-9

    Figure  13  Mass spectra of o-xylene(a), phenol(b), p-cresol(c), 1,5-dimethylnaphthalene(d) and 1-decene(e) in tars from different atmospheres

    Table  1  Proximate and ultimate analyses of PS coal and KD-9

    SampleProximate analysis w/%Ultimate analysis wdaf/%
    MadAdVdafCHNSO*
    PS coal1.2623.5242.6578.425.081.380.7714.35
    KD-93.861.2214.1994.081.110.324.160.33
    * : by difference
    下载: 导出CSV

    Table  2  Textural properties of the fresh and spent xNi/KD-9 catalysts

    SampleSBET/(m2·g−1)Smic/(m2·g−1)vt/(cm3·g−1)dave/nmNi grain size /nm*
    KD-95304630.5043.8
    2Ni/KD-95264490.5023.8
    5Ni/KD-95214550.5033.926.5
    10Ni/KD-95164490.5124.027.1
    15Ni/KD-95064350.4913.928.1
    KD-9-S90300.27312.1
    2Ni/KD-9-S92320.24710.7
    5Ni/KD-9-S118540.2488.429.2
    10Ni/KD-9-S143800.2657.430.6
    15Ni/KD-9-S1931260.2745.729.8
    * : Calculated by Scherrer formula from XRD patterns
    下载: 导出CSV

    Table  3  Proton distribution of tars from CP-S&M with or without 5Ni/KD-9 (%)

    Proton typeAssignmentsWithout catalyst5Ni/KD-9
    Har (6.3–9.3)aromatic protons22.3627.51
    Hu (6.3–7.2)uncondensed Har63.4242.73
    Hc (7.2–9.3)condensed Har36.5857.27
    Hal (0.5–6.3)aliphatic protons77.6472.49
    Hγ (0.5–1.2)protons of CH3 in the γ position or further away from aromatic rings; protons of alkanes24.0715.18
    Hβ (1.2–2.1)protons of CH2 or CH in β position or further away from aromatic rings; protons of CH3 in the β position of aromatic rings38.1733.24
    Hα (2.1–4.3)protons of CH, CH2 or CH3 in the α position to aromatic rings33.1037.26
    Ho (4.3–6.3)protons of OH, OCHx and alkenyl of aromatic rings; protons of alkenes4.6614.32
    Har/Hal0.290.38
    Hu/Hc1.730.75
    下载: 导出CSV

    Table  4  Carbon distribution of tars from CP-S&M with or without 5Ni/KD-9 (%)

    Carbon typeAssignmentsWithout catalyst5Ni/KD-9
    Car (108–160)aromatic carbons53.5547.08
    Car1 (130–160)aromatic carbons connected to aliphatic chains, heteroatomic or aromatic substituents, and condensed aromatic rings shared by two rings10.178.11
    Car2 (108–130)condensed aromatic rings shared by three rings and protonated aromatic carbons89.8391.89
    Cal (10–41)aliphatic carbons46.4552.92
    CH+CH2 (23–41)aliphatic carbons CH2+CH59.5853.67
    CH3 (10–23)aliphatic carbons CH340.4246.33
    fa=Car/Ctotal0.540.47
    下载: 导出CSV

    Table  5  Deuterium distribution of tar by using CD4 and D2O as tracer (%) with 5Ni/KD-9

    Deuterium typeAssignmentsCH4+D2OCD4+H2O
    DAr (6.0–10.0)total aromatic deuterium61.7341.73
    DUar (6.0–8.0)uncondensed aromatic D96.4396.83
    DCar (8.0–10.0)condensed aromatic D3.573.17
    DAl (0.2–4.5)total aliphatic deuterium38.2758.27
    Dγ (0.2–1.5)γ or further sites of aromatic rings and CH3 alkyl19.8353.76
    Dβ (1.5–2.0)β sites of aromatic rings10.7740.43
    Dα (2.0–3.2)α sites of aromatic rings69.205.81
    Dδ (3.2–4.5)deuterium associated with heteroatom functionality0.200.00
    下载: 导出CSV
  • [1] LI W, WANG H, LI X, LIANG Y, WANG Y, ZHANG H. Effect of mixed cationic/anionic surfactants on the low-rank coal wettability by an experimental and molecular dynamics simulation[J]. Fuel,2021,289:119886. doi: 10.1016/j.fuel.2020.119886
    [2] JIAN Y, LI X, ZHU X, ASHIDA R, WORASUWANNARAK N, HU Z, LUO G, YAO H, ZHONG M, LIU J, MA F, MIURA K. Interaction between low-rank coal and biomass during degradative solvent extraction[J]. J Fuel Chem Technol,2019,47(1):14−22. doi: 10.1016/S1872-5813(19)30003-9
    [3] HE Z, SUN Y, CHENG S, JIA Z, TU R, WU Y, SHEN X, ZHANG F, JIANG E, XU X. The enhanced rich H2 from co-gasification of torrefied biomass and low rank coal: The comparison of dry/wet torrefaction, synergetic effect and prediction[J]. Fuel,2021,287:119473. doi: 10.1016/j.fuel.2020.119473
    [4] FAN Y, ZHANG S, LI X, XU J, WU Z, YANG B. Process intensification on suspension pyrolysis of ultra-fine low-rank pulverized coal via conveyor bed on pilot scale: Distribution and characteristics of products[J]. Fuel,2021,286:119341. doi: 10.1016/j.fuel.2020.119341
    [5] LI T, WANG Q, SHEN Y, JIN X, KONG J, WANG M, CHANG L. Effect of filter media on gaseous tar reaction during low-rank coal pyrolysis[J]. J Fuel Chem Technol,2021,49(03):257−264.
    [6] ZHANG K, WU Y, WANG D, JIN L, HU H. Synergistic effect of co-pyrolysis of pre-dechlorination treated PVC residue and Pingshuo coal[J]. J Fuel Chem Technol: 1-9[2021-05-21]. http://kns.cnki.net/kcms/detail/14.1140.TQ.20210413.1003.045.html.
    [7] CAO S, WANG D, WANG M, ZHU J, JIN L, LI Y, HU H. In-situ upgrading of coal pyrolysis tar with steam catalytic cracking over Ni/Al2O3 catalysts[J]. ChemistrySelect,2020,5(16):4905−4912. doi: 10.1002/slct.202000476
    [8] FU D, LI X, LI W, FENG J. Catalytic upgrading of coal pyrolysis products over bio-char[J]. Fuel Process Technol,2018,176:240−248. doi: 10.1016/j.fuproc.2018.04.001
    [9] ZHAO J, CAO J, WEI F, ZHAO X, FENG X, HUANG X, ZHAO M, WEI X. Sulfation-acidified HZSM-5 catalyst for in-situ catalytic conversion of lignite pyrolysis volatiles to light aromatics[J]. Fuel,2019,255:115784. doi: 10.1016/j.fuel.2019.115784
    [10] LIU P, LE J, ZHANG D, WANG S, PAN T. Free radical reaction mechanism on improving tar yield and quality derived from lignite after hydrothermal treatment[J]. Fuel,2017,207:244−252. doi: 10.1016/j.fuel.2017.06.081
    [11] KAN T, SUN X, WANG H, LI C, MUHAMMAD U. Production of gasoline and diesel from coal tar via its catalytic hydrogenation in serial fixed beds[J]. Energy Fuels,2012,26(6):3604−3611. doi: 10.1021/ef3004398
    [12] MAJKA M, TOMASZEWICZ G, MIANOWSKI A. Experimental study on the coal tar hydrocracking process over different catalysts[J]. J Energy Inst,2018,91(6):1164−1176. doi: 10.1016/j.joei.2017.06.007
    [13] JIN L, BAI X, LI Y, DONG C, HU H, LI X. In-situ catalytic upgrading of coal pyrolysis tar on carbon-based catalyst in a fixed-bed reactor[J]. Fuel Process Technol,2016,147:41−46. doi: 10.1016/j.fuproc.2015.12.028
    [14] LEI Z, HAO S, YANG J, LEI Z, DAN X. Study on solid waste pyrolysis coke catalyst for catalytic cracking of coal tar[J]. Int J Hydrogen Energy,2020,45(38):19280−19290. doi: 10.1016/j.ijhydene.2020.05.075
    [15] WEI B, JIN L, WANG D, SHI H, HU H. Catalytic upgrading of lignite pyrolysis volatiles over modified HY zeolites[J]. Fuel,2020,259:116234. doi: 10.1016/j.fuel.2019.116234
    [16] LIU J, HU H, JIN L, WANG P, ZHU S. Integrated coal pyrolysis with CO2 reforming of methane over Ni/MgO catalyst for improving tar yield[J]. Fuel Process Technol,2010,91(4):419−423. doi: 10.1016/j.fuproc.2009.05.003
    [17] DONG C, JIN L, LI Y, ZHOU Y, ZOU L, HU H. Integrated Process of coal pyrolysis with steam reforming of methane for improving the tar yield[J]. Energy Fuels,2014,28(12):7377−7384. doi: 10.1021/ef501796a
    [18] WU Y, LI Y, JIN L, HU H. Integrated process of coal pyrolysis with steam reforming of ethane for improving the tar yield[J]. Energy Fuels,2018,32(12):12268−12276. doi: 10.1021/acs.energyfuels.8b02964
    [19] JIANG H, WANG M, LI Y, JIN L, HU H. Integrated coal pyrolysis with steam reforming of propane to improve tar yield[J]. J Anal Appl Pyrolysis,2020,147:104805. doi: 10.1016/j.jaap.2020.104805
    [20] WANG P, JIN L, LIU J, ZHU S, HU H. Isotope analysis for understanding the tar formation in the integrated process of coal pyrolysis with CO2 reforming of methane[J]. Energy Fuels,2010,24(8):4402−4407. doi: 10.1021/ef100637k
    [21] JIN L, XIE T, MA B, LI Y, HU H. Preparation of carbon-Ni/MgO-Al2O3 composite catalysts for CO2 reforming of methane[J]. Int J Hydrogen Energy,2017,42(8):5047−5055. doi: 10.1016/j.ijhydene.2016.11.130
    [22] NAWFAL M, GENNEQUIN C, LABAKI M, NSOULI B, ABOUKAÏS A, ABI-AAD E. Hydrogen production by methane steam reforming over Ru supported on Ni-Mg-Al mixed oxides prepared via hydrotalcite route[J]. Int J Hydrogen Energy,2015,40(2):1269−1277. doi: 10.1016/j.ijhydene.2014.09.166
    [23] ZHAN Y, LI D, NISHIDA K, SHISHIDO T, OUMI Y, SANO T, TAKEHIRA K. Preparation of “intelligent” Pt/Ni/Mg(Al)O catalysts starting from commercial Mg-Al LDHs for daily start-up and shut-down steam reforming of methane[J]. Appl Clay Sci,2009,45(3):147−154. doi: 10.1016/j.clay.2009.05.002
    [24] COMAS J, DIEUZEIDE M L, BARONETTI G, LABORDE M, AMADEO N. Methane steam reforming and ethanol steam reforming using a Ni(II)-Al(III) catalyst prepared from lamellar double hydroxides[J]. Chem Eng J,2006,118(1):11−15.
    [25] FONSECA A, ASSAF E M. Production of the hydrogen by methane steam reforming over nickel catalysts prepared from hydrotalcite precursors[J]. J Power Sources,2005,142(1):154−159.
    [26] WANG M, JIN L, LI Y, LV J, WEI B, HU H. In-situ catalytic upgrading of coal pyrolysis tar coupled with CO2 reforming of methane over Ni-based catalysts[J]. Fuel Process Technol,2018,177:119−128. doi: 10.1016/j.fuproc.2018.04.022
    [27] WANG M, JIN L, ZHAO H, YANG X, LI Y, HU H, BAI Z. In-situ catalytic upgrading of coal pyrolysis tar over activated carbon supported nickel in CO2 reforming of methane[J]. Fuel,2019,250:203−210. doi: 10.1016/j.fuel.2019.03.153
    [28] BLANCO P H, WU C, ONWUDILI J A, WILLIAMS P T. Characterization and evaluation of Ni/SiO2 catalysts for hydrogen production and tar reduction from catalytic steam pyrolysis-reforming of refuse derived fuel[J]. Appl Catal B: Environ,2013,134−135:238−250. doi: 10.1016/j.apcatb.2013.01.016
    [29] RASTEGARPANAH A, MESHKANI F, REZAEI M. Thermocatalytic decomposition of methane over mesoporous nanocrystalline promoted Ni/MgO·Al2O3 catalysts[J]. Int J Hydrogen Energy,2017,42(26):16476−16488. doi: 10.1016/j.ijhydene.2017.05.044
    [30] CHENG S, WEI L, ZHAO X, KADIS E, CAO Y, JULSON J, GU Z. Hydrodeoxygenation of prairie cordgrass bio-oil over Ni based activated carbon synergistic catalysts combined with different metals[J]. New Biotechnol,2016,33(4):440−448. doi: 10.1016/j.nbt.2016.02.004
    [31] YAN L, KONG X, ZHAO R, LI F, XIE K. Catalytic upgrading of gaseous tars over zeolite catalysts during coal pyrolysis[J]. Fuel Process Technol,2015,138:424−429. doi: 10.1016/j.fuproc.2015.05.030
    [32] YAN L, BAI Y, LIU Y, HE Y, LI F. Effects of low molecular compounds in coal on the catalytic upgrading of gaseous tar[J]. Fuel,2018,226:316−321. doi: 10.1016/j.fuel.2018.03.191
    [33] IGLESIAS M J, CUESTA M J, SUÁREZ-RUIZ I. Structure of tars derived from low-temperature pyrolysis of pure vitrinites: influence of rank and composition of vitrinites[J]. J Anal Appl Pyrolysis,2001,58−59:255−284. doi: 10.1016/S0165-2370(00)00140-6
    [34] MORGAN T J, GEORGE A, DAVIS D B, HEROD A A, KANDIYOTI R. Optimization of 1H and 13C NMR methods for structural characterization of acetone and pyridine soluble/insoluble fractions of a coal tar pitch[J]. Energy Fuels,2008,22(3):1824−1835. doi: 10.1021/ef700715w
    [35] DABBAGH H A, SHI B, DAVIS B H, HUGHES C G. Deuterium incorporation during coal liquefaction in donor and nondonor solvents[J]. Energy Fuels,1994,8(1):219−226. doi: 10.1021/ef00043a034
    [36] CRONAUER D C, MCNEIL R I, YOUNG D C, RUBERTO R G. Hydrogen/deuterium transfer in coal liquefaction[J]. Fuel,1982,61(7):610−619. doi: 10.1016/0016-2361(82)90005-9
    [37] DI M, WANG M, JIN L, LI Y, HU H. In-situ catalytic cracking of coal pyrolysis tar coupled with steam reforming of ethane over carbon based catalyst[J]. Fuel Process Technol,2020,209:106551. doi: 10.1016/j.fuproc.2020.106551
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  2248
  • HTML全文浏览量:  117
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-23
  • 修回日期:  2021-05-11
  • 网络出版日期:  2021-10-28
  • 刊出日期:  2022-02-12

目录

    /

    返回文章
    返回