Hydrothermal liquefaction of lignin to aromatics over the perovskite catalysts
-
摘要: 以碱木质素为原料,采用GC-MS、FT-IR、元素分析等实验表征手段并结合DFT计算,对LaBO3钙钛矿(LaCoO3、LaFeO3和LaNiO3)催化液化木质素的性能进行了研究,考察了反应时间、温度、催化剂用量和B位阳离子对木质素转化率、生物油收率及生物油化合物分布的影响。结果表明,三种钙钛矿都能促进木质素的裂解生成芳香族化合物,但LaCoO3木质素液化催化性最好,其次为LaNiO3和LaFeO3。LaCoO3添加量为5%、180 °C下反应60 min时,生物油产率最高达67.20%,单芳香族化合物的相对含量最高达89.59%。LaBO3晶体表面的氧原子通过吸附木质素中的氧原子降低了木质素分子内键的解离能(LaCoO3的吸附能最大),同时其疏松多孔的形貌和适中的氧化还原能力,能够有效促进木质素分子内的C−C和CAr−OCH3的断裂,实现大分子解聚和脱甲氧基反应,生成苯酚等高附加值化合物。Abstract: The catalytic performance of three LaBO3 perovskites including LaCoO3, LaFeO3 and LaNiO3 in the liquefaction of lignin was investigate through a series of experimental characterization methods such as GC-MS, FT-IR and elemental analysis as well as DFT calculation. The effects of reaction time, temperature, catalyst amount and B cation on the lignin conversion, bio-oil yield and products distribution were considered. The results indicate that all three perovskite catalysts can promote the liquefaction of lignin to produce aromatic compounds; among them, LaCoO3 shows the highest catalytic performance, following by LaNiO3 and LaFeO3. In particular, by using 5% LaCoO3, the bio-oil yield achieves 67.20% after reaction at 180 °C for 60 min, whilst the relative content of mono-aromatic compounds reaches 89.59%. The adsorption of oxygen atoms on the LaBO3 crystal surface conduces to the decrease of bond dissociation energy for lignin (LaCoO3 shows the moderate redox capacity and greatest adsorption energy), whilst the loose and porous morphology can effectively promote the fracture of C−C and CAr−OCH3 of lignin. All these contribute to the macromolecular depolymerization and demethoxylation reaction, producing high value-added compounds such as phenol.
-
Key words:
- lignin /
- perovskite /
- liquefaction /
- bio-oil /
- DFT calculation
-
图 6 模型分子在LaBO3表面的吸附模型及吸附能
a:吸附能, b:吸附模型 (C:黑色,H:白色,O:红色,La:蓝色,Co:紫色,Fe:黄色,Ni:绿色)
Figure 6 Adsorption energy (a) and views of adsorption model (b) of m-methoxy-phenol on LaBO3
(a): Calculated energies for molecular adsorption, (b): Views of the adsorption model(C: black, H: white, O: red, La: blue, Co: purple, Fe: yellow, Ni: green)
表 1 木质素原料及液化木质素产生残渣的元素分析
Table 1 Elemental composition (%) of the raw lignin and residue produced under non-catalytic and catalytic HTL
Sample Ultimate analysis w /% C H N O Lignin 40.72 4.13 0.51 53.07 Non-catalyst 38.29 3.95 0.50 54.26 LaCoO3 32.25 5.28 0.62 57.62 LaFeO3 33.43 5.57 0.59 56.63 LaNiO3 32.18 5.24 0.67 56.59 表 2 愈创木酚在LaBO3上吸附后的主要含氧键长
Table 2 Major oxygen-contained bond length of guaiacol over three LaBO3 perovskite catalysts
Catalyst Oxygen-contained bond type Bio-oil yield under
optimal conditions w/%CAr–OCH3 CArO–CH3 − Bond lengtha/Å 1.387 1.433 43.73 LaCoO3 Bond lengthb/Å 1.389 1.431 67.20 △c/Å 0.002 − 0.002 LaFeO3 Bond lengthb/Å 1.393 1.434 56.69 △c/Å 0.006 0.001 LaNiO3 Bond lengthb/Å 1.390 1.432 59.74 △c/Å 0.003 − 0.001 a: Bond length in molecular alone; b: Bond lengths of molecular adsorbed by different perovskite catalysts; c: Difference between the bond length in molecular alone and in adsorbed molecular -
[1] WANG S, LI Z, YI W, FU P, ZHANG A, BAI X. Renewable aromatic hydrocarbons production from catalytic pyrolysis of lignin with Al-SBA-15 and HZSM-5: Synergistic effect and coke behaviour[J]. Renewable Energy,2021,163:1673−1681. doi: 10.1016/j.renene.2020.10.108 [2] KUMAR A, BISWAS B, BHASKAR T. Effect of cobalt on titania, ceria and zirconia oxide supported catalysts on the oxidative depolymerization of prot and alkali lignin[J]. Bioresour Technol,2020,299:122589. doi: 10.1016/j.biortech.2019.122589 [3] 王则祥, 李航, 谢文銮, 胡斌, 李凯, 陆强. 木质素基本结构、热解机理及特性研究进展[J]. 新能源进展,2020,8(1):6−14. doi: 10.3969/j.issn.2095-560X.2020.01.002WANG Ze-xiang, LI Hang, XIE Wen-luan, HU Bin, LI Kai, LU Qiang. Progress on basic structure, pyrolysis mechanism and characteristics of lignin[J]. Adv New Renewable Energy,2020,8(1):6−14. doi: 10.3969/j.issn.2095-560X.2020.01.002 [4] ERDOCIA X, PRADO R, FERNANDEZ-RODRIGUEZ J, LABIDI J. Depolymerization of different organosolv lignins in supercritical methanol, ethanol, and acetone to produce phenolic monomers[J]. ACS Sustainable Chem Eng,2016,4(3):1373−1380. doi: 10.1021/acssuschemeng.5b01377 [5] WU Z, ZHAO X, ZHANG J, LI X, ZHANG Y, WANG F. Ethanol/1, 4-dioxane/formic acid as synergistic solvents for the conversion of lignin into high-value added phenolic monomers[J]. Bioresour Technol,2019,278:187−194. doi: 10.1016/j.biortech.2019.01.082 [6] LI W, DOU X, ZHU C, WANG J, CHANG H, JAMEEL H, LI X. Production of liquefied fuel from depolymerization of kraft lignin over a novel modified nickel/H-beta catalyst[J]. Bioresour Technol,2018,269:346−354. doi: 10.1016/j.biortech.2018.08.125 [7] HAN T, DING S, YANG W, JÖNSSON P. Catalytic pyrolysis of lignin using low-cost materials with different acidities and textural properties as catalysts[J]. Chem Eng J,2019,373:846−856. doi: 10.1016/j.cej.2019.05.125 [8] KURNIA I, KARNJANAKOM S, BAYU A, YOSHIDA A, RIZKIANA J, PRAKOSO T, ABUDULA A, GUAN G. In-situ catalytic upgrading of bio-oil derived from fast pyrolysis of lignin over high aluminum zeolites[J]. Fuel Process Technol,2017,167:730−737. doi: 10.1016/j.fuproc.2017.08.026 [9] KONG L, ZHANG L, GU J, GOU L, XIE L, WANG Y, DAI L. Catalytic hydrotreatment of kraft lignin into aromatic alcohols over nickel-rhenium supported on niobium oxide catalyst[J]. Bioresour Technol,2020,299:122582. doi: 10.1016/j.biortech.2019.122582 [10] NARON D R, COLLARD F X, TYHODA L, GÖRGENS J F. Influence of impregnated catalyst on the phenols production from pyrolysis of hardwood, softwood, and herbaceous lignins[J]. Ind Crop Prod,2019,131:348−356. doi: 10.1016/j.indcrop.2019.02.001 [11] HU Y, TAO B, SHANG F, ZHOU M, HAO D, FAN R, XIA D, YANG Y, PANG A, LIN K. Thermal decomposition of ammonium perchlorate over perovskite catalysts: Catalytic decomposition behavior, mechanism and application[J]. Appl Surf Sci,2020,513:145849. doi: 10.1016/j.apsusc.2020.145849 [12] 赵晓虹, 王勇, 刘立敏, 李斌. 固体氧化物燃料电池新型钙钛矿La0.9Ca0.1Fe0.9Nb0.1O3-δ阳极的制备及其性能研究[J]. 无机材料学报,2017,32(11):1188−1194. doi: 10.15541/jim20170016ZHAO Xiao-hong, WANG Yong, LIU Li-min, LI Bin. Preparation and electrochemical performance of a novel perovskite anode La0.9Ca0.1Fe0.9Nb0.1O3-δ for solid oxide fuel cells[J]. J Inorg Mater,2017,32(11):1188−1194. doi: 10.15541/jim20170016 [13] 周则龄, 张萌, 张俊峰, 宋法恩, 张清德, 谭猗生, 韩怡卓. 钙钛矿型氧化物负载Ni催化剂上甲烷二氧化碳重整反应研究[J]. 燃料化学学报.,2020,48(7):833−841.ZHOU Ze-ling, ZHANG Meng, ZHANG Jun-feng, SONG Fa-en, ZHANG Qing-de, TAN Yi-sheng, HAN Yi-zhuo. Methane reforming with carbon dioxide over the perovskite supported Ni catalysts[J]. J Fuel Chem Technol,2020,48(7):833−841. [14] 董晓珊, 李健, 颜蓓蓓, 陈冠益. 钙钛矿催化剂在生物质热化学利用领域的研究进展[J]. 化工学报,2022,72(2):504−520.DONG Xiao-shan, LI Jian, YAN Bei-bei, CHEN Guan-yi. Research progress of perovskite catalyst in thermochemical utilization of biomass[J]. J Chem Ind Eng,2022,72(2):504−520. [15] 陈彦广, 安宏宇, 韩洪晶, 王海英, 王新惠, 赵宏志, 宋华. 木质素催化氧化研究进展[J]. 化工新型材料.,2018,46(11):245−248.CHEN Yan-guang, AN Hong-yu, HAN Hong-jing, WANG Hai-ying, WANG Xin-hui, ZHAO Hong-zhi, SONG Hua. Research progress on catalytic oxidation of lignin[J]. New Chem Mater,2018,46(11):245−248. [16] ZHAO S, WANG L, WANG Y, LI X. Hierarchically porous LaFeO3 perovskite prepared from the pomelo peel bio-template for catalytic oxidation of NO[J]. J Phys Chem Solids,2018,116:43−49. doi: 10.1016/j.jpcs.2017.12.057 [17] ZHAO K, HE F, HUANG Z, WEI G, ZHENG A, LI H, ZHAO Z. Perovskite-type oxides LaFe1−xCoxO3 for chemical looping steam methane reforming to syngas and hydrogen co-production[J]. Appl Energy,2016,168:193−203. doi: 10.1016/j.apenergy.2016.01.052 [18] LI X, LI M, MA X, MIAO J, RAN R, ZHOU W, WANG S, SHAO Z. Nonstoichiometric perovskite for enhanced catalytic oxidation through excess A-site cation[J]. Chem Eng Sci,2020,219:115596. doi: 10.1016/j.ces.2020.115596 [19] DENG H, LIN L, LIU S. Catalysis of Cu-doped Co-based perovskite-type oxide in wet oxidation of lignin to produce aromatic aldehydes[J]. Energy Fuels,2010,24(9):4797−4802. doi: 10.1021/ef100768e [20] WANG H, HAN H, SUN E, HAN Y, ZHANG Y, LI J, CHEN Y, SONG H, ZHAO H, KANG Y. Production of aryl oxygen-containing compounds by the pyrolysis of bagasse alkali lignin catalyzed by LaM0.2Fe0.8O3 (M = Fe, Cu, Al, Ti)[J]. Energy Fuels,2019,33(9):8596−8605. doi: 10.1021/acs.energyfuels.9b00755 [21] LIU C, CHEN D, CAO Y, ZHANG T, MAO Y, WANG W, WANG Z, KAWI S. Catalytic steam reforming of in-situ tar from rice husk over MCM-41 supported LaNiO3 to produce hydrogen rich syngas[J]. Renewable Energy,2020,161:408−418. doi: 10.1016/j.renene.2020.07.089 [22] 郑云武, 王继大, 刘灿, 卢怡, 林旭, 李文斌, 郑志锋. Ni-P/HZSM-5催化木质素降解制备酚类化学品[J]. 化工进展,2020,39(5):1792−1802.ZHENG Yun-wu, WANG Ji-da, LIU Can, LU Yi, LIN Xu, LI Wen-bin, ZHENG Zhi-feng. Selectivity catalytic depolymerization of the hydrolyzed lignin to produce phenolic chemicals over nickel phosphides supported on HZSM-5 catalysts[J]. Chem Ind Eng Prog,2020,39(5):1792−1802. [23] HAFNER J. Ab-initio simulations of materials using VASP: Density-functional theory and beyond[J]. J Comput Chem,2008,29(13):2044−2078. doi: 10.1002/jcc.21057 [24] KRESSE, FURTHMULLER. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys Rev B,1996,54(16):11169−11186. [25] PERDEW, BURKE, WANG. Generalized gradient approximation for the exchange-correlation hole of a many-electron system[J]. Physical Rev B,1996,54(23):16533−16539. [26] BLOCHL. Projector augmented-wave method[J]. Physical Rev B,1994,50(24):17953−17979. [27] GUO M, LI K, LIU L, ZHANG H, HU X, MIN X, JIA J, SUN T. Resource utilization of spent ternary lithium-ions batteries: Synthesis of highly active manganese-based perovskite catalyst for toluene oxidation[J]. J Taiwan Inst Chem E,2019,102:268−275. doi: 10.1016/j.jtice.2019.06.012 [28] ZHOU M, SHI H, LI C, SHENG X, SUN Y, HOU M, NIU M, PAN X. Depolymerization and activation of alkali lignin by solid acid-catalyzed phenolation for preparation of lignin-based phenolic foams[J]. Ind Eng Chem Res,2020,59(32):14296−14305. doi: 10.1021/acs.iecr.0c01753 [29] LIAO W, WANG X, LI L, FAN D, WANG Z, CHEN Y, LI Y, XIE X A. Catalytic Alcoholysis of Lignin with HY and ZSM-5 Zeolite Catalysts[J]. Energy Fuels,2020,34(1):599−606. doi: 10.1021/acs.energyfuels.9b03729 [30] LYU G, YOO C G, PAN X. Alkaline oxidative cracking for effective depolymerization of biorefining lignin to mono-aromatic compounds and organic acids with molecular oxygen[J]. Biomass Bioenergy,2018,108:7−14. doi: 10.1016/j.biombioe.2017.10.046 [31] LI S, ZHANG Z, YAN L, JIANG S, ZHU N, LI J, LI W, YU S. Fast synthesis of CuS and Cu9S5 microcrystal using subcritical and supercritical methanol and their application in photocatalytic degradation of dye in water[J]. J Supercrit Fluids,2017,123:11−17. doi: 10.1016/j.supflu.2016.12.014 [32] 廖玮婷, 解新安, 李璐, 李雁, 樊荻, 孙娇, 王鑫. 木质素在超临界甲醇和乙醇溶剂中液化过程分析[J]. 化工进展.,2019,38(5):2205−2211.LIAO Wei-ting, XIE Xin-an, LI Lu, LI Yan, FAN Di, SUN Jiao, WANG Xin. Lignin liquefaction in supercritical methanol and ethanol solvent[J]. Chem Ind Eng Prog,2019,38(5):2205−2211. [33] DIAS J A, ANDRADE JR M A S, SANTOS H L S, MORELLI M R, MASCARO L H. Lanthanum–based perovskites for catalytic oxygen evolution reaction[J]. ChemElectroChem,2020,7(15):3173−3192. doi: 10.1002/celc.202000451 [34] HUANG X, KORANYI T, BOOT M, HENSEN E. Ethanol as capping agent and formaldehyde scavenger for efficient depolymerization of lignin to aromatics[J]. Green Chem,2015,17(11):4941−4950. doi: 10.1039/C5GC01120E [35] BISWAS B, SINGH R, KUMAR J, KHAN A A, KRISHNA B B, BHASKAR T. Slow pyrolysis of prot, alkali and dealkaline lignins for production of chemicals[J]. Bioresour Technol,2016,213:319−326. doi: 10.1016/j.biortech.2016.01.131 [36] SINGH R, SINGH S, TRIMUKHE K D, PANDARE K V, BASTAWADE K B, GOKHALE D V, VARMA A J. Lignin-carbohydrate complexes from sugarcane bagasse: Preparation, purification, and characterization[J]. Carbohyd Polym,2005,62(1):57−66. doi: 10.1016/j.carbpol.2005.07.011 [37] SI X, ZHAO Y, SONG Q, CAO J, WANG R, WEI X. Hydrogenolysis of lignin-derived aryl ethers to monomers over a MOF-derived Ni/N-C catalyst[J]. React Chem Eng,2020,5(5):886−895. doi: 10.1039/D0RE00040J [38] ZAVITSAS A A. The relation between bond lengths and dissociation energies of carbon–carbon bonds[J]. J Phys Chem A,2003,107(6):897−898. doi: 10.1021/jp0269367 [39] LINDSAY C M, BUSZEK R J, BOATZ J A, FAJARDO M E. The quest for greater chemical energy storage II: On the relationship between bond length and bond energy[J]. AIP Conference Proceedings,2018,1979(1):150024. [40] 王文锦, 徐莹, 朱妤婷, 马隆龙. NaOH协同Pd/C选择性解聚木质素β−O−4键[J]. 燃料化学学报,2021,49(12):1876−1882.WANG Wen-jin, XU Ying, ZHU Yu-ting, MA Long-long. Selective depolymerization β−O−4 linkage of lignin over Pd/C and NaOH[J]. J Fuel Chem Technol,2021,49(12):1876−1882. -