留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Thermogravimetric analysis on the characteristics of oxy-fuel co-combustion of sub-bituminous coal and semi-coke

LI Zhao-yang NIU Sheng-li HAN Kui-hua LI Ying-jie WANG Yong-zheng LU Chun-mei

李朝阳, 牛胜利, 韩奎华, 李英杰, 王永征, 路春美. 次烟煤与半焦富氧混燃特性热重分析[J]. 燃料化学学报(中英文), 2022, 50(8): 937-953. doi: 10.1016/S1872-5813(22)60002-1
引用本文: 李朝阳, 牛胜利, 韩奎华, 李英杰, 王永征, 路春美. 次烟煤与半焦富氧混燃特性热重分析[J]. 燃料化学学报(中英文), 2022, 50(8): 937-953. doi: 10.1016/S1872-5813(22)60002-1
LI Zhao-yang, NIU Sheng-li, HAN Kui-hua, LI Ying-jie, WANG Yong-zheng, LU Chun-mei. Thermogravimetric analysis on the characteristics of oxy-fuel co-combustion of sub-bituminous coal and semi-coke[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 937-953. doi: 10.1016/S1872-5813(22)60002-1
Citation: LI Zhao-yang, NIU Sheng-li, HAN Kui-hua, LI Ying-jie, WANG Yong-zheng, LU Chun-mei. Thermogravimetric analysis on the characteristics of oxy-fuel co-combustion of sub-bituminous coal and semi-coke[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 937-953. doi: 10.1016/S1872-5813(22)60002-1

次烟煤与半焦富氧混燃特性热重分析

doi: 10.1016/S1872-5813(22)60002-1
详细信息
  • 中图分类号: TK121

Thermogravimetric analysis on the characteristics of oxy-fuel co-combustion of sub-bituminous coal and semi-coke

Funds: The project was supported by the Primary Research & Development Plan of Shandong Province, China (2018GGX104027).
More Information
  • 摘要: 低阶煤与煤制半焦混燃对解决中国半焦过剩的问题具有重要意义。通过热重分析研究了准东次烟煤与烟煤半焦的富氧混燃特性。与空气气氛相比,富氧燃烧将着火温度和燃尽温度分别提高了10和40 ℃。氧气浓度提高到30%可以大幅补偿富氧条件下燃烧参数的轻微降低并获得更好的共燃性能。利用Flynn-Wall-Ozawa (FWO)、Kissinger-Akahira-Sunose (KAS)和Starink法计算活化能,活化能随质量转化率的变化可分为两个不同阶段,次烟煤、混合燃料和半焦的平均活化能分别为49.31、50.82和59.00 kg/mol。计算了焓变、吉布斯自由能变和熵变等热力学参数,相互作用指数表明在共燃过程中两种燃料发生了明显的相互作用,动力学和热力学计算结果表明30%的半焦参比促进了共燃。同时,X射线荧光光谱(XRF)和灰熔融分析表明与半焦掺烧能降低次烟煤灰的结渣倾向。
  • FIG. 1764.  FIG. 1764.

    FIG. 1764.  FIG. 1764.

    Figure  1  Sub-bituminous coal and semi-coke combustion TG and DTG curves in different atmosphere

    (Note: SC and SB indicate the abbreviation of semi-coke and sub-bituminous coal, respectively)

    Figure  2  TG and DTG curves of the blends under oxy-fuel atmosphere

    Figure  3  TG and DTG curves of the 30% semi-coke blend under different O2 concentration

    Figure  4  Regression lines of different iso-conversional methods for pure semi-coke activation energy calculation: (a) FWO, (b) KAS, (c) Starink

    Figure  5  Interaction indices for: (a) DTG of the blends, (b) kinetic-thermodynamic parameters of the 30% semi-coke blend

    Figure  6  Ash analysis of semi-coke and sub-bituminous coal: (a) XRF, (b) ash fusion temperature

    Table  1  Proximate and ultimate analyses of sub-bituminous coal and the bituminous coal derived semi-coke

    FuelProximate analysis wad/%Ultimate analysis wad/%
    MVFCACHONS
    SB1.1130.2065.193.5070.303.5520.780.510.25
    SC0.508.7858.4532.2760.101.922.311.061.84
    Note: the subscript ad indicates the abbreviation of air-dried basis, M, V, FC and A indicate moisture, volatile, fixed carbon and ash, respectively
    下载: 导出CSV

    Table  2  Combustion characteristic parameters of the blends

    SampleTi/°CTm/°CTf/°CDTGmax/(%·min−1)DTGave/(%·min−1)CCI/10−7Rw/103
    SB 363.6 439.8 640.6 8.08 5.62 5.36 4.34
    SC10%SB90% 377.6 470.1 670.6 6.70 5.03 3.52 3.24
    SC30%SB70% 391.3 501.9 693.2 6.01 4.65 2.63 2.63
    SC50%SB50% 410.1 569.6 711.0 5.88 4.52 2.22 2.16
    SC70%SB30% 451.1 599.9 713.6 5.76 4.64 1.84 1.82
    SC 510.0 620.6 750.2 5.99 4.81 1.48 1.63
    下载: 导出CSV

    Table  3  Combustion parameters of 30% semi-coke blend in different O2 concentration

    O2 content w/%Ti/°CTm/°CTf/°CDTGmax/(%·min−1)DTGave/(%·min−1)CCI/10−7Rw/103
    10 454.1 515.0 869.3 4.24 3.13 0.74 1.56
    15 417.2 504.3 747.5 4.93 4.11 1.56 2.01
    20 391.3 501.9 677.6 6.01 4.85 2.81 2.63
    25 355.2 482.0 631.2 7.47 5.34 5.01 3.75
    30 330.9 465.0 609.6 8.68 5.54 7.21 4.84
    下载: 导出CSV

    Table  4  Activation energies (Ea) for the samples using different iso-conversional approaches

    Sampleα/%FWOKASStarinkk0
    Ea/(kJ·mol−1)REa/(kJ·mol−1)REa/(kJ·mol−1)R
    SB1043.170.963535.210.985635.590.98572.12
    1589.920.957283.830.984384.190.98433.50×104
    20119.840.9623115.050.9654115.400.96551.40×107
    2590.610.985684.140.987284.510.98723.72×104
    3075.850.987468.460.967668.860.96771.75×103
    3567.430.987759.440.968959.850.96922.96×102
    4062.060.987753.630.978854.050.978893.06
    4558.300.986949.510.982649.940.982640.66
    5054.950.986845.810.970446.250.970419.25
    5551.580.982642.100.985942.550.98609.03
    6048.420.989438.600.990139.060.98814.39
    6545.930.990235.800.988736.270.98872.45
    7043.960.985333.540.988634.020.98861.53
    7542.110.982731.390.988831.880.98870.97
    8039.930.964328.900.986429.400.98650.57
    8537.930.960426.590.968427.100.96840.35
    9036.160.961524.500.965325.020.96540.22
    9535.060.962323.080.961423.610.96150.16
    Average57.9648.8749.31
    SB70SC301065.230.997457.920.986558.300.98671.18×102
    1587.680.984681.000.981481.380.98238.97×103
    20100.170.995493.830.985594.210.98349.59×104
    2589.260.968182.170.993782.570.99651.12×104
    3074.390.963466.350.961466.770.96935.86×102
    3565.830.991757.170.961857.600.96431.03×102
    4060.510.992551.390.975651.840.978434.27
    4556.490.974546.990.967247.450.963914.65
    5053.450.998643.620.989644.090.97937.60
    5550.930.974040.800.976341.280.98144.37
    6048.950.967438.530.980439.020.98762.80
    6547.210.968936.520.979537.020.97461.88
    7045.750.985534.80.978835.310.97891.33
    7544.660.998733.460.987433.970.99011.02
    8043.940.995432.500.988433.020.98850.84
    8544.170.982532.530..979833.060.98410.84
    9046.570.973434.790.975635.330.97851.34
    9553.780.965542.040.960242.580.96035.66
    average59.9450.3650.82
    SC1072.220.996163.120.994663.590.994625.88
    1582.710.999773.860.999674.320.99961.36×102
    2084.940.999775.990.999676.460.99961.89×102
    2583.430.999774.220.999674.700.99961.45×102
    3080.880.999171.370.998871.860.998893.36
    3578.060.998368.250.997668.750.997657.69
    4075.200.996965.080.995665.590.995735.36
    4572.560.995362.160.993162.670.993222.44
    5070.000.993459.310.990159.840.990314.39
    5567.800.990956.850.986057.380.98639.78
    6065.360.988754.130.982354.670.98266.37
    6563.370.985651.890.977052.440.97754.47
    7061.550.982549.830.971450.380.97203.22
    7559.890.979647.920.965948.480.96672.37
    8058.500.975246.300.957746.870.95871.83
    8557.250.969244.810.946545.390.94781.44
    9056.480.962343.820.943444.410.94501.23
    9556.410.940043.540.942644.140.94461.17
    average69.2658.4759.00
    下载: 导出CSV

    Table  5  Thermodynamic parameters of the samples

    Sampleα /%ΔH/(kJ·mol−1)ΔG/(kJ·mol−1)ΔS/(kJ·mol−1)
    SB 10 30.60 197.65 −252.80
    15 78.89 192.92 −172.56
    20 109.95 191.19 −122.95
    25 78.99 192.90 −172.38
    30 63.26 194.03 −197.89
    35 54.19 194.80 −212.79
    40 48.32 195.36 −222.52
    45 44.13 195.79 −229.51
    50 40.37 196.21 −235.85
    55 36.59 196.67 −242.25
    60 33.02 197.14 −248.36
    65 30.16 197.55 −253.32
    70 27.82 197.90 −257.38
    75 25.60 198.26 −261.29
    80 23.04 198.70 −265.84
    85 20.64 199.15 −270.15
    90 18.47 199.59 −274.10
    95 16.93 199.91 −276.90
    SB70SC30 10 53.04 205.69 −219.86
    15 75.84 203.77 −184.24
    20 88.52 202.92 −164.77
    25 76.80 203.68 −182.75
    30 60.92 204.91 −207.37
    35 51.68 205.76 −221.92
    40 45.84 206.37 −231.20
    45 41.37 206.88 −238.38
    50 37.93 207.31 −243.94
    55 35.04 207.69 −248.65
    60 32.70 208.01 −252.49
    65 30.62 208.32 −255.92
    70 28.83 208.59 −258.89
    75 27.41 208.81 −261.27
    80 26.36 208.97 −263.01
    85 26.30 208.97 −263.09
    90 28.43 208.58 −259.46
    95 35.51 207.51 −247.72
    SC 10 57.28 257.96 −234.00
    15 67.86 256.84 −220.37
    20 69.89 256.64 −217.77
    25 68.05 256.81 −220.11
    30 65.13 257.08 −223.83
    35 61.94 257.40 −227.92
    40 58.71 257.74 −232.07
    45 55.72 258.06 −235.93
    50 52.82 258.39 −239.71
    55 50.29 258.69 −243.00
    60 47.52 259.03 −246.64
    65 45.22 259.33 −249.67
    70 43.09 259.62 −252.48
    75 41.12 259.89 −255.10
    80 39.43 260.13 −257.35
    85 37.87 260.36 −259.43
    90 36.81 260.52 −260.86
    95 36.43 260.56 −261.35
    下载: 导出CSV
  • [1] LIU S Q, ZHANG Y J, TUO K Y, WANG L P, CHEN G. Structure, electrical conductivity, and dielectric properties of semi-coke derived from microwave-pyrolyzed low-rank coal[J]. Fuel Process Technol,2018,178:139−147. doi: 10.1016/j.fuproc.2018.05.028
    [2] ZHENG S W, HU Y J, WANG Z Q, CHENG X X. Experimental investigation on ignition and burnout characteristics of semi-coke and bituminous coal blends[J]. J Energy Inst,2020,93(4):1373−1381. doi: 10.1016/j.joei.2019.12.007
    [3] XIE K C, LI W Y, ZHAO W. Coal chemical industry and its sustainable development in china[J]. Energy,2010,35(11):4349−4355. doi: 10.1016/j.energy.2009.05.029
    [4] HU L L, ZHANG Y, CHEN D G, ZHANG M, WU Y X, ZHANG H. Experimental study on the combustion and NOx emission characteristics of a bituminous coal blended with semi-coke[J]. Appl Therm Eng,2019,160:113993. doi: 10.1016/j.applthermaleng.2019.113993
    [5] ZHANG J P, WANG C A, JIA X W, WANG P Q, CHE D F. Experimental study on combustion and NO formation characteristics of semi-coke[J]. Fuel,2019,258:11618.
    [6] GONG Z Q, LIU Z C, ZHOU T, LU Q G, SUN Y K. Combustion and NO emission of Shenmu char in a 2 MW circulating fluidized bed[J]. Energy Fuels,2015,29(2):1219−1226. doi: 10.1021/ef502768w
    [7] YAO Y, ZHU J G, LU Q G. Experimental study on nitrogen transformation in combustion of pulverized semi-coke preheated in a circulating fluidized bed[J]. Energy Fuels,2015,29(6):3985−3991. doi: 10.1021/acs.energyfuels.5b00791
    [8] LV Z M, XIONG X H, YU S L, TAN H Z, XIANG B X, HUANG J, PENG J H, LI P. Experimental investigation on NO emission of semi-coke under high temperature preheating combustion technology[J]. Fuel,2021,283:119293. doi: 10.1016/j.fuel.2020.119293
    [9] LI J B, ZHU M B, ZHANG Z Z, ZHANG K, SHEN G Q, ZHANG D K. The mineralogy, morphology and sintering characteristics of ash deposits on a probe at different temperatures during combustion of blends of Zhundong sub-bituminous coal and a bituminous coal in a drop tube furnace[J]. Fuel Process Technol,2016,149:176−186. doi: 10.1016/j.fuproc.2016.04.021
    [10] LIAO X J, SINGH S, YANG H P, WU C F. A thermogravimetric assessment of the tri-combustion process for coal, biomass and polyethylene[J]. Fuel,2021,287:19355.
    [11] AREEPRASERT C, SCALA F, COPPOLA A, URCIUOLO M, CHIRONE R, CHANYAVANICH P, YOSHIKAWA K. Fluidized bed co-combustion of hydrothermally treated paper sludge with two coals of different rank[J]. Fuel Process Technol,2016,144:230−238. doi: 10.1016/j.fuproc.2015.12.033
    [12] BUYUKADA M. Investigation of thermal conversion characteristics and performance evaluation of co-combustion of pine sawdust and sub-bituminous coal using TGA, artificial neural network modeling and likelihood method[J]. Bioresour Technol,2019,287:121461. doi: 10.1016/j.biortech.2019.121461
    [13] LIAO Y F, MA X Q. Thermogravimetric analysis of the co-combustion of coal and paper mill sludge[J]. ApEn,2010,87(11):3526−3532.
    [14] MUTHURAMAN M, NAMIOKA T, YOSHIKAWA K. Characteristics of co-combustion and kinetic study on hydrothermally treated municipal solid waste with different rank coals: A thermogravimetric analysis[J]. ApEn,2010,87(1):141−148.
    [15] LIU H P, LIANG W X, QIN H, WANG Q. Synergy in co-combustion of oil shale semi-coke with torrefied cornstalk[J]. Appl Therm Eng,2016,109:653−662. doi: 10.1016/j.applthermaleng.2016.08.125
    [16] LIU H P, LIANG W X, QIN H, WANG Q. Thermal behavior of co-combustion of oil shale semi-coke with torrefied cornstalk[J]. Appl Therm Eng,2016,109:413−422. doi: 10.1016/j.applthermaleng.2016.08.084
    [17] WANG Q, XU H, LIU H P, JIA C X, ZHAO W Z. Co-combustion performance of oil shale semi-coke with corn stalk[J]. Energy Procedia,2012,17:861−868. doi: 10.1016/j.egypro.2012.02.180
    [18] WANG Q, ZHAO W Z, LIU H P, JIA C X, LI S H. Interactions and kinetic analysis of oil shale semi-coke with cornstalk during co-combustion[J]. ApEn,2011,88(6):2080−2087.
    [19] YANG Y, LU X F, WANG Q H. Investigation on the co-combustion of low calorific oil shale and its semi-coke by using thermogravimetric analysis[J]. Energy Convers Manage,2017,136:99−107. doi: 10.1016/j.enconman.2017.01.006
    [20] LIU Z, LI J B, ZHU M M, WANG Q H, LU X F, ZHANG Y Y, ZHANG Z Z, ZHANG D K. Investigation into scavenging of sodium and ash deposition characteristics during co-combustion of Zhundong sub-bituminous coal with an oil shale semi-coke of high aluminosilicate in a circulating fluidized bed[J]. Fuel,2019,257:116099. doi: 10.1016/j.fuel.2019.116099
    [21] HU Z J, LIU Y R, XU H, ZHU J M, WU S L, SHEN Y S. Co-combustion of semicoke and coal in an industry ironmaking blast furnace: Lab experiments, model study and plant tests[J]. Fuel Process Technol,2019,196:106165. doi: 10.1016/j.fuproc.2019.106165
    [22] SUN L T, YAN Y H, SUN R, ZHU W K, YUAN M F, QI H L, WU J Q. Effects of bluff-body cone angle on turbulence-chemistry interaction behaviors in large-scale semicoke and bituminous coal co-combustion[J]. Fuel Process Technol,2021,221:106915. doi: 10.1016/j.fuproc.2021.106915
    [23] YAO H F, HE B S, DING G C, TONG W X, KUANG Y C. Thermogravimetric analyses of oxy-fuel co-combustion of semi-coke and bituminous coal[J]. Appl Therm Eng,2019,156:708−721. doi: 10.1016/j.applthermaleng.2019.04.115
    [24] WANG P Q, WANG C A, YUAN M B, WANG C W, ZHANG J P, DU Y B, TAO Z C, CHE D F. Experimental evaluation on co-combustion characteristics of semi-coke and coal under enhanced high-temperature and strong-reducing atmosphere[J]. ApEn,2020,260:114203.
    [25] ZHANG J P, JIA X W, WANG C A, ZHAO N, WANG P Q, CHE D F. Experimental investigation on combustion and NO formation characteristics of semi-coke and bituminous coal blends[J]. Fuel,2019,247:87−96. doi: 10.1016/j.fuel.2019.03.045
    [26] ZHU S J, LYU Q G, ZHU J G, WU H X, WU G L. Effect of air distribution on NOx emissions of pulverized coal and char combustion preheated by a circulating fluidized bed[J]. Energy Fuels,2018,32(7):7909−7915. doi: 10.1021/acs.energyfuels.8b01366
    [27] NIU S L, LU C M, HAN K H, ZHAO J L. Thermogravimetric analysis of combustion characteristics and kinetic parameters of pulverized coals in oxy-fuel atmosphere[J]. JTAC,2009,98:267−274.
    [28] XU C B, YANG J J, HE L, WEI W X, YANG Y, YIN X D, YANG W J, LIN A J. Carbon capture and storage as a strategic reserve against China's CO2 emissions[J]. Environ Dev,2021,37:100608. doi: 10.1016/j.envdev.2020.100608
    [29] DESSI F, MUREDDU M, FERRARA F, FERMOSO J, ORSINI A, SANNA A, PETTINAU A. Thermogravimetric characterisation and kinetic analysis of Nannochloropsis sp. and Tetraselmis sp. microalgae for pyrolysis, combustion and oxy-combustion[J]. Energy,2021,217:119394. doi: 10.1016/j.energy.2020.119394
    [30] SEDDIGHI S, CLOUGH P T, ANTHONY E J, HUGHES R W, LU P. Scale-up challenges and opportunities for carbon capture by oxy-fuel circulating fluidized beds[J]. ApEn,2018,232:527−542.
    [31] LIU Q W, SHI Y, ZHONG W Q, YU A B. Co-firing of coal and biomass in oxy-fuel fluidized bed for CO2 capture: A review of recent advances[J]. Chin J Chem Eng,2019,27(10):2261−2272. doi: 10.1016/j.cjche.2019.07.013
    [32] LI A J, CHEN Z, LIAO Y H, LIU Y H. A synthetical evaluation of developing low-carbonized coal-fired power technologies in China[J]. IJHE,2017,42(32):20857−20867.
    [33] RUAN R H, TAN H Z, WANG X B, HU Z F. Evolution of particulate matter in the post-combustion zone of Zhundong sub-bituminous coal[J]. Fuel,2020,281:118780. doi: 10.1016/j.fuel.2020.118780
    [34] S. P S P, G S, JOSHI V V. Thermogravimetric analysis of hazardous waste: Pet-coke, by kinetic models and Artificial neural network modeling[J]. Fuel,2021,287:119470. doi: 10.1016/j.fuel.2020.119470
    [35] HU M, CHEN Z H, GUO D B, LIU C X, XIAO B, HU Z Q, LIU S M. Thermogravimetric study on pyrolysis kinetics of Chlorella pyrenoidosa and bloom-forming cyanobacteria[J]. Bioresour Technol,2015,177:41−50. doi: 10.1016/j.biortech.2014.11.061
    [36] NIU S L, LIU M Q, LU C M, LI H, HUO M J. Thermogravimetric analysis of carbide slag[J]. JTAC,2013,115:73−79.
    [37] GONZALEZ D L, LOPEZ M F, VALVERDE J L, SILVA L S. Kinetic analysis and thermal characterization of the microalgae combustion process by thermal analysis coupled to mass spectrometry[J]. ApEn,2014,114:227−237.
    [38] NIU S L, YU H W, ZHAO S, ZHANG X Y, LI X M, HAN K H, LU C M, WANG Y Z. Apparent kinetic and thermodynamic calculation for thermal degradation of stearic acid and its esterification derivants through thermogravimetric analysis[J]. Renewable Energy,2019,133:373−381. doi: 10.1016/j.renene.2018.10.045
    [39] XIAO H M, MA X Q, LAI Z Y. Isoconversional kinetic analysis of co-combustion of sewage sludge with straw and coal[J]. ApEn,2009,86(9):1741−1745.
    [40] YUAN X S, HE T, CAO H L, YUAN Q X. Cattle manure pyrolysis process: Kinetic and thermodynamic analysis with isoconversional methods[J]. Renewable Energy,2017,107:489−496. doi: 10.1016/j.renene.2017.02.026
    [41] MAIA A A D, DE Morais L C. Kinetic parameters of red pepper waste as biomass to solid biofuel[J]. Bioresour Technol,2016,204:157−163. doi: 10.1016/j.biortech.2015.12.055
    [42] FAN Y J, YANG B L, ZHANG B, WU Z Q, SUN Z Y, SHANG J X. Synergistic effects from fast co-pyrolysis of lignin with low-rank coal: On-line analysis of products distribution and fractal analysis on co-pyrolysis char[J]. J Energy Inst,2021,97:152−160. doi: 10.1016/j.joei.2021.04.009
    [43] XIE C D, LIU J Y, ZHANG X C, XIE W M, SUN J, CHANG K L, KUO J H, XIE W H, LIU C, SUN S Y, BUYUKADA M, EVRENDILEK F. Co-combustion thermal conversion characteristics of textile dyeing sludge and pomelo peel using TGA and artificial neural networks[J]. ApEn,2018,212:786−795.
    [44] ZHOU C C, LIU G J, WANG X D, QI C C, HU Y H. Combustion characteristics and arsenic retention during co-combustion of agricultural biomass and bituminous coal[J]. Bioresour Technol,2016,214:218−224. doi: 10.1016/j.biortech.2016.04.104
    [45] BOTELHO T, COSTA M, WILK M, MAGDZIARZ A. Evaluation of the combustion characteristics of raw and torrefied grape pomace in a thermogravimetric analyzer and in a drop tube furnace[J]. Fuel,2018,212:95−100. doi: 10.1016/j.fuel.2017.09.118
    [46] CHEN J C, XIE C D, LIU J Y, HE Y, XIE W M, ZHANG X C, CHANG K L, KUO J H, SUN J, ZHENG L, SUN S Y, BUYUKADA M, EVRENDILEK F. Co-combustion of sewage sludge and coffee grounds under increased O2/CO2 atmospheres: Thermodynamic characteristics, kinetics and artificial neural network modeling[J]. Bioresour Technol,2018,250:230−238. doi: 10.1016/j.biortech.2017.11.031
    [47] SHADDIX C R, MOLINA A. Particle imaging of ignition and devolatilization of pulverized coal during oxy-fuel combustion[J]. Proc Combust Inst,2009,32(2):2091−2098. doi: 10.1016/j.proci.2008.06.157
    [48] RIAZA J, GIL M V, ALVAREZ L, PEVIDA C, PIS J J, RUBIERA F. Oxy-fuel combustion of coal and biomass blends[J]. Energy,2012,41(1):429−435. doi: 10.1016/j.energy.2012.02.057
    [49] XU Y L, CHEN B L. Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis[J]. Bioresour Technol,2013,146:485−493. doi: 10.1016/j.biortech.2013.07.086
    [50] KIM H S, Kim J H. Kinetics and thermodynamics of microwave-assisted drying of paclitaxel for removal of residual methylene chloride[J]. Process Biochem,2017,56:163−170. doi: 10.1016/j.procbio.2017.02.007
    [51] KOTHARI R, PATHAK V V, PANDEY A, AHMAD S, SRIVASTVA C, TYAGI V V. A novel method to harvest Chlorella sp. via low cost bioflocculant: Influence of temperature with kinetic and thermodynamic functions[J]. Bioresour Technol,2017,225:84−89. doi: 10.1016/j.biortech.2016.11.050
    [52] DENG S H, WANG X B, TAN H Z, MIKULCIC F, LI Z F, DUIC N. Thermogravimetric study on the Co-combustion characteristics of oily sludge with plant biomass[J]. Thermochim Acta,2016,633:69−76. doi: 10.1016/j.tca.2016.03.006
    [53] SEZER S, KARTAL F, OZVEREN U. The investigation of co-combustion process for synergistic effects using thermogravimetric and kinetic analysis with combustion index[J]. Therm Sci Eng Prog,2021,23:100889. doi: 10.1016/j.tsep.2021.100889
    [54] GIL MV, RIAZA J, ALVAREZ L, PEVIDA C, PIS J J, RUBIERA F. Kinetic models for the oxy-fuel combustion of coal and coal/biomass blend chars obtained in N2 and CO2 atmospheres[J]. Energy,2012,48(1):510−518. doi: 10.1016/j.energy.2012.10.033
    [55] CHEN J C, HE Y, LIU J Y, LIU C, XIE W M, KUO J H, ZHANG X C, LI S P, LIANG J L, SUN S Y, BUYAKADA M, EVRENDILEK F. The mixture of sewage sludge and biomass waste as solid biofuels: Process characteristic and environmental implication[J]. Renew Energ,2019,139:707−717. doi: 10.1016/j.renene.2019.01.119
    [56] LI J B, ZHU M M, ZHANG Z Z, ZHANG K, SHEN G Q, ZHANG D K. Effect of coal blending and ashing temperature on ash sintering and fusion characteristics during combustion of Zhundong sub-bituminous coal[J]. Fuel,2017,195:131−142. doi: 10.1016/j.fuel.2017.01.064
    [57] QIAO L, DENG C B, LU B, WANG Y S, WANG X F, DENG H Z, ZHANG X. Study on calcium catalyzes coal spontaneous combustion[J]. Fuel,2022,307:121884. doi: 10.1016/j.fuel.2021.121884
    [58] ZHAO Y J, FENG D D, LI B W, SUN S Z, ZHANG S. Combustion characteristics of char from pyrolysis of Zhundong sub-bituminous coal under O2/steam atmosphere: Effects of mineral matter[J]. Int J Greenh Gas Control,2019,80:54−60. doi: 10.1016/j.ijggc.2018.12.001
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  262
  • HTML全文浏览量:  73
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-02
  • 修回日期:  2022-02-18
  • 录用日期:  2022-02-18
  • 网络出版日期:  2022-03-18
  • 刊出日期:  2022-08-26

目录

    /

    返回文章
    返回