留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Indium modified zirconia coupling with HZSM-5 for syngas conversion to aromatics

LIU Jing-ge YAN Guo-chun FANG Ke-gong ZHANG Cheng-hua

刘竞舸, 闫国春, 房克功, 张成华. In-ZrO2双金属氧化物用于合成气制芳烃[J]. 燃料化学学报, 2022, 50(8): 1023-1033. doi: 10.1016/S1872-5813(22)60006-9
引用本文: 刘竞舸, 闫国春, 房克功, 张成华. In-ZrO2双金属氧化物用于合成气制芳烃[J]. 燃料化学学报, 2022, 50(8): 1023-1033. doi: 10.1016/S1872-5813(22)60006-9
LIU Jing-ge, YAN Guo-chun, FANG Ke-gong, ZHANG Cheng-hua. Indium modified zirconia coupling with HZSM-5 for syngas conversion to aromatics[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 1023-1033. doi: 10.1016/S1872-5813(22)60006-9
Citation: LIU Jing-ge, YAN Guo-chun, FANG Ke-gong, ZHANG Cheng-hua. Indium modified zirconia coupling with HZSM-5 for syngas conversion to aromatics[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 1023-1033. doi: 10.1016/S1872-5813(22)60006-9

In-ZrO2双金属氧化物用于合成气制芳烃

doi: 10.1016/S1872-5813(22)60006-9
详细信息
  • 中图分类号: O643

Indium modified zirconia coupling with HZSM-5 for syngas conversion to aromatics

More Information
  • 摘要: 金属氧化物-分子筛(OX-ZEO)双功能催化剂具有优异的芳烃选择性和催化剂使用寿命,但是其较低的CO转化率限制了该类型催化剂的进一步发展。采用水热法制备了In-Zr双金属氧化物,In/Zr物质的量比为1/100−1/1,通过XRD、TEM、N2-物理吸脱附等手段对样品相态、形貌进行研究;通过Py-FTIR、NH3-TPD、XPS、EPR等手段对样品表面性质进行探索,发现In的引入显著改变了催化剂的理化性能,进而导致催化性能的不同:In的引入有利于H2的活化、进而促进CO转化,同时伴随产生大量的CH4,In/Zr = 1/50具有18.2%的CO转化率和86.4%的含氧化合物选择性。与分子筛耦合后得到的双功能催化剂In/Zr = 1/50&H-ZSM-5展现出46.5%的CO转化率和62.6%的$ {\rm{C}}_{5+} $选择性,这其中含有93.4%的芳烃,但是,由于In在反应过程烧结,该双功能催化剂出现失活现象。
  • FIG. 1772.  FIG. 1772.

    FIG. 1772.  FIG. 1772.

    Figure  1  XRD patterns of In-ZrO2 bi-metallic oxides with different In content: (a) 2θ diffraction peak in the range of 10°−90° and (b) 25°−35°

    Figure  2  (a)−(f) TEM images of In-ZrO2 bi-metallic oxides with different indium content (blue: c-In2O3; yellow: t-ZrO2; white: m-ZrO2)

    Figure  3  (a) N2 adsorption-desorption isotherms and (b) pore size distribution of In-ZrO2 bi-metallic oxides with different indium content

    Figure  4  Py-FTIR results of In-ZrO2 bi-metallic oxides with different indium content at (a) 30 °C, (b) 200 °C and (c) 300 °C

    Figure  5  Surface defects of In-ZrO2 bi-metallic oxides with different In content obtained from (a) In 3d orbit, (b) Zr 3d orbit and (c) EPR results

    Figure  6  (a) CO-TPD, (b) H2-TPD, (c) TPH and (d) H2-TPR results of In-ZrO2 bi-metallic oxides with different In content

    Figure  7  Catalytic performance of In/Zr = 1/50&H-ZSM-5 bifunctional catalyst in syngas to aromatic reaction conditions: 6 MPa, H2=CO = 30 mL/min

    Table  1  Texture properties of In-ZrO2 bi-metallic oxides with different In content

    SampleSBET /(m2·g−1)vp /(cm3·g−1)Dp /nmCrystal size /nm aPhase/%
    m-ZrO2t-ZrO2c-In2O3
    m-ZrO2 98 0.2 8.1 7.0 100
    In/Zr = 1/100 99 0.3 8.6 7.5 100
    In/Zr = 1/50 89 0.2 7.8 6.4 100
    In/Zr = 1/25 98 0.2 7.2 6.1 67.5 32.5
    In/Zr = 1/10 94 0.2 8.2 6.3 100
    In/Zr = 1/5 86 0.2 7.4 6.5 100
    In/Zr = 1/1 50 0.3 12.7 13.4 100
    c-In2O3 14 0.04 9.8 14.2 100
    a: Derived from Scherrer equation
    下载: 导出CSV

    Table  2  Py-FTIR results of In-ZrO2 bi-metallic oxides with different In content

    Sample Acid site amount/(µmol·g−1) aAcid site distribution /%
    weak bmedium cstrong d
    m-ZrO27049.732.517.8
    In/Zr = 1/1005957.130.512.4
    In/Zr = 1/502953.230.316.5
    In/Zr = 1/251756.831.212.0
    In/Zr = 1/105.676.024.0
    In/Zr = 1/5
    In/Zr = 1/1
    c-In2O3
    a: Calculated according to the desorbed pyridine amounts; b: Pyridine desorbed at 30 °C; c: Pyridine desorbed at 250 °C; d: Pyridine desorbed at 300 °C
    下载: 导出CSV

    Table  3  Catalytic properties of In-ZrO2 bi-metallic oxides with different In content

    Sample axCO/%Sel. mol/%Distribution of HC w/%$C^=_{2- 4}/C^0_{2- 4}$
    HCCO2C1C2−4C5+oxygenates
    m-ZrO28.065.334.72.21.60.196.13.7
    In/Zr = 1/10015.976.523.59.10.590.45.4
    In/Zr = 1/5018.267.033.013.10.586.45.7
    In/Zr = 1/2518.460.040.025.80.473.96.2
    In/Zr = 1/1027.255.144.962.80.536.82.3
    In/Zr = 1/527.954.545.584.70.614.81.4
    In/Zr = 1/129.255.544.581.00.818.21.1
    c-In2O30.249.350.78.26.732.352.94.8
    a: 350 °C, 6.0 MPa, H2=CO = 30 mL/min
    下载: 导出CSV
  • [1] ALEXANDER M N, ONUR O, CHRISTODOULOS A F. Production of benzene, toluene, and xylenes from natural gas via methanol: Process synthesis and global optimization[J]. AIChE J,2016,62:1531−1556. doi: 10.1002/aic.15144
    [2] ALEXANDER M N, ONUR O, YANINIS A G, CHRISTODOULOS A F. Production of benzene, toluene, and xylenes from natural gas via methanol: Process synthesis and deterministic global optimization[J]. Energy Fuels,2016,30:4970−4998. doi: 10.1021/acs.energyfuels.6b00619
    [3] CHENG K, ZHOU W, KANG J C, HE S, SHI S L, ZHANG Q H, PAN Y, WEN W, WANG Y. Bi-functional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability[J]. Chem,2017,3:334−347. doi: 10.1016/j.chempr.2017.05.007
    [4] YANG J H, PAN X L, JIAO F, LI J, BAO X H. Direct conversion of syngas to aromatics[J]. Chem Commun,2017,53:11146−11149. doi: 10.1039/C7CC04768A
    [5] ZHOU W, SHI S L, WANG Y, ZHANG L, WANG Y, ZHANG G Q, MIN X J, CHENG K, ZHANG Q H, KANG J C, WANG Y. Selective conversion of syngas to aromatics over a Mo-ZrO2/H-ZSM-5 bifunctional catalyst[J]. ChemCatChem,2019,11:1−9. doi: 10.1002/cctc.201801860
    [6] HUANG Z, WANG S, QIN F, HUANG L, YUE Y H, HUA W M, QIAO M H, HE H Y, SHEN W, XU H L. Ceria-zirconia/zeolite bifunctional catalyst for highly selective conversion of syngas into aromatics[J]. ChemCatChem,2018,10:4519−4524. doi: 10.1002/cctc.201800911
    [7] ZHAO B, ZHAI P, WANG P F, LI J Q, PENG M, ZHAO M, HU G, YANG Y, LI Y W, ZHANG Q W, FAN W B, MA D. Direct transformation of syngas to aromatics over Na-Zn-Fe5C2 and hierarchical HZSM-5 tandem catalysts[J]. Chem,2017,3:1−11. doi: 10.1016/j.chempr.2017.06.021
    [8] XU Y F, LIU J G, MA G Y, WANG J, LIN J H, WANG H T, ZHANG C H, DING M Y. Effect of iron loading on acidity and performance of Fe/HZM-5 catalyst for direct synthesis of aromatics from syngas[J]. Fuel,2018,228:1−9. doi: 10.1016/j.fuel.2018.04.151
    [9] XU Y B, LIU D P, LIU X H. Conversion of syngas toward aromatics over Fe-based Fishcer-Tropsch catalysts and HZSM-5 zeolites[J]. Appl Catal A: Gen,2018,552:168−183. doi: 10.1016/j.apcata.2018.01.012
    [10] XU Y F, LIU J G, MA G Y, WANG J, WANG Q, LIN J H, WANG H T, ZHANG C H, DING M Y. Synthesis of aromatics from syngas over FeMnK/SiO2 and HZSM-5 tandem catalysts[J]. Mol Catal,2018,454:104−113. doi: 10.1016/j.mcat.2018.05.019
    [11] LI Y W, HE D H, ZHU Q M, ZHANG X, XU B Q. Effects of redox and acid-base properties on isosynthesis over ZrO2-based catalysts[J]. J Catal,2004,221:584−593. doi: 10.1016/j.jcat.2003.09.023
    [12] CLARENCEl D C, WILLIAM H L, ANTHONY J S. Synthesis gas conversion to aromatics hydrocarbons[J]. J Catal,1979,56:268−273. doi: 10.1016/0021-9517(79)90113-1
    [13] WATCHARAPONG K, NICHA T, BUNJERD J, PIYASAN P, SUTTICHAI A. A study on isosynthesis via CO hydrogenation over ZrO2-CeO2 mixed oxide catalysts[J]. Chem Commun,2009,10:494−501.
    [14] LI Y W, HE D H, ZHU Z H, ZHU Q M, XU B Q. Properties of Sm2O3-ZrO2 composite oxides and their catalytic performance in isosynthesis[J]. Appl Catal A: Gen,2007,319:119−127. doi: 10.1016/j.apcata.2006.11.020
    [15] LI Y W, HE D H, YUAN Y B, CHENG Z X, ZHU Q M. Influence of acidic and basic properties of ZrO2 based catalysts on isosynthesis[J]. Fuel,2002,81:1611−1617. doi: 10.1016/S0016-2361(02)00082-0
    [16] WATCHARAPONG K, NICHA T, BUNJERD J, NAVADOL L, PIYASAN P, SUTTICHAI A. Isosynthesis via CO hydrogenation over SO4-ZrO2 catalysts[J]. J Ind Eng Chem,2016,16:411−418.
    [17] LIU X L, ZHOU W, YANG Y D, CHENG K, KANG J C, ZHANG L, ZHANG G Q, MIN X J, ZHANG Q H, WANG Y. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates[J]. Chem Sci,2018,9:4708−4718. doi: 10.1039/C8SC01597J
    [18] MARTIN O, ANTONIO J M, CECILIA M, SHARON M, TAKUYA F S, ROLAND H, CHARLOTTE D, DANIEL C F, JAVIER P R. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation[J]. Angew Chem Int Ed,2016,55:6261−6265. doi: 10.1002/anie.201600943
    [19] WANG J Y, ZHANG A F, JIANG X, SONG C S, GUO X W. Highly selective conversion of CO2 to lower hydrocarbons (C2-C4) over bifunctional catalysts composed of In2O3-ZrO2 and zeolite[J]. J CO2 Util,2018,27:81−88. doi: 10.1016/j.jcou.2018.07.006
    [20] SU J J, WANG D, WANG Y D, ZHOU H B, LIU C, LIU S, WANG C M, YANG W M, XIE Z K, HE M Y. Direct conversion of syngas to light olefins over Zr-In2O3 and SAPO-34 bifunctional catalysts: Design of oxide component and construction of reaction network[J]. ChemCatChem,2018,10:1536−1541. doi: 10.1002/cctc.201702054
    [21] SONJA K, KAROLIINA H, LEON L, JAANA K. Review: Monoclinic zirconia, its surface sites and their interaction with carbon monoxide[J]. Catal Sci Technol,2015,5:3473−3490. doi: 10.1039/C5CY00330J
    [22] PRISCILA C Z, VIVIAN L B, GUILHERME G G, CARLA R M, ODIVALDO C A, ROBERTO R A, LUCIA G A. Isobutene from ethanol: Describing the synergy between In2O3 and m-ZrO2[J]. ChemCatChem, 2019, 11: 4011-4029.
    [23] LI W Z, HUANG H, LI H J, ZHANG W, LIU H C. Facile synthesis of pure monoclinic and tetragonal zirconia nanoparticles and their phase effects on the behavior of supported molybdena catalysts for methanol-selective oxidation[J]. Langmuir,2008,24:8358−8366. doi: 10.1021/la800370r
    [24] JONG R S, SI H L, JUN S L. New solid superacid catalyst prepared by doping ZrO2 with Ce and modifying with sulfate and its catalytic activity for acid catalysis[J]. Catal Today,2006,116:143−150. doi: 10.1016/j.cattod.2006.01.023
    [25] THANAPA N, CHULARAT W, METTA C, JUMRAS L, THONGTHAI W. Optimization of synthesis condition for CO2 hydrogenation to light olefins over In2O3 admixed with SAPO-34[J]. Energy Convers Manage,2019,180:511−523. doi: 10.1016/j.enconman.2018.11.011
    [26] YANG X R, CHENG X W, MA J H, ZOU Y D, LUO W, DENG Y H. Large-pore mesoporous CeO2-ZrO2 solid solutions with In-pore confined Pt nanoparticles for enhanced CO oxidation[J]. Small,2019,15:1903058−10903069. doi: 10.1002/smll.201903058
    [27] WANG X W, LI Q C, GAN L, JI X F, CHEN F Y, PENG X K, ZHANG R B. 3D macropore carbon-vacancy g-C3N4 constructed using polymethylmethacrylate spheres for enhanced photocatalytic H2 evolution and CO2 reduction[J]. J Energ Chem,2021,53:139−146. doi: 10.1016/j.jechem.2020.05.001
    [28] SUN J M, ZHU K K, GAO F, WANG C M, LIU J, CHARLES H F P, WANG Y. Direct conversion of bio-ethanol to isobutene on nanosized ZnxZryOz mixed oxides with balanced acid-base sites[J]. J Am Chem Soc,2011,133:11096−11099. doi: 10.1021/ja204235v
    [29] KAM T W, CHARLES B K, MARK E D. Studies on the catalytic activity of zirconia promoted with sulfate, iron, and manganese[J]. J Catal,1996,158:311−326. doi: 10.1006/jcat.1996.0030
    [30] RUI N, WANG Z Y, SUN K H, YE J Y, GE Q F, LIU C J. CO2 hydrogenation to methanol over Pd/In2O3: effects of Pd and oxygen vacancy[J]. Appl Catal B: Environ,2017,218:488−497. doi: 10.1016/j.apcatb.2017.06.069
    [31] LIU J G, HE Y R, YAN L L, MA C P, ZHANG C H, XIANG H W, WEN X D, LI Y W. Nano-ZrO2 as hydrogenation phase in bi-functional catalyst for syngas aromatization[J]. Fuel,2020,263:116803−116814. doi: 10.1016/j.fuel.2019.116803
    [32] LIU J G, HE Y R, YAN L L, LI K, ZHANG C H, XIANG H W, WEN X D, LI Y W. Nano-sized ZrO2 derived from metal-organic frameworks and their catalytic performance for aromatic synthesis from syngas[J]. Catal Sci Technol,2019,9:2982−2992. doi: 10.1039/C9CY00453J
    [33] SATO A G, VOLANTI D P, MEIRA D M, DAMYANOVA S, LONGO E, BUENO J M C. Effect of the ZrO2 phase on the structure and behavior of supported Cu catalysts for ethanol conversion[J]. J Catal,2013,307:1−17. doi: 10.1016/j.jcat.2013.06.022
    [34] WU G S, WANG L C, LIU Y M, CAO Y, DAI W L, HE H Y, FAN K N. Implication of the role of oxygen anions and oxygen vacancies for methanol decomposition over zirconia supported copper catalysts[J]. Appl Surf Sci,2006,253:974−982. doi: 10.1016/j.apsusc.2006.01.056
    [35] NAVIO J A, HIDALGO M C, COLON G, BOTTA S G, LITTER M I. Preparation and physicochemical properties of ZrO2 and Fe/ZrO2 prepared by a sol-gel technique[J]. Langmuir,2001,17:202−210. doi: 10.1021/la000897d
    [36] ZHANG J J, GAO Y F, JIA X R, WANG J Y, CHEN Z, XU Y. Oxygen vacancy-rich mesoporous ZrO2 with remarkably enhanced visible-light photocatalytic performance[J]. Sol Energy Mat Sol C,2018,182:113−120. doi: 10.1016/j.solmat.2018.03.023
    [37] OKSANA G, SUSANNA S, GALINA V, SERGEY G, TETYANA K, SVETLANA L. Formation of metastable tetragonal zirconia nanoparticle: Competitive influence of the dopants and surface state[J]. J Solid State Chem,2015,232:249−255. doi: 10.1016/j.jssc.2015.09.026
    [38] LEYDI R S, PRISICILA C Z, CLARISSA P R, ODIVALDO C A, LUCIA G A, ROBERTO R A. The ZnxZr1-xO2-y solid solution on m-ZrO2: Creating O vacancies and improving the m-ZrO2 redox properties[J]. J Mol Catal A: Chem,2016,425:166−173. doi: 10.1016/j.molcata.2016.10.008
    [39] ZHOU R X, YU T M, JIANG X Y, FANG C, ZHENG X M. Temperature-programmed reduction and temperature-programed desorption studies of CuO/ZrO2 catalysts[J]. Appl Surf Sci,1999,148:263−270. doi: 10.1016/S0169-4332(98)00369-9
    [40] MAITY S K, RANA M S, SRINIVAS B N, BEJ S K, MURALI D G, PRASADA T S R. Characterization and evaluation of ZrO2 supported hydrotreating catalysts[J] J Mol Catal A: Chem, 2000, 153: 121-127.
    [41] CHOUDHARY T V, KINAGE A, BANERJEE S, CHOUDHARY V R. Influence of space velocity on product selectivity and distribution of aromatics in propane aromatization over H-GaAlMFI zeolite[J]. J Mol Catal A: Chem,2006,246:79−84. doi: 10.1016/j.molcata.2005.10.025
    [42] SONG C, LI X J, ZHU X X, LIU S L, CHEN F C, LIU F, XU L Y. Influence of the state of Zn species over Zn-ZSM-5/ZSM-11 on the coupling effects cofeeding n-butane with methanol[J]. Appl Catal A: Gen,2016,519:48−55. doi: 10.1016/j.apcata.2016.03.023
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  742
  • HTML全文浏览量:  32
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-29
  • 录用日期:  2022-01-21
  • 修回日期:  2021-12-16
  • 网络出版日期:  2022-03-25
  • 刊出日期:  2022-08-26

目录

    /

    返回文章
    返回