-
摘要: 金属氧化物-分子筛(OX-ZEO)双功能催化剂具有优异的芳烃选择性和催化剂使用寿命,但是其较低的CO转化率限制了该类型催化剂的进一步发展。采用水热法制备了In-Zr双金属氧化物,In/Zr物质的量比为1/100−1/1,通过XRD、TEM、N2-物理吸脱附等手段对样品相态、形貌进行研究;通过Py-FTIR、NH3-TPD、XPS、EPR等手段对样品表面性质进行探索,发现In的引入显著改变了催化剂的理化性能,进而导致催化性能的不同:In的引入有利于H2的活化、进而促进CO转化,同时伴随产生大量的CH4,In/Zr = 1/50具有18.2%的CO转化率和86.4%的含氧化合物选择性。与分子筛耦合后得到的双功能催化剂In/Zr = 1/50&H-ZSM-5展现出46.5%的CO转化率和62.6%的
$ {\rm{C}}_{5+} $ 选择性,这其中含有93.4%的芳烃,但是,由于In在反应过程烧结,该双功能催化剂出现失活现象。-
关键词:
- OX-ZEO /
- 合成气 /
- 芳烃 /
- In-ZrO2双金属氧化物
Abstract: Metal oxide-zeolite (OX-ZEO) bifunctional catalysts have been shown to have excellent aromatic selectivity and catalytic stability in syngas conversion; however, low CO conversion hinders their further development. In this paper, a series of In-ZrO2 bi-metallic oxides with In/Zr molar ratio ranging of 1/100−1/1 were prepared. After thoroughly investigated by X-ray diffraction, transmission electron microscopy, N2 sorption, pyridine-adsorbed infrared spectroscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance and temperature programmed desorption technologies, we found that introduction of indium has significantly influence on the catalytic performance due to the variation of sample’s physicochemical properties. Indium species was benefit to the dissociation of H2 that promotes CO activation. Nevertheless, it also induced the formation of more CH4. In-ZrO2 oxide with In/Zr ratio of 1/50 showed CO conversion of 18.2% with the selectivity of oxygenates of 86.4%. After combined with H-ZSM-5, In/Zr=1/50&H-ZSM-5 gave CO conversion of 46.5% with$ {\rm{C}}_{5+} $ selectivity of 62.6% and the aromatic selectivity in${\rm{C}}_{5+} $ reached 93.4%. However, the catalytic stability of this bifunctional catalyst was gradually decreased due to the aggregation of indium atoms.-
Key words:
- OX-ZEO /
- syngas /
- aromatics /
- In-ZrO2 bi-metallic oxide
-
Table 1 Texture properties of In-ZrO2 bi-metallic oxides with different In content
Sample SBET /(m2·g−1) vp /(cm3·g−1) Dp /nm Crystal size /nm a Phase/% m-ZrO2 t-ZrO2 c-In2O3 m-ZrO2 98 0.2 8.1 7.0 100 − − In/Zr = 1/100 99 0.3 8.6 7.5 100 − − In/Zr = 1/50 89 0.2 7.8 6.4 100 − − In/Zr = 1/25 98 0.2 7.2 6.1 67.5 32.5 − In/Zr = 1/10 94 0.2 8.2 6.3 − 100 − In/Zr = 1/5 86 0.2 7.4 6.5 − 100 − In/Zr = 1/1 50 0.3 12.7 13.4 − − 100 c-In2O3 14 0.04 9.8 14.2 − − 100 a: Derived from Scherrer equation Table 2 Py-FTIR results of In-ZrO2 bi-metallic oxides with different In content
Sample Acid site amount/(µmol·g−1) a Acid site distribution /% weak b medium c strong d m-ZrO2 70 49.7 32.5 17.8 In/Zr = 1/100 59 57.1 30.5 12.4 In/Zr = 1/50 29 53.2 30.3 16.5 In/Zr = 1/25 17 56.8 31.2 12.0 In/Zr = 1/10 5.6 76.0 24.0 − In/Zr = 1/5 − − − − In/Zr = 1/1 − − − − c-In2O3 − − − − a: Calculated according to the desorbed pyridine amounts; b: Pyridine desorbed at 30 °C; c: Pyridine desorbed at 250 °C; d: Pyridine desorbed at 300 °C Table 3 Catalytic properties of In-ZrO2 bi-metallic oxides with different In content
Sample a xCO/% Sel. mol/% Distribution of HC w/% $C^=_{2- 4}/C^0_{2- 4}$ HC CO2 C1 C2−4 C5+ oxygenates m-ZrO2 8.0 65.3 34.7 2.2 1.6 0.1 96.1 3.7 In/Zr = 1/100 15.9 76.5 23.5 9.1 0.5 − 90.4 5.4 In/Zr = 1/50 18.2 67.0 33.0 13.1 0.5 − 86.4 5.7 In/Zr = 1/25 18.4 60.0 40.0 25.8 0.4 − 73.9 6.2 In/Zr = 1/10 27.2 55.1 44.9 62.8 0.5 − 36.8 2.3 In/Zr = 1/5 27.9 54.5 45.5 84.7 0.6 − 14.8 1.4 In/Zr = 1/1 29.2 55.5 44.5 81.0 0.8 − 18.2 1.1 c-In2O3 0.2 49.3 50.7 8.2 6.7 32.3 52.9 4.8 a: 350 °C, 6.0 MPa, H2=CO = 30 mL/min -
[1] ALEXANDER M N, ONUR O, CHRISTODOULOS A F. Production of benzene, toluene, and xylenes from natural gas via methanol: Process synthesis and global optimization[J]. AIChE J,2016,62:1531−1556. doi: 10.1002/aic.15144 [2] ALEXANDER M N, ONUR O, YANINIS A G, CHRISTODOULOS A F. Production of benzene, toluene, and xylenes from natural gas via methanol: Process synthesis and deterministic global optimization[J]. Energy Fuels,2016,30:4970−4998. doi: 10.1021/acs.energyfuels.6b00619 [3] CHENG K, ZHOU W, KANG J C, HE S, SHI S L, ZHANG Q H, PAN Y, WEN W, WANG Y. Bi-functional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability[J]. Chem,2017,3:334−347. doi: 10.1016/j.chempr.2017.05.007 [4] YANG J H, PAN X L, JIAO F, LI J, BAO X H. Direct conversion of syngas to aromatics[J]. Chem Commun,2017,53:11146−11149. doi: 10.1039/C7CC04768A [5] ZHOU W, SHI S L, WANG Y, ZHANG L, WANG Y, ZHANG G Q, MIN X J, CHENG K, ZHANG Q H, KANG J C, WANG Y. Selective conversion of syngas to aromatics over a Mo-ZrO2/H-ZSM-5 bifunctional catalyst[J]. ChemCatChem,2019,11:1−9. doi: 10.1002/cctc.201801860 [6] HUANG Z, WANG S, QIN F, HUANG L, YUE Y H, HUA W M, QIAO M H, HE H Y, SHEN W, XU H L. Ceria-zirconia/zeolite bifunctional catalyst for highly selective conversion of syngas into aromatics[J]. ChemCatChem,2018,10:4519−4524. doi: 10.1002/cctc.201800911 [7] ZHAO B, ZHAI P, WANG P F, LI J Q, PENG M, ZHAO M, HU G, YANG Y, LI Y W, ZHANG Q W, FAN W B, MA D. Direct transformation of syngas to aromatics over Na-Zn-Fe5C2 and hierarchical HZSM-5 tandem catalysts[J]. Chem,2017,3:1−11. doi: 10.1016/j.chempr.2017.06.021 [8] XU Y F, LIU J G, MA G Y, WANG J, LIN J H, WANG H T, ZHANG C H, DING M Y. Effect of iron loading on acidity and performance of Fe/HZM-5 catalyst for direct synthesis of aromatics from syngas[J]. Fuel,2018,228:1−9. doi: 10.1016/j.fuel.2018.04.151 [9] XU Y B, LIU D P, LIU X H. Conversion of syngas toward aromatics over Fe-based Fishcer-Tropsch catalysts and HZSM-5 zeolites[J]. Appl Catal A: Gen,2018,552:168−183. doi: 10.1016/j.apcata.2018.01.012 [10] XU Y F, LIU J G, MA G Y, WANG J, WANG Q, LIN J H, WANG H T, ZHANG C H, DING M Y. Synthesis of aromatics from syngas over FeMnK/SiO2 and HZSM-5 tandem catalysts[J]. Mol Catal,2018,454:104−113. doi: 10.1016/j.mcat.2018.05.019 [11] LI Y W, HE D H, ZHU Q M, ZHANG X, XU B Q. Effects of redox and acid-base properties on isosynthesis over ZrO2-based catalysts[J]. J Catal,2004,221:584−593. doi: 10.1016/j.jcat.2003.09.023 [12] CLARENCEl D C, WILLIAM H L, ANTHONY J S. Synthesis gas conversion to aromatics hydrocarbons[J]. J Catal,1979,56:268−273. doi: 10.1016/0021-9517(79)90113-1 [13] WATCHARAPONG K, NICHA T, BUNJERD J, PIYASAN P, SUTTICHAI A. A study on isosynthesis via CO hydrogenation over ZrO2-CeO2 mixed oxide catalysts[J]. Chem Commun,2009,10:494−501. [14] LI Y W, HE D H, ZHU Z H, ZHU Q M, XU B Q. Properties of Sm2O3-ZrO2 composite oxides and their catalytic performance in isosynthesis[J]. Appl Catal A: Gen,2007,319:119−127. doi: 10.1016/j.apcata.2006.11.020 [15] LI Y W, HE D H, YUAN Y B, CHENG Z X, ZHU Q M. Influence of acidic and basic properties of ZrO2 based catalysts on isosynthesis[J]. Fuel,2002,81:1611−1617. doi: 10.1016/S0016-2361(02)00082-0 [16] WATCHARAPONG K, NICHA T, BUNJERD J, NAVADOL L, PIYASAN P, SUTTICHAI A. Isosynthesis via CO hydrogenation over SO4-ZrO2 catalysts[J]. J Ind Eng Chem,2016,16:411−418. [17] LIU X L, ZHOU W, YANG Y D, CHENG K, KANG J C, ZHANG L, ZHANG G Q, MIN X J, ZHANG Q H, WANG Y. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates[J]. Chem Sci,2018,9:4708−4718. doi: 10.1039/C8SC01597J [18] MARTIN O, ANTONIO J M, CECILIA M, SHARON M, TAKUYA F S, ROLAND H, CHARLOTTE D, DANIEL C F, JAVIER P R. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation[J]. Angew Chem Int Ed,2016,55:6261−6265. doi: 10.1002/anie.201600943 [19] WANG J Y, ZHANG A F, JIANG X, SONG C S, GUO X W. Highly selective conversion of CO2 to lower hydrocarbons (C2-C4) over bifunctional catalysts composed of In2O3-ZrO2 and zeolite[J]. J CO2 Util,2018,27:81−88. doi: 10.1016/j.jcou.2018.07.006 [20] SU J J, WANG D, WANG Y D, ZHOU H B, LIU C, LIU S, WANG C M, YANG W M, XIE Z K, HE M Y. Direct conversion of syngas to light olefins over Zr-In2O3 and SAPO-34 bifunctional catalysts: Design of oxide component and construction of reaction network[J]. ChemCatChem,2018,10:1536−1541. doi: 10.1002/cctc.201702054 [21] SONJA K, KAROLIINA H, LEON L, JAANA K. Review: Monoclinic zirconia, its surface sites and their interaction with carbon monoxide[J]. Catal Sci Technol,2015,5:3473−3490. doi: 10.1039/C5CY00330J [22] PRISCILA C Z, VIVIAN L B, GUILHERME G G, CARLA R M, ODIVALDO C A, ROBERTO R A, LUCIA G A. Isobutene from ethanol: Describing the synergy between In2O3 and m-ZrO2[J]. ChemCatChem, 2019, 11: 4011-4029. [23] LI W Z, HUANG H, LI H J, ZHANG W, LIU H C. Facile synthesis of pure monoclinic and tetragonal zirconia nanoparticles and their phase effects on the behavior of supported molybdena catalysts for methanol-selective oxidation[J]. Langmuir,2008,24:8358−8366. doi: 10.1021/la800370r [24] JONG R S, SI H L, JUN S L. New solid superacid catalyst prepared by doping ZrO2 with Ce and modifying with sulfate and its catalytic activity for acid catalysis[J]. Catal Today,2006,116:143−150. doi: 10.1016/j.cattod.2006.01.023 [25] THANAPA N, CHULARAT W, METTA C, JUMRAS L, THONGTHAI W. Optimization of synthesis condition for CO2 hydrogenation to light olefins over In2O3 admixed with SAPO-34[J]. Energy Convers Manage,2019,180:511−523. doi: 10.1016/j.enconman.2018.11.011 [26] YANG X R, CHENG X W, MA J H, ZOU Y D, LUO W, DENG Y H. Large-pore mesoporous CeO2-ZrO2 solid solutions with In-pore confined Pt nanoparticles for enhanced CO oxidation[J]. Small,2019,15:1903058−10903069. doi: 10.1002/smll.201903058 [27] WANG X W, LI Q C, GAN L, JI X F, CHEN F Y, PENG X K, ZHANG R B. 3D macropore carbon-vacancy g-C3N4 constructed using polymethylmethacrylate spheres for enhanced photocatalytic H2 evolution and CO2 reduction[J]. J Energ Chem,2021,53:139−146. doi: 10.1016/j.jechem.2020.05.001 [28] SUN J M, ZHU K K, GAO F, WANG C M, LIU J, CHARLES H F P, WANG Y. Direct conversion of bio-ethanol to isobutene on nanosized ZnxZryOz mixed oxides with balanced acid-base sites[J]. J Am Chem Soc,2011,133:11096−11099. doi: 10.1021/ja204235v [29] KAM T W, CHARLES B K, MARK E D. Studies on the catalytic activity of zirconia promoted with sulfate, iron, and manganese[J]. J Catal,1996,158:311−326. doi: 10.1006/jcat.1996.0030 [30] RUI N, WANG Z Y, SUN K H, YE J Y, GE Q F, LIU C J. CO2 hydrogenation to methanol over Pd/In2O3: effects of Pd and oxygen vacancy[J]. Appl Catal B: Environ,2017,218:488−497. doi: 10.1016/j.apcatb.2017.06.069 [31] LIU J G, HE Y R, YAN L L, MA C P, ZHANG C H, XIANG H W, WEN X D, LI Y W. Nano-ZrO2 as hydrogenation phase in bi-functional catalyst for syngas aromatization[J]. Fuel,2020,263:116803−116814. doi: 10.1016/j.fuel.2019.116803 [32] LIU J G, HE Y R, YAN L L, LI K, ZHANG C H, XIANG H W, WEN X D, LI Y W. Nano-sized ZrO2 derived from metal-organic frameworks and their catalytic performance for aromatic synthesis from syngas[J]. Catal Sci Technol,2019,9:2982−2992. doi: 10.1039/C9CY00453J [33] SATO A G, VOLANTI D P, MEIRA D M, DAMYANOVA S, LONGO E, BUENO J M C. Effect of the ZrO2 phase on the structure and behavior of supported Cu catalysts for ethanol conversion[J]. J Catal,2013,307:1−17. doi: 10.1016/j.jcat.2013.06.022 [34] WU G S, WANG L C, LIU Y M, CAO Y, DAI W L, HE H Y, FAN K N. Implication of the role of oxygen anions and oxygen vacancies for methanol decomposition over zirconia supported copper catalysts[J]. Appl Surf Sci,2006,253:974−982. doi: 10.1016/j.apsusc.2006.01.056 [35] NAVIO J A, HIDALGO M C, COLON G, BOTTA S G, LITTER M I. Preparation and physicochemical properties of ZrO2 and Fe/ZrO2 prepared by a sol-gel technique[J]. Langmuir,2001,17:202−210. doi: 10.1021/la000897d [36] ZHANG J J, GAO Y F, JIA X R, WANG J Y, CHEN Z, XU Y. Oxygen vacancy-rich mesoporous ZrO2 with remarkably enhanced visible-light photocatalytic performance[J]. Sol Energy Mat Sol C,2018,182:113−120. doi: 10.1016/j.solmat.2018.03.023 [37] OKSANA G, SUSANNA S, GALINA V, SERGEY G, TETYANA K, SVETLANA L. Formation of metastable tetragonal zirconia nanoparticle: Competitive influence of the dopants and surface state[J]. J Solid State Chem,2015,232:249−255. doi: 10.1016/j.jssc.2015.09.026 [38] LEYDI R S, PRISICILA C Z, CLARISSA P R, ODIVALDO C A, LUCIA G A, ROBERTO R A. The ZnxZr1-xO2-y solid solution on m-ZrO2: Creating O vacancies and improving the m-ZrO2 redox properties[J]. J Mol Catal A: Chem,2016,425:166−173. doi: 10.1016/j.molcata.2016.10.008 [39] ZHOU R X, YU T M, JIANG X Y, FANG C, ZHENG X M. Temperature-programmed reduction and temperature-programed desorption studies of CuO/ZrO2 catalysts[J]. Appl Surf Sci,1999,148:263−270. doi: 10.1016/S0169-4332(98)00369-9 [40] MAITY S K, RANA M S, SRINIVAS B N, BEJ S K, MURALI D G, PRASADA T S R. Characterization and evaluation of ZrO2 supported hydrotreating catalysts[J] J Mol Catal A: Chem, 2000, 153: 121-127. [41] CHOUDHARY T V, KINAGE A, BANERJEE S, CHOUDHARY V R. Influence of space velocity on product selectivity and distribution of aromatics in propane aromatization over H-GaAlMFI zeolite[J]. J Mol Catal A: Chem,2006,246:79−84. doi: 10.1016/j.molcata.2005.10.025 [42] SONG C, LI X J, ZHU X X, LIU S L, CHEN F C, LIU F, XU L Y. Influence of the state of Zn species over Zn-ZSM-5/ZSM-11 on the coupling effects cofeeding n-butane with methanol[J]. Appl Catal A: Gen,2016,519:48−55. doi: 10.1016/j.apcata.2016.03.023 -