留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水煤浆气化细渣的组成结构特征及干法脱炭研究

高影 赵伟 周安宁 韩瑞 李振 张宁宁 王俊哲 马超

高影, 赵伟, 周安宁, 韩瑞, 李振, 张宁宁, 王俊哲, 马超. 水煤浆气化细渣的组成结构特征及干法脱炭研究[J]. 燃料化学学报(中英文), 2022, 50(8): 954-965. doi: 10.1016/S1872-5813(22)60007-0
引用本文: 高影, 赵伟, 周安宁, 韩瑞, 李振, 张宁宁, 王俊哲, 马超. 水煤浆气化细渣的组成结构特征及干法脱炭研究[J]. 燃料化学学报(中英文), 2022, 50(8): 954-965. doi: 10.1016/S1872-5813(22)60007-0
GAO Ying, ZHAO Wei, ZHOU An-ning, HAN Rui, LI Zhen, ZHANG Ning-ning, WANG Jun-zhe, MA Chao. Study on the composition and structure characteristics and dry decarbonization separation of coal water slurry gasification fine slag[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 954-965. doi: 10.1016/S1872-5813(22)60007-0
Citation: GAO Ying, ZHAO Wei, ZHOU An-ning, HAN Rui, LI Zhen, ZHANG Ning-ning, WANG Jun-zhe, MA Chao. Study on the composition and structure characteristics and dry decarbonization separation of coal water slurry gasification fine slag[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 954-965. doi: 10.1016/S1872-5813(22)60007-0

水煤浆气化细渣的组成结构特征及干法脱炭研究

doi: 10.1016/S1872-5813(22)60007-0
基金项目: 陕西省技术创新引导专项-区域创新能力引导计划(2021QFY04-01)资助
详细信息
    通讯作者:

    Tel:029-85583549, 029-85583183, E-mail:psu564@139.com

    lizhenac@126.com

  • 中图分类号: TQ536

Study on the composition and structure characteristics and dry decarbonization separation of coal water slurry gasification fine slag

Funds: The project was supported by the Special Project of Technology Innovation Guidance of Shaanxi (2021QFY04-01)
  • 摘要: 本研究以水煤浆气化细渣(CWSFS)为研究对象,将其通过湿法筛分分级,采用工业分析、XRF、XRD、BET、SEM等手段考察粒度组成与结构特征的关系,并提出CWSFS的分类方法,用以指导煤气化灰渣的分质高值化利用;再采用粉碎解离-气流分级联合处理方法开展了水煤浆气化细渣的干法分选研究。结果表明,不同粒级CWSFS,在固定碳含量、灰组成、矿物类型上有明显差异。≥74 μm粒级的CWSFS中,固定碳含量>60%、发热量>20 MJ/kg,比表面积较高,主要为残炭,并含有磁铁矿和板钛矿;13−74 μm粒级的CWSFS中,固定碳含量为20%−60%、发热量为11−19 MJ/kg,比表面积较小,矿物类型主要为辉石、白铁矿和赤铁矿等;0−13 μm粒级的CWSFS中,固定碳含量低于20%、发热量低于10 MJ/kg,主要为富含铝、铁、钙等非晶态玻璃相、石英和少量铁橄榄石、白云母等矿物。根据不同粒级CWSFS的特征,将上述三个组分分别定义为高炭组分、中炭组分和低炭组分。干法分选试验表明,与圆盘粉碎-分级工艺相比,采用气流粉碎-分级工艺可获得产率为29.60%、烧失量高达93.76%的产品,气流粉碎有助于提高残炭的分级分离富集率。
  • FIG. 1765.  FIG. 1765.

    FIG. 1765.  FIG. 1765.

    图  1  粉碎-气流分级流程示意图

    Figure  1  Combined process of crushing and airflow classification

    (a): disc crushing and airflow classification; (b): airflow crushing and airflow classification

    图  2  水煤浆气化细渣各粒级固定碳含量

    Figure  2  Fixed carbon content of different particle size grades of CWSFS

    图  3  水煤浆气化细渣各粒级的XRD谱图

    Figure  3  XRD spectra of size-segmented CWSFS

    Q: Quartz; M: Magnetite; H: Hematite; D: Diopside; B: Brookite; 2M: Muscovite; A: Anhydrite; N: Nepheline; 2F: Fayalite; 3F: Marcasite

    图  4  CWSFS各粒级样品的红外光谱谱图

    Figure  4  FT-IR spectra of size-segmented CWSFS

    图  5  水煤浆气化细渣各粒级扫描电镜照片

    Figure  5  SEM of size-segmented CWSFS

    图  6  水煤浆气化细渣各粒级的N2吸附-脱附等温曲线

    Figure  6  N2 adsorption curve of size-segmented CWSFS

    图  7  水煤浆气化细渣各粒级孔径分布

    Figure  7  Pore size distribution of size-segmented CWSFS

    图  8  CWSFS圆盘粉碎-气流分级后各产品烧失量及产率

    Figure  8  Ignition loss and yield of each product after crushed and combined airflow classification

    图  9  气流粉碎各产品产率及烧失量

    Figure  9  Yield and loss on ignition of each product in airflow crushed

    图  10  不同粉碎方式下CWSFS各产品的SEM照片

    Figure  10  SEM images of CWSFS products using different crushing methods

    表  1  水煤浆气化细渣的工业分析和元素分析

    Table  1  Proximate and ultimate analyses of coal-water slurry gasification fine slag

    Proximate analysis w/%Ultimate analysis wad/%Qgr,d/(MJ·kg−1)
    MadAadVdafFCadCHONSt
    6.4129.1520.8643.5854.172.313.251.113.6025.13
    下载: 导出CSV

    表  2  水煤浆气化细渣粒度特性

    Table  2  Characteristics of CWSFS in different particle size grades

    Particle size/μmYield/%Ash content/%Fixed carbon content/%Loss on ignition/%Calorific value/(MJ·kg−1)
    >9850.8315.9970.3585.5226.214
    74−985.6624.5561.8873.2123.835
    45−7413.8937.7939.9368.9515.223
    22−456.4149.9728.3157.5713.249
    13−227.8650.0525.8647.312.198
    0−1315.3559.2519.3445.79.081
    Total10029.1843.5872.5925.126
    下载: 导出CSV

    表  3  水煤浆气化细渣各粒级氧化物含量

    Table  3  Oxide content of size-segmented CWSFS

    Particle size/μmComposition w/%
    SiO2Al2O3Fe2O3CaOK2OTiO2SO3ZnOCr2O3MnOSrOCuOV2O5
    >98038.5521.1625.211.031.6810.260.3400.400.670.250
    74−9823.6620.4318.0624.251.151.469.690.2700.370.2100
    45−7416.8418.9929.6122.501.611.557.38000.520.5900.14
    22−4533.8822.5515.4919.021.731.285.38000.280.1400.10
    13−2240.7221.7112.5215.861.781.244.690.780.170.22000
    0−1334.9124.1015.7216.292.041.693.090.980.410.26000
    CWSFS21.0927.9620.7019.831.851.645.2800.280.370.5800
    下载: 导出CSV

    表  4  水煤浆气化细渣EDS分析

    Table  4  EDS analysis of CWSFS

    MorphologyParticle size/μmElement w/%
    CONaAlSiSKCaTiVFeSr
    Porous irregular particles>9875.715.10.181.033.360.90.211.050.1301.810.57
    74−9885.37.840.130.752.80.720.170.710.150.040.790.64
    Block particles>9876.1120.441.312.942.090.212.220.090.071.610.93
    74−9873.520.20.20.822.240.240.120.870.1201.090.63
    45−7473.819.40.20.992.440.320.171.060.110.010.890.67
    22−4563.721.50.241.425.951.40.351.570.130.031.742
    13−225419.70.42.79.941.480.62.90.2904.843.16
    Spherical particles>989.8641.52.866.4411.51.020.516.030.4018.21.75
    74−989.66432.86.25110.710.465.590.30.1418.21.87
    45−7426.736.824.928.820.940.414.630.25013.21.31
    22−4517.642.52.817.131.980.690.446.160.30191.37
    13−2224.734.62.36.610.90.60.45.610.31012.31.68
    0−1320.536.83.016.8210.40.740.525.980.21013.81.24
    Floccule0−1335.939.52.274.77.350.20.572.510.260.056.180.59
    下载: 导出CSV

    表  5  水煤浆气化细渣各粒径的孔隙特征参数

    Table  5  Pore characteristic parameters of size-segmented CWSFS

    Particle size/μmSpecific surface area/(m2·g−1)Total pore volume/(cm3·g−1)Average aperture/nm
    >9867.800.0416.21
    74−98216.930.1475.52
    45−7441.260.0247.42
    22−4546.470.0447.08
    13−2259.010.0707.57
    0−1358.860.0929.80
    CWSFS44.590.0527.12
    下载: 导出CSV

    表  6  水煤浆气化细渣的分类指标及不同类型组分的组成结构特征

    Table  6  Classification indexes of CWSFS and composition and structure characteristics of different types of components

    Classification indexTypeStructure and composition characteristics of different types of components
    fixed carbon content/%calorific value/(MJ·kg−1)particle size range/μmmicro morphological characteristicspore structure
    characteristics (specific
    surface area)/
    (m2·g−1)
    main mineral composition
    >60>20high carbon component>74porous irregular particle, block particle>67magnetite, brookite
    20−6011−19medium carbon component13−74block particle, spherical particle40−60pyroxene, marcasite, hematite
    <20<10low carbon component<13floccule<60quartz, fayalite,
    muscovite
    下载: 导出CSV

    表  7  不同粉碎方式下球形颗粒的面积统计

    Table  7  Statistical results of spherical particle projected area using different crushing methods

     CWSFS productTotal area of spherical
    particles/μm2
    Ratio of spherical particles to
    total sample area/%
    Disc crushed for 3 min253.88179.4034
    Disc crushed for 6 min189.45175.8623
    Disc crushed for 9 min56.41011.7996
    Airflow crushed
    graded frequency 20 Hz
    58.33241.7501
    Airflow crushed
    graded frequency 35 Hz
    130.16134.3221
    Airflow crushed
    graded frequency 50 Hz
    183.06215.4915
    下载: 导出CSV
  • [1] 朱子祺. 煤制油选煤厂煤显微组分迁移规律[J]. 洁净煤技术,2020,26(6):89−95.

    ZHU Zi-qi. Migration rule of coal macerals in coal-to-oil preparation plant[J]. Clean Coal Technol,2020,26(6):89−95.
    [2] 任振玚, 井云环, 樊盼盼, 高艳春, 王建成, 董连平, 鲍卫仁, 樊民强, 常丽萍. 气化渣水介重选及其分离炭制备脱硫脱硝活性焦试验研究[J]. 煤炭学报,2021,46(4):1164−1172.

    REN Zhen-yang, JING Yun-huan, FAN Pan-pan, GAO Yan-chun, WANG Jian-cheng, DONG Lian-ping, BAO Wei-ren, FAN Min-qiang, CHANG Li-ping. Experimental study on the water-medium gravity separation of gasification slag and the preparation of desulfurization and denitrification activated coke using separated carbon[J]. J China Coal Soc,2021,46(4):1164−1172.
    [3] 张一昕, 郭旸, 王如梦, 贾文科, 郭凡辉, 武建军. 宁东煤气化细渣及其碳灰分离产物物理化学性质研究[J]. 煤炭学报,2021,46(S2):1096−1104.

    ZHANG Yi-xin, GUO Yang, WANG Ru-meng, JIA Wen-ke, GUO Fan-hui, WU Jian-jun. Study on the physicochemical properties of Ningdong coal gasification fine slag and its carbon-ash separation products[J]. J China Coal Soc,2021,46(S2):1096−1104.
    [4] 吕飞勇, 初茉, 易浩然, 郝焱, 杨彦博, 石旭, 孙星博. 磁性灰粒在不同粒级气化灰渣中的分布特性[J]. 化工进展,2022,41(5):2372−2378.

    LV Fei-yong, CHU Mo, YI Hao-ran, HAO Yan, YANG Yan-bo, SHI Xu, SUN Xing-bo. Distribution characteristics of magnetic ash particles in gasification slag of different particle sizes[J]. Chem Ind Eng Prog,2022,41(5):2372−2378.
    [5] 吴昊东, 邵丰华, 吕鹏, 白永辉, 宋旭东, 王焦飞, 郭庆华, 王学斌, 于广锁. 气流床煤气化细渣结构、性质与其粒度分布关系研究[J]. 燃料化学学报,2022,50(5):513−522.

    WU Hao-dong, SHAO Feng-hua, LV Peng, BAI Yong-hui, SONG Xu-dong, WANG Jiao-fei, GUO Qing-hua, WANG Xue-bin, YU Guang-suo. Study on the relationship between structure, properties and size distribution of fine slag from entrained flow gasification[J]. J Fuel Chem Technol,2022,50(5):513−522.
    [6] GUO F, MIAO Z, GUO Z, LI J, ZHANG Y, WU J. Properties of flotation residual carbon from gasification fine slag[J]. Fuel,2020,267:117043. doi: 10.1016/j.fuel.2020.117043
    [7] ZHAO X, ZENG C, MAO Y, LI W, PENG Y, WANG T, EITENEER B, ZAMANSKY V, FLETCHER T. The surface characteristics and reactivity of residual carbon in coal gasification slag[J]. Energy Fuels,2010,24(1):91−94. doi: 10.1021/ef9005065
    [8] WU S, HUANG S, JI L, WU Y, GAO J. Structure characteristics and gasification activity of residual carbon from entrained-flow coal gasification slag[J]. Fuel,2014,122:67−75. doi: 10.1016/j.fuel.2014.01.011
    [9] HUANG S, WU S, PING Y, WU Y, GAO J. Effect of CS2 extraction on the physical properties and gasification activity of liquid-phase carbonization cokes[J]. J Anal Appl Pyrolysis,2012,93:33−40. doi: 10.1016/j.jaap.2011.09.008
    [10] 张孝雨, 何国锋, 李磊, 陈浩. 水煤浆性能的影响因素及技术进展[J]. 洁净煤技术,2019,25(6):96−104.

    ZHANG Xiao-yu, HE Guo-feng, LI Lei, CHEN Hao. Influence factors and technical progress of CWS performance[J]. Clean Coal Technol,2019,25(6):96−104.
    [11] 蒋煜, 王磊, 涂亚楠. 水煤浆技术研究进展与发展趋势[J]. 煤炭工程,2020,52(5):27−32.

    JIANG Yu, WANG Lei, TU Ya-nan. Discussion on progress and development trend of coal water slurry technology[J]. Coal Eng,2020,52(5):27−32.
    [12] 郭庆华, 卫俊涛, 龚岩, 祝慧雯, 于广锁. 多喷嘴对置式气流床气化炉内热态行为的研究进展[J]. 煤炭学报,2020,45(1):403−413.

    GUO Qing-hua, Wei Jun-tao, Gong Yan, ZHU Hui-wen, YU Guang-suo. Research progress on hot-model behavior of opposed multi-burner entrained-flow gasification[J]. J China Coal Soc,2020,45(1):403−413.
    [13] HUO W, ZHOU Z, WANG F, WANG Y, YU G. Experimental study of pore diffusion effect on char gasification with CO2 and steam[J]. Fuel,2014,131:59−65. doi: 10.1016/j.fuel.2014.04.058
    [14] 何国锋, 柳金秋, 徐彤, 李磊. 水煤浆气化细灰碳灰分布特性及其分离试验研究[J]. 煤炭科学技术,2021,49(4):82−89. doi: 10.13199/j.cnki.cst.2021.04.010

    HE Guo-feng, LIU Jin-qiu, XU Tong, LI Lei. Distribution characteristics and separation experiment of carbon ash from coal water slurry gasification fine ash[J]. Coal Sci Technol,2021,49(4):82−89. doi: 10.13199/j.cnki.cst.2021.04.010
    [15] 王学斌, 于伟, 张韬, 白永辉, 刘莉君, 史兆臣, 殷瑞, 谭厚章. 基于粒度分级的煤气化细渣特性分析及利用研究[J]. 洁净煤技术,2021,27(3):61−69.

    WANG Xue-bin, YU Wei, ZHANG Tao, BAI Yong-hui, LIU Li-jun, SHI Zhao-chen, YIN Rui, TAN Hou-zhang. Characteristic analysis and utilization of coal gasification fine slag based on particle size classification[J]. Clean Coal Technol,2021,27(3):61−69.
    [16] 尹艳山, 尹杰, 张巍, 田红, 胡章茂, 冯磊华, 陈冬林. 红外和拉曼光谱的煤灰矿物组成研究[J]. 光谱学与光谱分析,2018,38(3):789−793.

    YIN Yan-shan, YIN Jie, ZHANG Wei, TIAN Hong, HU Zhang-mao, FENG Lei-hua, CHEN Dong-lin. Characterization of mineral matter in coal ashes with infrared and Raman spectroscopy[J]. Spect Spect Anal,2018,38(3):789−793.
    [17] 张建法, 梁钦峰, 王剑, 许建良, 刘海峰, 龚欣. Shell粉煤气化炉渣池内熔渣流动特性[J]. 化学工程,2011,39:89−93. doi: 10.3969/j.issn.1005-9954.2011.04.022

    ZHANG Jian-fa, LIANG Qin-feng, WANG Jian, XU Jian-liang, LIU Hai-feng, GONG Xin. Flow characteristics of slag in Shell gasifier slag bath[J]. Chem Eng,2011,39:89−93. doi: 10.3969/j.issn.1005-9954.2011.04.022
    [18] SUN L, GONG Y, GUO Q, YU G. Microscopic characteristics of solid particles in opposed multi-burner gasifier[J]. J Fuel Chem Technol,2014,42(9):1025−1032. doi: 10.1016/S1872-5813(14)60042-6
    [19] 吕登攀, 白永辉, 王焦飞, 宋旭东, 苏暐光, 于广锁, 祝贺, 唐广军. 气流床气化细渣中残炭的结构特征及燃烧特性研究[J]. 燃料化学学报,2021,49(2):129−136. doi: 10.1016/S1872-5813(21)60011-7

    LÜ Deng-pan, BAI Yong-hui, WANG Jiao-fei, SONG Xu-dong, SU Wei-guang, YU Guang-suo, ZHU He, TANG Guang-jun. Structural features and combustion reactivity of residual carbon in fine slag from entrained-flow gasification[J]. J Fuel Chem Technol,2021,49(2):129−136. doi: 10.1016/S1872-5813(21)60011-7
    [20] 张杰, 郭庆华, 周志杰, 于广锁. 多喷嘴对置式水煤浆气化炉内颗粒物分布特性的实验研究[J]. 中国电机工程学报,2013,33(20):59−65.

    ZHANG Jie, GUO Qing-hua, ZHOU Zhi-jie, YU Guang-suo. Experimental study of particle distribution in bench-cale opposed multi-burner gasifiers of coal water slurry[J]. Proc CSEE,2013,33(20):59−65.
    [21] SING K. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure Appl Chem,1985,57:603. doi: 10.1351/pac198557040603
    [22] 张志清. 气化炉内颗粒物特性及气化灰渣在水煤浆制备中的应用研究[D]. 上海: 华东理工大学, 2019.

    ZHANG Zhi-qing. Study on characteristics of particulate matter in gasifier and gasification slag blending in the preparation of coal-water slurry[D]. Shanghai: East China University of Science and Technology, 2019.
    [23] 徐硕, 杨金林, 马少健. 粉煤灰综合利用研究进展[J]. 矿产保护与利用,2021,41(3):104−111.

    XU Shuo, YANG Jin-lin, MA Shao-jian. Research progress in the comprehensive utilization of fly ash[J]. Conserv Util Min Res,2021,41(3):104−111.
    [24] 姜龙. 燃煤电厂粉煤灰综合利用现状及发展建议[J]. 洁净煤技术,2020,26(4):31−39.

    JIANG Long. Comprehensive utilization situation of fly ash in coal-fired power plants and its development suggestions[J]. Clean Coal Technol,2020,26(4):31−39.
    [25] GU Y, QIAO X. A carbon silica composite prepared from water slurry coal gasification slag[J]. Microporous Mesoporous Mater,2019,276:303−307. doi: 10.1016/j.micromeso.2018.06.025
    [26] 赵永彬, 吴海骏, 张学斌, 刘洪刚, 井云环, 袁伟. 煤气化残渣基多孔陶瓷的制备研究[J]. 洁净煤技术,2016,22(5):7−11.

    ZHAO Yong-bin, WU Hai-jun, ZHANG Xue-bin, LIU Hong-gang, JING Yun-huan, YUAN Wei. Fabrication of porous ceramic from coal gasification residual[J]. Clean Coal Technol,2016,22(5):7−11.
    [27] 尹洪峰, 汤云, 任耘, 张军战. 气化炉渣合成Ca-α-Sialon-SiC复相陶瓷[J]. 硅酸盐学报,2011,39(2):233−238.

    YIN Hong-feng, TANG Yun, REN Yun, ZHANG Jun-zhan. Synthesis of Ca-α-Sialon-SiC multiphase ceramics using gasification slag[J]. J Chin Ceram Soc,2011,39(2):233−238.
    [28] LI Z, ZHANG Y, ZHAO H, CHEN H, HR R. Structure characteristics and composition of hydration products of coal gasification slag mixed cement and lime[J]. Constr Build Mater,2019,213:265−274. doi: 10.1016/j.conbuildmat.2019.03.163
    [29] LIU X, JIN Z, JING Y, FAN P, QI Z, BAO W, WANG J, YAN X, LV P, DONG L. Review of the characteristics and graded utilisation of coal gasification slag[J]. Chin J Chem Eng,2021,35:92−106. doi: 10.1016/j.cjche.2021.05.007
    [30] 曲江山, 张建波, 孙志刚, 杨晨年, 史达, 李少鹏, 李会泉. 煤气化渣综合利用研究进展[J]. 洁净煤技术,2020,26(1):184−193.

    QU Jiang-shan, ZHANG Jian-bo, SUN Zhi-gang, YANG Chen-nian, SHI Da, LI Shao-peng, LI Hui-quan. Research progress on comprehensive utilization of coal gasification slag[J]. Clean Coal Technol,2020,26(1):184−193.
    [31] 张智吉, 魏上津, 郝路路, 张锡泽, 覃思学, 高明, 舒元峰, 许泽胜, 舒新前. 气化灰渣浮选回收炭粉的实验研究[J]. 煤炭加工与综合利用,2021,267(10):62−65.

    ZHANG Zhi-ji, WEI Shang-ji, HAO Lu-lu, ZHANG Xi-ze, TAN Si-xue, GAO Ming, SHU Yuan-feng, XU Ze-sheng, SHU Xin-qian. Experimental study on decarbonization of gasification slag by flotation[J]. Coal Process Compr Util,2021,267(10):62−65.
    [32] 于伟, 王学斌, 刘莉君, 白永辉, 史兆臣, 王丽娜, 屈进州. 高含碳煤气化细渣浮选行为研究[J]. 煤炭学报, https://kns.cnki.net/kcms/detail/detail.aspx?doi=10.13225/j.cnki.jccs.FX21.1105

    YU Wei, WANG Xue-bin, LIU Li-jun, BAI Yong-hui, SHI Zhao-chen, WANG Li-na, QU Jin-zhou. Study on flotation behavior of high carbon coal gasification fine slag[J]. J China Coal Soc, https://kns.cnki.net/kcms/detail/detail.aspx?doi=10.13225/j.cnki.jccs.FX21.1105.
    [33] 李金凤. 气化滤饼中碳赋存形态及循环掺烧可行性研究[J]. 洁净煤技术,2020,26(6):224−228.

    LI Jin-feng. Investigation on the occurrence of carbon in gasification filter cake and its feasibility of circulating combustion[J]. Clean Coal Technol,2020,26(6):224−228.
    [34] 刘华洁, 吴文秀, 田云吉. 涡轮式气流分级机压降分析及流场模拟[J]. 石油机械,2019,47(6):95−100.

    LIU Hua-jie, WU Wen-xiu, TIAN Yun-ji. Pressure drop analysis and flow field simulation of turbine air classifier[J]. China Pet Machinery,2019,47(6):95−100.
    [35] 王海旭. 潮湿煤跌落松散与气流分级过程研究[D]. 徐州: 中国矿业大学, 2020.

    (WANG Hai-xu. Study on falling De-attachment and air flow classification process of wet coal[D]. Xuzhou: China University of Mining and Technology, 2020.
    [36] 苏偲禹. 气流粉碎对粉体物性的影响及破碎机理研究[D]. 大连: 大连理工大学, 2020.

    SU Si-yu. Research on the influence of jet crushing on the physical properties of powders and the mechanism of crushing[D]. Dalian: Dalian University of Technology, 2020.
  • 加载中
图(11) / 表(7)
计量
  • 文章访问数:  1242
  • HTML全文浏览量:  282
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-17
  • 修回日期:  2022-03-04
  • 录用日期:  2022-03-11
  • 网络出版日期:  2022-03-18
  • 刊出日期:  2022-08-26

目录

    /

    返回文章
    返回