留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铌元素改性V2O5-WO3/TiO2催化剂降低脱硝过程 SO2 的氧化率

王博 边瑶 封硕 王少奇 沈伯雄

王博, 边瑶, 封硕, 王少奇, 沈伯雄. 铌元素改性V2O5-WO3/TiO2催化剂降低脱硝过程 SO2 的氧化率[J]. 燃料化学学报(中英文), 2022, 50(4): 503-512. doi: 10.1016/S1872-5813(21)60177-9
引用本文: 王博, 边瑶, 封硕, 王少奇, 沈伯雄. 铌元素改性V2O5-WO3/TiO2催化剂降低脱硝过程 SO2 的氧化率[J]. 燃料化学学报(中英文), 2022, 50(4): 503-512. doi: 10.1016/S1872-5813(21)60177-9
WANG Bo, BIAN Yao, FENG Shuo, WANG Shao-qi, SHEN Bo-xiong. Modification of the V2O5-WO3/TiO2 catalyst with Nb to reduce its activity for SO2 oxidation during the selective catalytic reduction of NOx[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 503-512. doi: 10.1016/S1872-5813(21)60177-9
Citation: WANG Bo, BIAN Yao, FENG Shuo, WANG Shao-qi, SHEN Bo-xiong. Modification of the V2O5-WO3/TiO2 catalyst with Nb to reduce its activity for SO2 oxidation during the selective catalytic reduction of NOx[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 503-512. doi: 10.1016/S1872-5813(21)60177-9

铌元素改性V2O5-WO3/TiO2催化剂降低脱硝过程 SO2 的氧化率

doi: 10.1016/S1872-5813(21)60177-9
基金项目: 国家自然科学基金(U20A20302), 天津市重点研发项目(19ZXZSN00050,19ZXSZSN00070), 河北省重点研发项目(20373701D)和河北省重大科技攻关项目(21283701Z)资助
详细信息
    通讯作者:

    E-mail: shenbx@hebut.edu.cn

  • 中图分类号: X51;TQ42

Modification of the V2O5-WO3/TiO2 catalyst with Nb to reduce its activity for SO2 oxidation during the selective catalytic reduction of NOx

Funds: The project was supported by Joint Funds of the National Natural Science Foundation of China (U20A20302), Key R & D Projects in Tianjin (19ZXSZSN00050, 19ZXSZSN00070), Key R & D projects in Hebei Province (20373701D), and Project of Great Transformation of Scientific and Technical Research in Hebei Province (21283701Z).
  • 摘要: 本文采用浸渍法制备了Nb改性的V2O5-WO3/TiO2催化剂,研究了脱硝反应中Nb负载量对催化剂SO2氧化活性的影响。结果表明,在350 °C下,Nb2O5负载量为2%的Nb2O5-V2O5-WO3/TiO2催化剂上的SO2氧化率最低(0.6%),而同时NOx 的转化率仍能达到95%。采用TGA、氮吸附、XRD、H2-TPR、CO2-TPD、XPS和in- situ DRIFTS等对催化剂进行了表征分析,结果显示,Nb改性后V2O5-WO3/TiO2催化剂的晶体结构没有发生明显改变,但是其比表面积小幅度下降,有助于减少对SO2的吸附;同时,改性后催化剂表面的吸附氧含量下降,氧化还原性能也稍微减弱,这有利于降低其对SO2的氧化活性。in-situ DRIFTS结果表明,Nb改性后的Nb-V2O5-WO3/TiO2催化剂反应过程中表面中间产物VOSO4的含量明显下降,从而减少了SO3的生成量。
  • FIG. 1472.  FIG. 1472.

    FIG. 1472.  FIG. 1472.

    图  1  催化剂测试系统示意图

    Figure  1  Catalyst testing system

    1: gas; 2: pressure reducing valve; 3: mass flowmeter; 4: gas mixer; 5: imported flue gas sampler; 6:reactor; 7: temperature control instrument; 8: condenser tube; 9: peristaltic pump; 10: water bath; 11: gas treatment units

    图  2  不同Nb负载量催化剂对SO2氧化率的影响

    Figure  2  Effect of Nb loading on SO2 conversion upon oxidation over the Nb-modified catalysts

    图  3  不同Nb负载量催化剂对NH3-SCR活性的影响

    Figure  3  Effect of Nb loading on the NO conversion in NH3-SCR deNOx over the Nb-modified catalysts

    图  4  催化剂脱硝和SO2氧化效率

    Figure  4  Catalytic performance of various catalysts in the simultaneous denitration and SO2 oxidation

    图  5  催化剂的N2吸附-脱附等温曲线

    Figure  5  Nitrogen desorption and desorption isotherms of various catalysts

    图  6  催化剂的孔径分布

    Figure  6  Pore size distribution curves of various catalysts

    图  7  催化剂的XRD谱图

    Figure  7  XRD patterns of various catalysts

    图  8  催化剂的热重分析

    Figure  8  Thermogravimetric curves of various catalysts

    图  9  催化剂的H2-TPR谱图

    Figure  9  H2-TPR profiles of various catalyst

    图  10  催化剂的CO2-TPD谱图

    Figure  10  CO2-TPD profiles of various catalysts

    图  11  催化剂的XPS光谱谱图

    Figure  11  XPS spectra of various catalysts

    图  12  350 ℃下催化剂的原位红外光谱谱图

    Figure  12  In-situ DRIFTS spectra of various catalysts for SO2 oxidation at 350 °C

    表  1  实验所用标准气体

    Table  1  The standard gas for the experiment

    GasPurityProducer
    N299.99%Sizhi Gas Co. LTD, Tianjin
    O299.99%Sizhi Gas Co. LTD, Tianjin
    NO5%Sizhi Gas Co. LTD, Tianjin
    NH35%Sizhi Gas Co. LTD, Tianjin
    SO25%Haipu Gas Co. LTD, Beijing
    下载: 导出CSV

    表  2  样品的孔结构分析

    Table  2  Textural properties of various catalysts

    CatalystSurface area
    A/(m2·g−1)
    Pore volume
    v/(cm3·g−1)
    Pore size
    d/nm
    V2W5/TiO2129.20.49415.31
    V2W5Nb1/TiO2100.680.3817.39
    V2W5Nb2/TiO2111.40.41714.97
    V2W5Nb3/TiO2111.90.44115.72
    下载: 导出CSV

    表  3  催化剂表面组成分析

    Table  3  Surface composition of various catalyst determined by XPS

    CatalystSurface atomic concentration / % Surface atomic ratio / %
    OVTiWNb V5+/(V5++V4+O
    OßOα
    V2W5/TiO2 67.25 0.81 29.24 2.70 0 81.93 76.68 23.32
    V2W5Nb2/TiO2 67.18 0.64 28.69 2.40 1.09 57.12 83.68 16.32
    下载: 导出CSV
  • [1] 罗汉成, 潘卫国, 丁红蕾, 李付晓, 郭瑞堂, 金强, 丁承刚. 燃煤锅炉烟气中SO3的产生机理及其控制技术[J]. 锅炉技术,2015,46(6):69−72. doi: 10.3969/j.issn.1672-4763.2015.06.015

    LUO Hang-cheng, PAN Wei-guo, DING Hong-lei, LI Fu-xiao, GUO Rui-tang, JIN Qiang, DING Cheng-gang. Mechanism and control technology of SO3 in flue gas of coal-fired boiler[J]. Boiler Technol,2015,46(6):69−72. doi: 10.3969/j.issn.1672-4763.2015.06.015
    [2] KAMATA H, OHARA H, TAKAHASHI K, YUKIMURA A, SEO Y. SO2 oxidation over the V2O5/TiO2 SCR catalyst[J]. Catal Lett,2001,73(1):79−83. doi: 10.1023/A:1009065030750
    [3] 王飞. 燃煤电厂SO3抑制与脱除技术综述[J]. 科技资讯,2019,31:150−151.

    WANG Fei. Review of SO3 suppression and removal technologies in coal-fired power plants[J]. Sci Technol Inf,2019,31:150−151.
    [4] ZHANG Y, LAUMB J, LIGGETT R, HOLMES M, PAVLISH J. Impacts of acid gases on mercury oxidation cross SCR catalyst[J]. Fuel Process Technol,2007,88(10):929−934. doi: 10.1016/j.fuproc.2007.03.010
    [5] 张道军, 马子然, 孙琦, 徐文强, 李永龙, 王宝东, 竹涛, 林德海, 季广辉, 马静. 硫酸氢氨在钒基选择性催化还原催化剂表面的生成、作用及防治[J]. 化工进展,2018,37(7):2635−2643.

    ZHANG Dao-jun, MA Zi-ran, SUN Qi, XU Wen-qiang, LI Yong-long, WANG Bao-dong, ZHU Tao, LIN De-hai, JI Guang-hui, MA Jing. Formation mechanism, effects and prevention of NH4HSO4 formed on the surface of V2O5 based catalysts[J]. Chem Ind Eng Prog,2018,37(7):2635−2643.
    [6] VEMOT E H, MACEWEN J D, HAUN C C, KINKEAD E R. Acute Toxicity and Skin Corrosion Data for Some Organic and Inorganic Compounds and Aqueous Solutions[J]. Toxicol Appl Pharmacol,1977,42(2):417−423. doi: 10.1016/0041-008X(77)90019-9
    [7] CHEN M M, JIN Q J, TAO X J, PAN Y C, GU S S, SHEN Y S. Novel W-Zr-Ox/TiO2 catalyst for selective catalytic reduction of NO by NH3 at high temperature[J]. Catal Today,2020,358:254−262. doi: 10.1016/j.cattod.2019.06.045
    [8] KOBAYASHI M, KUMA R, MASAKI S, SUGISHIMA N. TiO2-SiO2, and V2O5/TiO2-SiO2, catalyst: Physico-chemical characteristics and catalytic behavior in selective catalytic reduction of NO by NH3[J]. Appl Catal B: Environ, 2005, 60(3/4): 173–179.
    [9] CHOO S T, YIM S D, NAM I S, HAM S W, LEE J B. Effect of promoters including WO3 and BaO on the activity and durability of V2O5/sulfated TiO2 catalyst for NO reduction by NH3[J]. Appl Catal B: Environ,2003,44(3):237−252. doi: 10.1016/S0926-3373(03)00073-0
    [10] HOU Y Q, WANG J C, LI Q Y, LIU Y J, BAI Y R, ZENG Z Q, HUANG Z G. Environmental-friendly production of FeNbTi catalyst with significant enhancement in SCR activity and SO2 resistance for NOx removal[J]. Fuel,2021,285:119133. doi: 10.1016/j.fuel.2020.119133
    [11] CAO L, WU X D, CHEN Z, MA Y, MA Z R, RAN R, SI Z C, WENG D, WANG B D. A comprehensive study on sulfur tolerance of niobia modified CeO2/WO3-TiO2 catalyst for low-temperature NH3-SCR[J]. Appl Catal A: Gen,2019,580:121−130. doi: 10.1016/j.apcata.2019.05.007
    [12] SAZONOVA N N, TSYKOZA L T, SIMAKOV A V, BARANNIK G B, ISMAGILOV Z R. Relationship between sulfur dioxide oxidation and selective catalytic NO reduction by ammonia on V2O5-TiO2 catalysts doped with WO3, and Nb2O5[J]. React Kinet Catal Lett,1994,52(1):101−106. doi: 10.1007/BF02129856
    [13] AHN J, OKERLUND R, FRY A, EDDINGS E G. Sulfur trioxide formation during oxy-coal combustion[J]. Int J Greenhouse Gas Control,2011,5(12):127−135.
    [14] 张翰之. SCR催化法中SO2/SO3转化率的影响因素研究[D]. 保定: 华北电力大学, 2018.

    ZHANG Han-zhi. Influencing Factors of SO2/SO3 conversion rate in SCR catalytic process[D]. Baoding: North China Electric Power University, 2018.
    [15] REDDY B M, KHAN A, YAMADA Y, KOBAYASHI T, LORIDANT S, VOLTA J C. Raman and X-ray photoelectron spectroscopy study of CeO2-ZrO2 and V2O5/CeO2-ZrO2 catalysts[J]. Langmuir,2003,19:3025−3030. doi: 10.1021/la0208528
    [16] 刘智. SO2在商用SCR催化剂表面氧化机理的研究[D]. 天津: 河北工业大学, 2019.

    LIU Zhi. Study on SO2 oxidation mechanism on commercial SCR catalysts surface[D]. Tianjin: Hebei University of Technology, 2019.
    [17] KANG T A, YOUN S, KIM D H. Improved catalytic performance and resistance to SO2 over V2O5-WO3/TiO2 catalyst physically mixed with Fe2O3 for low-temperature NH3-SCR[J]. Catal Today,2021,376:95−103. doi: 10.1016/j.cattod.2020.07.042
    [18] 晁晶迪, 何洪, 宋丽云, 房玉娇, 梁全明, 张桂臻, 邱文革, 张然. Pr掺杂对V2W5-Mo3/TiO2催化剂NH3-SCR反应活性的影响[J]. 高等学校化学学报,2015,36(3):523−530.

    CHAO Jing-di, HE Hong, SONG Li-yun, FANG Yu-jiao, LIANG Quan-ming, ZHANG Gui-zhen, QIU Wen-ge, ZHANG Ran. Promotional effect of Pr-doping on the NH3-SCR activity over the V2O5-MoO3/TiO2 catalyst[J]. Chem J Chin Univ,2015,36(3):523−530.
    [19] ZHU L, ZHONG Z P, XUE J M, XU Y Y, WANG C H, WANG L X. NH3-SCR performance and the resistance to SO2 for Nb doped vanadium based catalyst at low temperatures[J]. J Environ Sci,2018,65:306−316. doi: 10.1016/j.jes.2017.06.033
    [20] LIAN Z, LIU F, HE H, LIU K. Nb-doped VOx/CeO2 catalyst for NH3-SCR of NOx at low temperatures[J]. RSC Adv,2015,5(47):37675−37681. doi: 10.1039/C5RA02752G
    [21] WACHS I E, BRIAND L E, JEHNG J M, BURCHAM L, GAO X T. Molecular structure and reactivity of the group V metal oxides[J]. Catal Today,2000,57:323−330. doi: 10.1016/S0920-5861(99)00343-0
    [22] MARSAL A, ROSSINYOL E, BIMBELA F, TELLEZ C, CORONAS J, CORENT A, MORANTE J R. Characterisation of LaOCl sensing materials using CO2-TPD, XRD, TEM and XPS[J]. Sens Actuators, B,2005,109(1):38−43. doi: 10.1016/j.snb.2005.03.022
    [23] PI Z P, SHEN B X, ZHAO J G, LIU J C. CuO, CeO2 modified Mg-Al spinel for removal of SO2 from fluid catalytic cracking flue gas[J]. Ind Eng Chem Res,2015,54(43):10622−10628. doi: 10.1021/acs.iecr.5b02329
    [24] LEE K M, LIM Y H, JO Y M. Evaluation of moisture effect on low-level CO2 adsorption by ion-exchanged zeolite[J]. Environ Technol,2012,33(1):77−84. doi: 10.1080/09593330.2011.551837
    [25] YU Y K, MIAO J F, HE C, CHEN J S, LI C, DOUTHWAITE M. The remarkable promotional effect of SO2 on Pb-poisoned V2W5-WO3/TiO2 catalysts: An in-depth experimental and theoretical study[J]. Chem Eng J,2018,338:191−201. doi: 10.1016/j.cej.2018.01.031
    [26] BOUDALI L K, GHORBEL A, GRANGE P. Characterization and reactivity of WO3-V2O5 supported on sulfated titanium pillared clay catalysts for the SCR-NO reaction[J]. Comptes Rendus Chim, 2009, 12(6/7): 779–786.
    [27] QING M X, SU S, WANG L L, LIU L J, XU K, HE L M, JUN X, HU S, WANG Y, XIANG J. Getting insight into the oxidation of SO2 to SO3 over V2O5-WO3/TiO2 catalysts: Reaction mechanism and effects of NO and NH3[J]. Chem Eng J,2019,361:1215−1224. doi: 10.1016/j.cej.2018.12.165
    [28] ZHANG Y S, MEI D Q, WANG T, WANG J W, GU Y Z, ZHANG Z L, ROMERO C E, PAN W P. In-situ capture of mercury in coal-fired power plants using high surface energy fly ash[J]. Environ Sci Technol,2019,53(13):7913−7920. doi: 10.1021/acs.est.9b01725
    [29] CAI W, ZHONG Q, ZHAO W, BU Y F. Focus on the modified CexZr1−xO2 with the rigid benzene-muti-carboxylate ligands and its catalysis in oxidation of NO[J]. Appl Catal B: Environ, 2014, 158–159: 258–268.
    [30] DU X S, DAO X, FU Y C, GAO F, LUO Z Y, CEN K F. The co-effect of Sb and Nb on the SCR performance of the V2O5/TiO2 catalyst[J]. J Colloid Interface Sci,2012,368:406−412. doi: 10.1016/j.jcis.2011.11.026
    [31] GAO X, JIANG Y, ZHONG Y, LUO Z Y, CEN K F. The activity and characterization of CeO2-TiO2 catalysts prepared by the sol-gel method for selective catalytic reduction of NO with NH3[J]. J Hazard Mater, 2010, 174(1/3): 734–739.
    [32] YE D, QU R, SONG H, GAO X, LUO Z Y, NI M J, CEN K F. New insights into the various decomposition and reactivity behaviors of NH4HSO4 with NO on V2W5/TiO2 catalyst surfaces[J]. Chem Eng J,2016,283:846−854. doi: 10.1016/j.cej.2015.08.020
    [33] LIU Y M, SHU H, XU Q S, ZHANG Y H, YANG L J. FT-IR study of the SO2 oxidation behavior in the selective catalytic reduction of NO with NH3 over commercial catalysts[J]. J Fuel Chem Technol,2015,43(8):1018−1024. doi: 10.1016/S1872-5813(15)30030-X
    [34] WEI L, CUI S P, GUO H X, MA X Y, ZHANG L J. DRIFT and DFT study of cerium addition on SO2 of manganese-based catalysts for low temperature SCR[J]. J Mol Catal A: Chem, 2016, 421: 102–108.
    [35] PAN S W, LUO H C, LI L, WEI Z L, HUANG B C. H2O and SO2 deactivation mechanism of MnOx/MWCNTs for low-temperature SCR of NOx with NH3[J]. J Mol Catal A: Chem, 2013, 377: 154–161.
    [36] QING M X, SU S, WANG L L, LIU L J, XU K, HE L M, JUN X, HU S, WANG Y, XIANG J. Getting insight into the oxidation of SO2 to SO3 over V2O5-WO3/TiO2 catalysts: Reaction mechanism and effects of NO and NH3[J]. Chem Eng J, 2019, 361: 1215–1224.
    [37] JIN R B, LIU Y, WANG Y, CEN W L, WU Z B, WANG H Q, WENG X L. The role of cerium in the improved SO2 tolerance for NO reduction with NH3 over Mn-Ce/TiO2 catalyst at low temperature[J]. Appl Catal B: Environ, 2014, 148–149: 582-588.
    [38] 翁诗甫, 徐怡庄. 傅里叶变换红外光谱分析[M]. 3版. 北京: 化学工业出版社, 2016.

    WENG Shi-fu, XU Yi-zhuang. Fourier Transform Infrared Spectroscopy Analysis[M]. 3rd ed. Beijing: Chemical Industry Press, 2016.
    [39] LI H L, WU C Y, LI Y, LI L Q, ZHAO Y C, ZHANG J Y. Impact of SO2 on elemental mercury oxidation over CeO2-TiO2 catalyst[J]. Chem Eng J, 2013, 219: 319–326.
    [40] ULERSTAM M, JOHNSON M S, VOGT R, LJUNGSTROM E. DRIFTS and Kundsen cell study of the heterogeneous reactivity of SO2 and NO2 on mineral dust[J]. Atmos Chem Phys,2003,3:2043−2051. doi: 10.5194/acp-3-2043-2003
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  431
  • HTML全文浏览量:  120
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-16
  • 修回日期:  2021-10-20
  • 录用日期:  2021-10-20
  • 网络出版日期:  2021-11-15
  • 刊出日期:  2022-04-26

目录

    /

    返回文章
    返回