留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

榆林煤水蒸气气化条件下钾的迁移行为研究

韦兵 陈倩 王伟成 张万祥 陶睿旻 窦艺帆 王兴军

韦兵, 陈倩, 王伟成, 张万祥, 陶睿旻, 窦艺帆, 王兴军. 榆林煤水蒸气气化条件下钾的迁移行为研究[J]. 燃料化学学报, 2022, 50(8): 927-936. doi: 10.1016/S1872-5813(22)60005-7
引用本文: 韦兵, 陈倩, 王伟成, 张万祥, 陶睿旻, 窦艺帆, 王兴军. 榆林煤水蒸气气化条件下钾的迁移行为研究[J]. 燃料化学学报, 2022, 50(8): 927-936. doi: 10.1016/S1872-5813(22)60005-7
WEI Bing, CHEN Qian, WANG Wei-cheng, ZHANG Wan-xiang, TAO Rui-min, DOU Yi-fan, WANG Xing-jun. Migration behavior of potassium under condition of steam gasification of Yulin coal[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 927-936. doi: 10.1016/S1872-5813(22)60005-7
Citation: WEI Bing, CHEN Qian, WANG Wei-cheng, ZHANG Wan-xiang, TAO Rui-min, DOU Yi-fan, WANG Xing-jun. Migration behavior of potassium under condition of steam gasification of Yulin coal[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 927-936. doi: 10.1016/S1872-5813(22)60005-7

榆林煤水蒸气气化条件下钾的迁移行为研究

doi: 10.1016/S1872-5813(22)60005-7
基金项目: 国家自然科学基金(U21A20319)资助
详细信息
    通讯作者:

    Tel: 021- 64250192, E-mail: wxj@ecust.edu.cn

  • 中图分类号: TQ54

Migration behavior of potassium under condition of steam gasification of Yulin coal

Funds: The project was supported by the National Natural Science Foundation of China (U21A20319)
More Information
  • 摘要: 本研究利用固定床反应装置、原子吸收光谱、X射线衍射法(XRD)考察负载碳酸钾的榆林煤(ZA-K)、负载碳酸钾的榆林脱灰煤(ZA-THK)、负载碳酸钾的模拟灰(采用SiO2、Al2O3、CaO、Fe2O3四种氧化物配置)气化反应后的钾迁移行为,采用傅里叶红外光谱、拉曼光谱,探究ZA-K及ZA-THK在热解过程中的结构演变对钾迁移行为的影响;实验结果表明,温度越高,气化反应残渣中水溶性钾回收效率越低;三次水洗可以回收总水溶性钾的94.06%−98.80%;不溶性钾的生成是因为钾与煤灰中硅铝生成钾的硅铝酸盐物相;ZA-THK比ZA-K中的钾在气化反应过程中更容易挥发,在700−850 ℃下,ZA-THK中的钾挥发比ZA-K高出10.28%−44.92%。主要原因是ZA-K中的灰分会将负载的钾固定在煤灰中;也是酸洗脱灰使煤的芳香聚合度降低,煤中出现更多的小环芳香结构(2−8环)。
  • FIG. 1763.  FIG. 1763.

    FIG. 1763.  FIG. 1763.

    图  1  实验流程示意图

    Figure  1  Experimental flow diagram

    图  2  ZA和ZA-TH的傅里叶红外光谱谱图

    Figure  2  FT-IR spectra of sample ZA and ZA-TH

    图  3  ZA-TH的红外拟合谱图

    Figure  3  Curve-fitting FT-IR spectrum of ZA-TH

    图  4  不同温度下ZA-K与SYA-K的水洗次数与水溶性钾回收效率的关系

    Figure  4  Relationship between washing times of ZA-K,SYA-K and the yield of water-soluble potassium at different temperatures

    图  5  三次水洗下可溶性钾的回收效率(η1-3)占总水溶性钾(η1-5)的百分比

    Figure  5  Recovery efficiency of soluble potassium 1-3) as a percentage of the total water-soluble potassium (η1-5) under three washings

    图  6  不同温度下ZA-K与SYA-K的水溶性钾总回收效率与不溶性钾回收效率

    Figure  6  Total recovery efficiency of water-soluble potassium and the recovery efficiency of insoluble potassium of ZA-K and SYA-K at different temperatures

    图  7  800 ℃下ZA-K、SYA-K与SYA-K(Air)的XRD谱图

    Figure  7  XRD patterns of ZA-K, SYA-K and SYA-K(Air) at 800 °C

    图  8  ZA-K、ZA-THK、SYA-K反应后钾的挥发量以及SYA-K-Factsage模拟

    Figure  8  Volatilization of potassium in ZA-K, ZA-THK, SYA-K and after reactions and the results of SYA-K-Factsage simulation

    图  9  ZA-K(a)和ZA-THK(b)在不同温度下热解的拉曼光谱谱图

    Figure  9  Raman spectra of ZA-K (left) and ZA-THK (right) pyrolysis at different temperatures

    图  10  ZA-THK 在600 ℃下热解的拉曼谱图分峰拟合

    Figure  10  Raman spectrum curve-fitting of ZA-THK pyrolysis at 600 ℃

    图  11  不同热解温度下ZA-K和ZA-THK的ID/IGID/$I_{({\rm{G}}_{\rm{R}}+{\rm{V}}_{\rm{R}}+{\rm{V}}_{\rm{L}})}$IS/IG

    Figure  11  ID/IG, ID/$I_{({\rm{G}}_{\rm{R}}+{\rm{V}}_{\rm{R}}+{\rm{V}}_{\rm{L}})}$, IS/IG ratio of ZA-K and ZA-THK at different pyrolysis temperature

    图  12  煤热解和气化过程中钾迁移机理

    Figure  12  Potassium migration mechanism diagram during pyrolysis and gasification

    表  1  ZA和ZA-TH的工业分析及元素分析

    Table  1  Proximate and ultimate analyses of ZA and ZA-TH

    SampleProximate analysis wd/%Ultimate analysis wdaf/%
    AVFCCHO*NS
    ZA 10.96 37.29 51.75 67.85 5.13 24.52 0.84 1.66
    ZA-TH 1.44 29.58 68.98 66.76 5.43 25.60 0.63 1.58
    *: by difference; d-dry basis;daf-dry and ash free basis
    下载: 导出CSV

    表  2  ZA的灰成分分析

    Table  2  Ash composition of ZA

    SampleSiO2Al2O3CaOFe2O3MgOK2O
    w/% 48.88 19.21 12.19 9.87 1.61 1.80
    下载: 导出CSV

    表  3  SYA的化学组成

    Table  3  Chemical composition of SYA

    SampleSiO2Al2O3CaOFe2O3
    w/% 54.22 21.31 13.52 10.95
    下载: 导出CSV

    表  4  ZA-TH的红外光谱拟合峰参数

    Table  4  Infrared spectrum fitting peak parameters of ZA-TH

    Peak#Center/cm−1HightWidth/cm−1AssignmentArea
    13403.10.002797.2stretching vibration of hydrogen-bond0.2745
    23318.30.0118127.8stretching vibration of −OH, −NH1.6069
    33217.30.006288.5stretching vibration of hydrogen-bond0.5799
    43157.50.004081.7stretching vibration of hydrogen-bond0.3495
    53040.90.002256.3stretching vibration of CH in aromatic structures0.1305
    62955.00.009225.2asymmetric stretching vibration of CH30.2464
    72923.40.022129.8stretching vibration of CH in alkanes0.7005
    82896.50.017439.0stretching vibration of CH in alkanes0.7227
    92849.40.018640.0symmetric stretching vibration of CH2 in alkanes0.7892
    101727.90.012835.8stretching vibration of C=O in conjugated esters0.4869
    111697.60.027730.4stretching vibration of C=O in carboxylic acids0.8960
    121592.90.080172.3stretching vibration of C=C in aromatic rings6.1682
    131434.80.019046.2asymmetric deformation vibration of CH30.9361
    141375.00.004416.8asymmetric stretching vibration of C−O−C in aromatic ethers0.0784
    151255.50.016579.3stretching vibration of C−OH in phenols1.3938
    161188.00.0354112.6stretching vibration of C−OH in phenols4.2467
    17881.70.004015.6out-of-plane deformation vibration of =C−H in aromatic structures with isolated aromatic hydrogens (1H)0.0655
    18869.20.00469.1out-of-plane deformation vibration of =C−H in aromatic structures with isolated aromatic hydrogens (1H)0.0447
    19857.10.003511.9out-of-plane deformation vibration of =C−H in aromatic structures with two adjacent hydrogens per ring (2H)0.0442
    20839.00.00227.2out-of-plane deformation vibration of =C−H in aromatic structures with two adjacent hydrogens per ring (2H)0.0172
    21824.50.00195.4out-of-plane deformation vibration of =C−H in aromatic structures with two adjacent hydrogens per ring (2H)0.0108
    22813.90.008827.4out-of-plane deformation vibration of =C−H in aromatic structures with three adjacent hydrogens per ring (3H)0.2558
    23749.80.011527.1out-of-plane deformation vibration of =C−H in aromatic structures with three adjacent hydrogens per ring (3H)0.3319
    24720.30.001713.2plane swing vibration of alkane (CH2)n ≥ 40.0236
    下载: 导出CSV

    表  5  ZA和ZA-TH的红外结构参数

    Table  5  Infrared structure parameters of ZA and ZA-TH

    SampleƒaA(CH2)/A(CH3)ICDOC
    ZA0.9454.6120.2350.2020.146
    ZA-TH0.9462.8430.3230.1830.128
    下载: 导出CSV
  • [1] 武恒, 李克忠, 吴松怡, 赵锐君, 刘雷, 王会芳. 钾钠复合催化剂对煤气化反应的影响[J]. 现代化工,2020,40(11):109−112.

    WU Heng, LI Ke-zhong, WU Song-yi, ZHAO Rui-jun, LIU Lei, WANG Hui-fang. Effect of K2CO3-Na2CO3 compound catalyst on coal gasification[J]. Mod Chem Ind,2020,40(11):109−112.
    [2] LI W, YU Z, GUAN G. Catalytic coal gasification for methane production: A Review[J]. Carbon Res Convers,2021,4:89−99. doi: 10.1016/j.crcon.2021.02.001
    [3] ARNOLD R A, HILL J M. Catalysts for gasification: A review[J]. Sustainable Energy Fuels,2019,3:656−672. doi: 10.1039/C8SE00614H
    [4] WANG J, JIANG M, YAO Y, ZHANG Y, CAO J. Steam gasification of coal char catalyzed by K2CO3 for enhanced production of hydrogen without formation of methane[J]. Fuel,2009,88(9):1572−1579.
    [5] YUAN X Z, NAMKUNG H, KANG T, KIM H. K2CO3-catalyzed steam gasification of Indonesian low-rank coal for H2-rich gas production in a fixed bed reactor[J]. Energy Technol,2015,3(5):527−534. doi: 10.1002/ente.201402198
    [6] ARASH K, MURRAY R G. Effectiveness and mobility of catalysts for gasification of bitumen coke[J]. Fuel,2011,90(1):120−125. doi: 10.1016/j.fuel.2010.07.032
    [7] CHEN S G, YANG R T. Unified mechanism of alkali and alkaline earth catalyzed gasification reactions of carbon by CO2 and H2O[J]. Energy Fuels,1997,11(2):421−427. doi: 10.1021/ef960099o
    [8] WIGMANS T, GOEBEL J C, MOULIJN J A. The influence of pretreatment conditions on the activity and stability of sodium and potassium catalysts in carbon-steam reactions[J]. Carbon,1983,21(3):295−301. doi: 10.1016/0008-6223(83)90094-5
    [9] SHADMAN F, SAMS D A, PUNJAK W A. Significance of the reduction of alkali carbonates in catalytic carbon gasification[J]. Fuel,1987,66(12):58−63.
    [10] SABER J M, KESTER K B, FALCONER J L, BROWN L F. A mechanism for sodium oxide catalyzed CO2 gasification of carbon[J]. J Catal,1988,109(2):329−346. doi: 10.1016/0021-9517(88)90216-3
    [11] KOPYSCINSKI J, RAHMAN M, GUPTA R, MIMS C A, HILL J M. K2CO3 catalyzed CO2 gasification of ash-free coal. Interactions of the catalyst with carbon in N2 and CO2 atmosphere[J]. Fuel,2014,117(1):1181−1189.
    [12] HUHN F, KLEIN J, JUNTGEN H. Investigations on the alkali-catalysed steam gasification of coal: Kinetics and interactions of alkali catalyst with carbon[J]. Fuel,1983,62(2):196−199. doi: 10.1016/0016-2361(83)90197-7
    [13] FENG D, ZHAO Y, ZHANG Y, XU H H, ZHANG L Y, SUN S Z. Catalytic mechanism of ion-exchanging alkali and alkaline earth metallic species on biochar reactivity during CO2/H2O gasification[J]. Fuel,2018,212(15):523−532.
    [14] LU T, MAO Y, WANG H, LIU L, LI K. Effect of pre-treatment on catalytic coal gasification characteristics of sub-bituminous coal[J]. J Energy Inst,2021,96:173−180. doi: 10.1016/j.joei.2021.03.013
    [15] 陈杰, 陈凡敏, 王兴军, 于广锁, 王辅臣. 煤催化气化过程中钾催化剂回收的实验研究[J]. 化学工程,2012,40(6):68−71. doi: 10.3969/j.issn.1005-9954.2012.06.017

    CHEN Jie, CHEN Fan-min, WANG Xing-jun, YU Guang-suo, WANG Fu-chen. Experimental study on potassium catalyst recovery in coal catalytic gasification[J]. Chem Eng,2012,40(6):68−71. doi: 10.3969/j.issn.1005-9954.2012.06.017
    [16] YUAN X, FAN S, CHOI S W, KIM H T, LEE K B. Potassium catalyst recovery process and performance evaluation of the recovered catalyst in the K2CO3-catalyzed steam gasification system[J]. Appl Energy,2017,195(1):850−860.
    [17] 梅艳钢, 王志青, 高松平, 郑洪岩, 张郃, 房倚天. 碱金属与碱土金属在煤炭热转化过程中的影响研究进展[J]. 燃料化学学报,2020,48(4):386−393.

    MEI Yan-gang, WANG Zhi-qing, GAO Song-ping, ZHANG He, FANG Yi-tian. Research progress of the influence of alkali metals and alkaline earth metals on coal thermal chemical conversion[J]. J Fuel Chem Technol,2020,48(4):386−393.
    [18] LI X, HAYASHI J, LI C. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel, 2006, 85(10/11): 1700−1707.
    [19] YE C P, YANG Z J, LI W Y, RONG H L, FENG J. Effect of adjusting coal properties on HulunBuir lignite pyrolysis[J]. Fuel Process Technol,2017,156:415−20. doi: 10.1016/j.fuproc.2016.10.002
    [20] XIE X, LIU L, LIN D, QIU P. Influence of different state alkali and alkaline earth metal on chemical structure of Zhundong coal char pyrolyzed at elevated pressures[J]. Fuel,2019,254:1−11.
    [21] XIE X, ZHAO Y, QIU P H, LIN D, QIAN J, HOU H M, PEI J. Investigation of the relationship between infrared structure and pyrolysis reactivity of coals with different ranks[J]. Fuel,2018,216(15):521−530.
    [22] XUE Q H, LIU X F, NIE B S, SONG D Z. FTIR and Raman spectroscopy characterization of functional groups in various rank coals[J]. Fuel,2017,206(15):555−563.
    [23] 江国栋. 低阶煤热解反应动力学实验与模型研究[D]. 西安: 西北大学, 2019.

    JIANG Guo-dong. Experimental and model research on pyrolysis reaction kinetics of low-rank coal[D]. Xi'an: Northwest University, 2019.
    [24] 王瀚姣, 杜美利, 薛文海, 刘忠诚. 酸洗对黄陵富油煤结构和动力学特征的影响[J]. 煤炭转化,2021,44(4):38−42.

    WANG Han-jiao, DU Mei-li, XUE Wen-hai, LIU Zhong-cheng. Effects of pickling on structure and Kinetic characteristic of Huangling oil-rich coal[J]. Coal Convers,2021,44(4):38−42.
    [25] 毛燕东. 煤催化气化过程中矿物质变迁规律及结渣机理研究[D]. 天津: 天津大学, 2017.

    MAO Yan-dong. Minerals transformation and slagging mechanism of coal ash in catalytic coal gasification process[D]. Tianjin: Tianjin University, 2017.
    [26] VARGAS S, FRANDSEN F J, DAM J K. Rheological properties of high-temperature melts of coal ashes and other silicates[J]. Prog Energy Combust Sci,2001,27(3):237−429. doi: 10.1016/S0360-1285(00)00023-X
    [27] 王恩德, 付建飞, 王丹丽. 结晶学与矿物学实验教程[M]. 北京: 地质出版社, 2014.

    WANG En-de, FU Jian-fei, WANG Dan-li. Experimental Course of Crystallography and Mineralogy[M]. Beijing: Geological Publishing House, 2014.
    [28] FERRARI AC, ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Phys Rev B,2000,61(20):14095−14107. doi: 10.1103/PhysRevB.61.14095
    [29] LI X, HAYASHI J, LI C. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part VII. Raman spectroscopic study on the changes in char structure during the catalytic gasification in air[J]. Fuel,2006,85(10-11):1509−1517. doi: 10.1016/j.fuel.2006.01.011
    [30] ZHANG J, ZHANG R, BI J. Effect of catalyst on coal char structure and its role in catalytic coal gasification[J]. Catal Commun,2016,79(5):1−5.
    [31] UMEMOTO S, KAJITANI S, HARA S. Modeling of coal char gasification in coexistence of CO2 and H2O considering sharing of active sites[J]. Fuel,2013,103:14−21. doi: 10.1016/j.fuel.2011.11.030
    [32] CHEN S G, YANG R T. Mechanism of alkali and alkaline earth catalyzed gasification of graphite by CO2 and H2O studied by electron microscopy[J]. J Catal,1992,138(1):12−23. doi: 10.1016/0021-9517(92)90003-Z
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  261
  • HTML全文浏览量:  64
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-31
  • 录用日期:  2022-02-28
  • 修回日期:  2022-02-23
  • 网络出版日期:  2022-03-08
  • 刊出日期:  2022-08-26

目录

    /

    返回文章
    返回