留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of TiO2 in Pd-TiO2/C for glycerol oxidation in a direct alkaline fuel cell

Viviane Santos Pereira Júlio Nandenha Andrezza Ramos Almir Oliveira Neto

VivianeSantos Pereira, JúlioNandenha, AndrezzaRamos, AlmirOliveira Neto. Pd-TiO2/C催化剂中TiO2对直接碱性燃料电池中丙三醇氧化的影响[J]. 燃料化学学报(中英文), 2022, 50(4): 474-483. doi: 10.1016/S1872-5813(21)60171-8
引用本文: VivianeSantos Pereira, JúlioNandenha, AndrezzaRamos, AlmirOliveira Neto. Pd-TiO2/C催化剂中TiO2对直接碱性燃料电池中丙三醇氧化的影响[J]. 燃料化学学报(中英文), 2022, 50(4): 474-483. doi: 10.1016/S1872-5813(21)60171-8
Viviane Santos Pereira, Júlio Nandenha, Andrezza Ramos, Almir Oliveira Neto. Effects of TiO2 in Pd-TiO2/C for glycerol oxidation in a direct alkaline fuel cell[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 474-483. doi: 10.1016/S1872-5813(21)60171-8
Citation: Viviane Santos Pereira, Júlio Nandenha, Andrezza Ramos, Almir Oliveira Neto. Effects of TiO2 in Pd-TiO2/C for glycerol oxidation in a direct alkaline fuel cell[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 474-483. doi: 10.1016/S1872-5813(21)60171-8

Pd-TiO2/C催化剂中TiO2对直接碱性燃料电池中丙三醇氧化的影响

doi: 10.1016/S1872-5813(21)60171-8
详细信息
  • 中图分类号: O646

Effects of TiO2 in Pd-TiO2/C for glycerol oxidation in a direct alkaline fuel cell

Funds: The project was supported by the CAPES, FAPESP (2017/11937-4) and CNPq (302709/2020-7).
More Information
  • 摘要: 以Vulcan XC-72炭为载体,采用硼氢化钠还原法制备了Pd-TiO2/C电催化剂用于直接丙三醇燃料电池阳极材料,并用能量色散谱(EDX)、X射线衍射(XRD)、透射电子显微镜(TEM)、循环伏安法(CV)、计时电流法(I-t)和全反射-傅里叶变换红外光谱(ATR-FTIR)对催化剂进行了表征。EDX结果表明,Pd-TiO2/C中Pd和Ti含量接近名义原子比。Pd-TiO2的X射线衍射结果表明,Pd具有面心立方fcc结构,同时TiO2展现出四方结构的锐钛矿相的峰特征。TEM图像显示Pd和TiO2纳米颗粒在碳载体中分布均匀并存在一些簇状区域,纳米颗粒大小为7.0 − 8.0 nm。循环伏安显示在1 mol/L KOH电解液中催化剂Pd-TiO2/C在 约 −0.7 V vs Ag/AgCl有明显的析氢行为和电容增加现象,表明催化剂在TiO2修饰后活性明显增加。通过循环伏安对碱性体系的丙三醇电催化氧化表明,Pd-TiO2/C(70∶30)显示了非常好的催化活性:起始氧化电位也变得更负达到−0.4V vs Ag/AgCl,氧化电流达到14.91 mA/cm,优于Pd-TiO2/C(90∶10)的9.37 mA/cm和Pd-TiO2/C(50∶50) 的4.88 mA/cm,明显高于Pd/C和TiO2/C的1.88 和0.55 mA/cm。I-t实验表明1000 s之前Pd-TiO2/C展现出最高的电流密度,但在1000 s后电流密度有一定程度的下降,表明催化剂的催化活性很高但长期稳定性方面需要进一步提升。在碱性直接丙三醇燃料电池中进行的实验表明,所制备的Pd-TiO2/C(50∶50)、Pd-TiO2/C(70∶30)和Pd-TiO2/C(90∶10)对甘油的电化学氧化性能均优于Pd/C电催化剂,其中,Pd-TiO2/C(70∶30)的催化活性最好:开路电压达到817 mV,最大功率密度达到12.5 mW/cm,高于Pd-TiO2/C(50∶50)的12.4 mW/cm、Pd-TiO2/C(90∶10)的7.9 mW/cm、Pd/C的3.7 mW/cm以及 TiO2/C的2.25 mW/cm,这表明,TiO2对Pd/C催化剂有很好的促进作用,这种协同效应可以归因为TiO2对Pd的电子效应和双功能机理,同时Pd和TiO2比例为70∶30时,其催化性能达到最优。ATR-FTIR结果表明,反应后所有Pd-TiO2/C电催化剂表面均有甘油醛、羟丙酮酸、甲酸等高附加值产物生成,为直接丙三醇燃料电池电-化学品联产提供一定的依据。
  • FIG. 1469.  FIG. 1469.

    FIG. 1469. 

    Figure  1  X-ray diffractograms of the Pd/C, TiO2/C, Pd-TiO2/C (50∶50, 70∶30 and 90∶10) electrocatalysts synthesized by the sodium borohydride reduction method

    Figure  2  Micrographs and the size distribution of nanoparticles obtained by transmission electron microscopy: (a) Pd/C, (b) TiO2/C, (c) Pd-TiO2/C (50∶50), (d) Pd-TiO2/C (70∶30), (e) Pd-TiO2/C (90∶10)

    Figure  3  Cyclic voltammograms of Pd/C, TiO2/C, Pd-TiO2/C (50∶50, 70∶30 and 90∶10) electrocatalysts in a 1 mol/L KOH solution at room temperature at a scan rate of 10 mV/s

    Figure  4  Cyclic voltammograms of glycerol electro-oxidation on Pd/C, TiO2, Pd-TiO2/C (50∶50, 70∶30 and 90∶10) electrocatalysts using 1.0 mol/L glycerol in 1.0 mol/L KOH electrolyte at room temperature with a scan rate of 10 mV/s

    Figure  5  Current versus time curves at −0.35 V in a 1.0 mol/L KOH solution in the presence of 1.0 mol/L glycerol for Pd/C, TiO2, Pd-TiO2/C (50∶50, 70∶30 and 90∶10) electrocatalysts at room temperature at a scan rate of 10 mV/s

    Figure  6  Polarization (A-(I)) curves and power density (A-(II)) in a 5 cm2 alkaline direct glycerol fuel cell (ADGFC) at 60 °C, using Pd/C, TiO2/C and Pd-TiO2/C electrocatalysts with different atomic proportions fed with 2.0 mol/L glycerol in a 2.0 mol/L KOH solution and oxygen flux was set to 150 mL min at 85 °C

    Figure  7  FT-IR spectra obtained from products collected at different potentials in increments of 100 mV in alkaline direct glycerol fuel cell (ADGFC) experiments using Pd/C, TiO2/C, Pd-TiO2/C (50∶50, 70∶30 and 90∶10) electrocatalysts

    Table  1  Nominal atomic ratios and atomic ratios obtained by EDX of the Pd-TiO2/C (50∶50, 70∶30 and 90∶10) electrocatalysts synthesized by the sodium borohydride reduction method

    ElectrocatalystNominal atomic ratios (%)
    (Pd:TiO2)
    Atomic ratios EDX (%)
    (Pd:TiO2)
    Pd-TiO2/C50:5045:55
    Pd-TiO2/C70:3068:33
    Pd-TiO2/C90:1089:11
    下载: 导出CSV

    Table  2  Molecules formation in the partial electro-oxidation reaction of glycerol at different potentials using combined Pd/C and TiO2/C electrocatalysts

    PdTiO250%70%90%
    Formate
    0.0→0.69 (0.59↑)0.21 → 0.510.34 → 0.74(0.52↓)0.0 to 0.70
    Hydroxypyruvate0.0→0.69 (0.59↑)0.21 → 0.510.34 → 0.74
    (0.34↓)
    (0.52↓)0.0 to 0.70
    Glycerate0.0→0.69 (0.59↑ and 0.69↑)0.21 → 0.510.34 → 0.74
    (0.34↓ and 0.44↓)
    0.0 → 0.62
    (0.52↓)
    0.0 to 0.70
    Carbonate0.0→0.69 (0.59↑ and 0.69↑)0.21 → 0.510.34 → 0.74 (0.34↓ and 0.44↓)0.0 → 0.62 (0.52↓)0.0 to 0.70
    Carboxylate0.0→0.69 (0.59↑ and 0.69↑)N.O.0.54 → 0.74 (0.74↑)(0.62↑)N.O.
    Symbol used: → : increase to; ↓: less intense; ↑: more intense; N.O.: not observed
    下载: 导出CSV
  • [1] ONG C B, KAMARUDIN K S, BASRI S. Direct liquid fuel cells: A review[J]. Int J Hydrogen Energy,2017,42(15):10142−10457.
    [2] ANTOLINI E, GONZALEZ R E. Alkaline direct alcohol fuel cells[J]. J Power Sources,2010,195(11):3431−3450. doi: 10.1016/j.jpowsour.2009.11.145
    [3] BANJONG J, THERDTHIANWONG A, THERDTHIANWONG S, YONGPRAGAT S, WONGYAO N. High performance alkaline-acid direct glycerol fuel cells for portable power supplies via electrode structure design[J]. Int J Hydrogen Energy,2020,45(3):2244−2256. doi: 10.1016/j.ijhydene.2019.11.041
    [4] YAHYA N, KAMARUDIN S K, KARIM A N, MASDAR S M, LOH S K, LIM L K. Durability and performance of direct glycerol fuel cell with palladium-aurum/vapor grown carbon nanofiber support[J]. Energy Convers Manag,2019,188:120−130. doi: 10.1016/j.enconman.2019.02.087
    [5] GERALDES N A, DA SILVA F D, SILVA A G L, SPINACÉ V E, NETO O A, DOS SANTOS C M. Binary and ternary palladium based electrocatalysts for alkaline direct glycerol fuel cell[J]. J Power Sources,2015,293:823−830. doi: 10.1016/j.jpowsour.2015.06.010
    [6] KIM M, LEE C, KO M S, NAM M-J. Metal alloy hybrid nanoparticles with enhanced catalytic activities in fuel cell applications[J]. J Solid State Chem,2019,270:295−303. doi: 10.1016/j.jssc.2018.11.014
    [7] SANTOS C B J, VIEIRA C, CRISAFULLI R, LINARES J J. Promotional effect of auxiliary metals Bi on Pt, Pd, and Ag on Au, for glycerol electrolysis[J]. Int J Hydrogen. Energy,2020,45(47):25658−25671. doi: 10.1016/j.ijhydene.2019.11.225
    [8] NANDENHA J, FONTES H E, PIASENTIN M R, FONSECA C F, NETO O A. Direct oxidation of methane at low temperature using Pt/C, Pd/C, Pt/C-ATO and Pd/C-ATO electrocatalysts prepared by sodium borohydride reduction process[J]. J Fuel Chem Technol,2018,46(9):1137−1145. doi: 10.1016/S1872-5813(18)30046-X
    [9] DASH S, MUNICHANDRAIAH N. Nanoflowers of PdRu on PEDOT for electrooxidation of glycerol and its analysis[J]. Electrochim Acta,2015,180:339−352. doi: 10.1016/j.electacta.2015.07.020
    [10] HOUACHE E S M, SHUBAIR A, SANDOVAL G M, SAFARI R, BOTTON A G, JASEN V P, GONZÁLEZ A E, BARANOVA A E. Influence of Pd and Au on electrochemical valorization of glycerol over Ni-rich surfaces[J]. J Catal,2021,396:1−13. doi: 10.1016/j.jcat.2021.02.008
    [11] VILLA A, DIMITRATOS N THAW-C E C, HAMMOND C, PRATI L, HUTCHING J G. Glycerol oxidation using old-containing catalysts[J]. Acc Chem Res.,2015,48:1403−1412. doi: 10.1021/ar500426g
    [12] BENIPAL N, QI J, LIU Q, LI W. Carbon nanotube supported PdAg nanoparticles for electrocatalytic oxidation of glycerol in anion Exchange membrane fuel cells[J]. Appl Catal,2017,210:121−130. doi: 10.1016/j.apcatb.2017.02.082
    [13] NANDENHA J, RAMOS C E D, DA SILVA G S, DE SOUZA R F B, FONTES H E, OTTONI C A, NETO A O. Borohydride reduction method for PdIn/C electrocatalysts synthesis towards glycerol electrooxidation under alkaline condition[J]. Eletroanalysis,2021,33(4):1115−1120. doi: 10.1002/elan.202060322
    [14] ROSTAMI H, OMRANI A, ROSTAMI A A. On the role of electrodeposited nanostrutured Pd-Co alloy on Au for the electrocatalytic oxidation of glycerol in alcaline media[J]. Int J Hydrogen Energy,2015,40(30):9444−9451. doi: 10.1016/j.ijhydene.2015.05.154
    [15] HAN J, KIM Y, KIM W H, JACKSON K H D, LEE D, CHANG H, CHAE J-H, LEE Y-K, KIM J H. Effect of atomic-layer-deposited TiO2 on carbono-supported Ni catalysts for electrocatalytic glycerol oxidation in alkaline media[J]. Electrochem Commun,2017,83:46−50. doi: 10.1016/j.elecom.2017.08.023
    [16] SILVA M C J, BUZZO S G, DE SOUZA B F R, SPINACÉ V E, NETO O A, ASSUMPÇÃO T M H M. Enhanced eletrooxidation of ethanol using Pd/C + TiO2 electrocatalysts in alkaline media[J]. Electrocatalysis,2015,6:86−91. doi: 10.1007/s12678-014-0224-z
    [17] HAN J, KIM Y, JACKSON K H D, JEONG E-K, CHAE J-H, LEE Y-K, KIM J-H. Role of Au-TiO2 interfacial sites in enchancing the electrocatalytic glycerol oxidation performance[J]. Electrochem Commun,2018,96:16−21. doi: 10.1016/j.elecom.2018.09.004
    [18] DE SOUZA M F, DE SOUZA B F R, BATISTA L B, DOS SANTOS C M, FONSECA C F, NETO, O A, NANDENHA J. Methane activation at low temperature in an acidic electrolyte using PdAu/C, PdCu/C, and PdTiO2/C electrocatalysts for PEMFC[J]. Res Chem Intermed,2020,46:2481−2496. doi: 10.1007/s11164-020-04102-1
    [19] DELGADO A J, CLAVER C, CASTILLÓN S, CURULLA-FERRÉ D, ORDOMSKY V V, GODARD C. Fisher-Tropsch synthesis catalyzed by small TiO2 supported cobalt nanoparticles prepared by sodium borohydride reduction[J]. Appl Catal A: Gen,2016,513:39−46. doi: 10.1016/j.apcata.2015.12.019
    [20] KIRKLAND A I, HUTCHISON J L. Nanocharacterization[M]. RSC Publishing: Cambridge, 2007, 304-307.
    [21] RADMILOVIC V, GASTEIGER H A, ROSS P N. Structure and chemical composition of a supported Pt-Ru electrocatalysts for methanol oxidation[J]. J Catal,1995,154(1):98−106. doi: 10.1006/jcat.1995.1151
    [22] ANTONIASSI M R, SILVA M C J, NETO O A, SPINACÉ V E. Synthesis of Pt+SnO2/C electrocatalysts containing Pt nanoparticles with preferential (100) orientation for direct ethanol fuel cell[J]. Appl Catal,2017,218:91−100. doi: 10.1016/j.apcatb.2017.06.031
    [23] OTTONI A C, DE SOUZA R R, DA SILVA S G, SPINACÉ V E, DE SOUZA B F R, NETO O A. Performance of Pd electrocatalyst supported on a physical mixture Indium tin oxide-carbon for glycerol electro-oxidation in alkaline media[J]. Electroanalysis,2017,29:960−964. doi: 10.1002/elan.201600569
    [24] NETO O A, NANDENHA J, DE SOUZA B F R, BUZZO S G, SILVA M C J, SPINACÉ V E, ASSUMPÇÃO T M H M. Anodic oxidation of formic acid on PdAuIr/C-Sb2O5. SnO2 electrocatalysts prepared by borohydride reduction[J]. J Fuel Chem Technol,2014,42(7):851−857. doi: 10.1016/S1872-5813(14)60037-2
    [25] GERALDES N A, SILVA F D, SILVA M C J, SOUZA B F R, SPINACÉ V E, NETO O A, LINARDI M, SANTOS C M. Glycerol electrooxidation in alkaline medium using Pd/C, Au/C and PdAu/C electrocatalysts prepared by electron beam irradiation[J]. J Braz Chem Soc,2014,25(5):831−840.
    [26] SIMÕES M, BARANTON S, COUTANCEAU C. Electro-oxidation of glycerol at Pd based nano-catalysts for an application in alkaline fuel cells for chemicals and energy cogeneration[J]. Appl Catal,2010,93(3/4):354−362. doi: 10.1016/j.apcatb.2009.10.008
    [27] GRDÉN M, CZERWINSKI A. EQCM studies on Pd-Ni alloy oxidation in basic solution[J]. J Solid State Electrochem,2008,12:375−385. doi: 10.1007/s10008-007-0452-8
    [28] ZHIANI M, ROSTAMI H, MAJIDI S, KARAMI K. Bis (dibenzylidene acetone) palladium (O) catalysts for glycerol oxidation in half cell and in alkaline direct glycerol fuel cell[J]. Int J Hydrogen Energy,2013,38(13):5435−5441. doi: 10.1016/j.ijhydene.2012.09.001
    [29] WINIWARTER A, SILVIOLI L, SCOTT B S, RASMUSSEN-E K, SARIÇ M, TRIMARCO B D, VESBORG K C P, MOSES G P, STEPHENS L E I, SEGER B, ROSSMEISL J, CHORKENDORFF I. Towards an atomistic understanding of electrocatalytic partial hydrocarbon oxidation: propene on palladium[J]. Energy Environ Sci,2019,12(3):1055−1067. doi: 10.1039/C8EE03426E
    [30] GOMES F J, GARCIA C A, GASPAROTTO S H L, DE SOUZA E N, FERREIRA B E, PIRES C, FILHO-TREMILIOSI G. Influence of silver on the glycerol electro-oxidation over AuAg/C catalysts in alkaline medium: a cyclic voltammetry and in situ FTIR spectroscopy study[J]. Electrochim Acta,2014,144:361−368. doi: 10.1016/j.electacta.2014.08.035
    [31] ZALINEEVA A, BARANTON S, COUTANCEAU C. How do Bi-modified palladium nanoparticles work toward glycerol electrooxidation? An in situ FTIT study[J]. Electrochim Acta,2015,176:705−717. doi: 10.1016/j.electacta.2015.07.073
    [32] NANDENHA J, NAGAHAMA F H L, YAMASHITA Y J, FONTE H E, AYOUB S M J, DE SOUZA B F R, FONSECA C F, NETO O A. Activation of methane on PdZn/C electrocatalysts in an acidic electrolyte at low temperatures[J]. Int J Electrochem Sci,2019,14:10819−10834.
    [33] LAI L, HUANG G, WANG X WENG J. Preparation of Pt nanoparticle-loaded three-dimensional Fe3O4/carbon with high electro-oxidation activity[J]. Carbon,2011,49(5):1581−1587. doi: 10.1016/j.carbon.2010.12.040
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  2850
  • HTML全文浏览量:  117
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-16
  • 修回日期:  2021-10-26
  • 录用日期:  2021-10-28
  • 网络出版日期:  2021-11-20
  • 刊出日期:  2022-04-26

目录

    /

    返回文章
    返回