留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤直接液化催化剂预硫化过程中氢的作用研究

代浩杉 田磊 熊严坤 冯富祥 杨勇 马智 郭强 刘源

代浩杉, 田磊, 熊严坤, 冯富祥, 杨勇, 马智, 郭强, 刘源. 煤直接液化催化剂预硫化过程中氢的作用研究[J]. 燃料化学学报(中英文), 2022, 50(9): 1191-1201. doi: 10.1016/S1872-5813(22)60008-2
引用本文: 代浩杉, 田磊, 熊严坤, 冯富祥, 杨勇, 马智, 郭强, 刘源. 煤直接液化催化剂预硫化过程中氢的作用研究[J]. 燃料化学学报(中英文), 2022, 50(9): 1191-1201. doi: 10.1016/S1872-5813(22)60008-2
DAI Hao-shan, TIAN Lei, XIONG Yan-kun, FENG Fu-xiang, YANG Yong, MA Zhi, GUO Qiang, LIU Yuan. Research of hydrogen action during pre-sulfidation of direct coal liquefaction catalyst[J]. Journal of Fuel Chemistry and Technology, 2022, 50(9): 1191-1201. doi: 10.1016/S1872-5813(22)60008-2
Citation: DAI Hao-shan, TIAN Lei, XIONG Yan-kun, FENG Fu-xiang, YANG Yong, MA Zhi, GUO Qiang, LIU Yuan. Research of hydrogen action during pre-sulfidation of direct coal liquefaction catalyst[J]. Journal of Fuel Chemistry and Technology, 2022, 50(9): 1191-1201. doi: 10.1016/S1872-5813(22)60008-2

煤直接液化催化剂预硫化过程中氢的作用研究

doi: 10.1016/S1872-5813(22)60008-2
基金项目: 国家重点研发计划(2017YFB0602401)和国家自然科学基金面上项目(22178368)资助
详细信息
    通讯作者:

    E-mail:guoqiang@synfuelschina.com.cn

    yuanliu@tju.edu.cn

  • 中图分类号: TQ426,TQ529

Research of hydrogen action during pre-sulfidation of direct coal liquefaction catalyst

Funds: The project was supported by National Key Research and Development Program of China (2017YFB0602401) and General Program of National Natural Science Foundation of China (22178368)
  • 摘要: 在不同温度、不同氢气分压下预硫化制备了系列硫铁催化剂,并在5 MPa 1% H2S-H2气氛、360 ℃下研究了其催化萘加氢活性。借助XRD、MES、SEM-EDS、ICP和GC-MS等表征手段,研究了不同温度下氢气在预硫化过程中的作用。结果表明,预硫化过程中氢气的引入有利于硫的传递,从而促进了硫化。在不同温度下均有利于活性相Fe1−xS生成,但不同预硫化温度下氢气的作用有所不同。50 ℃预硫化时,氢气的引入可以有利于硫的传递,使得催化活性有所上升,但该温度下依然存在大量单质Fe和单质S;150 ℃预硫化时催化活性最好,单质Fe含量下降没有单质S生成,随着氢气分压的增大,萘加氢转化率由60.6%增加至69.1%;300 ℃预硫化时氢气将催化剂表面的硫还原至低价态,不利于硫的传递,在催化剂颗粒内部观察到晶态的Fe3O4,进而催化活性有不同程度的下降。
  • FIG. 1883.  FIG. 1883.

    FIG. 1883.  FIG. 1883.

    图  1  催化剂活性评价示意图

    Figure  1  Schematic diagram of catalyst activity evaluation

    图  2  催化剂前驱体的程序升温硫化(TPS)

    Figure  2  Temperature programmed sulfidation (TPS) of catalyst precursor

    图  3  催化剂前驱体的H2-TPR谱图

    Figure  3  H2-TPR of catalyst precursor

    图  4  不同温度和不同氢气分压预硫化的萘加氢

    Figure  4  Results of naphthalene hydrogenation at different hydrogen partial pressures of 50, 150 and 300 ℃ (5 MPa, 1% H2S-H2, 360 ℃, 1 h)

    图  5  Cat-50-p系列催化剂的XRD谱图

    Figure  5  XRD patterns of CAT-50-p series catalysts

    图  6  Cat-50-p经THF溶解后上清液的GC-MS谱图

    Figure  6  GC-MS results of supernatant of dissolved by THF

    图  7  硫化过程及硫化催化剂颗粒结构

    Figure  7  Pre-sulfuration process and particle structure of presulfidation catalyst

    图  8  Cat-150-p系列催化剂的XRD谱图

    Figure  8  XRD patterns of Cat-150-p series catalysts

    图  9  Cat-300-p系列催化剂的XRD谱图

    Figure  9  XRD patterns of Cat-300-p series catalysts

    图  10  Cat-300-95切割后SEM照片

    Figure  10  SEM images of CAT-300-95 after cutting

    表  1  Mössbauer谱的拟合参数

    Table  1  Parameters of Mössbauer spectrum

    NameSiteIS/(mm·s−1)QS/(mm·s−1)H(T)
    Hexagonal pyrrhotite10.740.0133.01
    20.720.0230.44
    30.710.0228.18
    40.740.0125.63
    Monoclinic pyrrhotite10.85(1)−0.035(4)33.4(1)
    20.86(2)0.084(10)31.4(2)
    30.81(1)−0.086(10)27.1(1)
    4a0.83(1)0.084(15)24.4(2)
    4b0.82(1)0.166(15)20.7(2)
    Greigiteoctahedral0.6632.7
    tetrahedral0.3831.9
    Troilite0.89−0.1432.8
    Pyrite0.43(1)0.66(1)
    Maghemitex0.47−0.0151.0
    y0.34−0.0348.1
    MagnetiteA0.420.0651.6
    B0.990.8951.0
    Highly dispersed Fe0.02−0.0325.0
    α-Fe0.090.0433.8
    下载: 导出CSV

    表  2  Cat-50-p的Mössbauer谱解析

    Table  2  Mössbauer spectrum results of Cat-50-p

    p/%Content/%
    FeS2Fe3S4Fe1−xSFeSFe2O3Fe3O4FeFe3+
    (spm)
    Fe2+
    (spm)
    00.03.715.17.640.022.18.72.01.0
    50.06.421.74.037.216.510.62.31.2
    200.08.425.51.628.015.416.73.50.9
    450.08.525.50.432.613.215.83.10.9
    900.017.831.63.217.64.320.03.91.8
    950.016.331.75.112.72.624.95.31.4
    下载: 导出CSV

    表  3  Cat-50-p的(S/Fe)atom和单质硫质量

    Table  3  (S/Fe) atom and elemental sulfur quality results for Cat-50-p

    p/%0520459095
    S/Fe0.870.880.890.961.141.16
    S/(${\rm{g}}\cdot {\rm{g}}_{{\rm{cat}}}^{-1} $)0.01550.01250.00940.00790.00680.0056
    下载: 导出CSV

    表  4  Cat-50-p的XPS拟合

    Table  4  XPS fitting results of Cat-50-p

    Content/%
    Fe(0)Fe(Ⅱ)−SFe(Ⅲ)−SFe(Ⅱ)−OFe(Ⅲ)−O${\rm{S}}_{2}^{{2-}} $S2−S/S8
    Cat-50-00.02.30.96.490.47.178.914.0
    Cat-50-200.07.97.57.776.916.780.52.8
    Cat-50-450.016.518.410.155.132.167.90.0
    Cat-50-950.022.732.615.229.533.966.10.0
    下载: 导出CSV

    表  5  Cat-150-p的Mössbauer谱解析

    Table  5  Mössbauer spectrum results of Cat-150-p

    p/%Content/%
    FeS2Fe3S4Fe1−xSFeSFe2O3Fe3O4Fe
    021.614.423.90.024.211.05.0
    518.916.022.73.421.912.64.5
    2016.516.525.83.225.37.45.3
    4514.822.428.60.316.57.69.8
    9015.219.042.62.72.16.312.2
    9515.620.643.82.52.84.310.4
    下载: 导出CSV

    表  6  Cat-150-p的(S/Fe)atom

    Table  6  (S/Fe) atom results for Cat-150-p

    p/%0520459095
    S/Fe0.920.940.961.031.191.23
    下载: 导出CSV

    表  7  Cat-150-p的XPS拟合结果

    Table  7  XPS fitting results of Cat-150-p

    Content/%
    Fe(0)Fe(Ⅱ)−SFe(Ⅲ)−SFe(Ⅱ)−OFe(Ⅲ)−O${\rm{S} }_{2}^{{2-} } $S2−S/S8
    Cat-150-00.025.25.322.147.438.660.21.3
    Cat-150-200.024.315.121.339.336.064.00.0
    Cat-150-450.024.711.718.645.031.668.40.0
    Cat-150-950.028.523.521.726.337.962.10.0
    下载: 导出CSV

    表  8  Cat-300-p的Mossbauer谱解析

    Table  8  Mössbauer spectrum results of Cat-300-p

    p/%Content/%
    FeS2Fe3S4Fe1−xSFeSFe2O3Fe3O4Fe
    020.99.426.20.028.212.92.4
    55.710.840.24.224.914.20.0
    202.24.755.54.116.614.12.8
    453.09.757.31.39.815.23.8
    901.76.963.45.88.810.52.9
    956.77.953.25.813.29.33.9
    下载: 导出CSV

    表  9  Cat-300-p的(S/Fe)atom结果

    Table  9  (S/Fe) atom results for Cat-300-p

    p/%0520459095
    S/Fe0.950.870.840.900.900.91
    下载: 导出CSV

    表  10  Cat-300-95的SEM-EDS的(O/S)wt

    Table  10  (O/S) wt results of SEM-EDS of Cat-300-95

    Site 1Site 2Site 3Site 4Site 5
    a0.590.650.790.700.61
    b0.680.600.711.440.66
    c0.740.770.940.920.88
    d0.220.343.520.470.69
    下载: 导出CSV

    表  11  Cat-300-p的XPS拟合

    Table  11  XPS fitting results of Cat-300-p

    Content/%
    Fe(0)Fe(Ⅱ)−SFe(Ⅲ)−SFe(Ⅱ)−OFe(Ⅲ)−O${\rm{S} }_{2}^{{2-} } $S2−S/S8
    Cat-300-00.023.713.113.349.945.354.70.0
    Cat-300-200.023.711.918.845.631.668.40.0
    Cat-300-450.026.024.022.227.920.679.40.0
    Cat-300-950.029.825.221.523.519.580.50.0
    下载: 导出CSV

    表  12  不同温度下分压为0和95时的Mössbauer谱解析

    Table  12  Mössbauer spectrum results of 0 and 95 in different temperature

    Content/%
    FeS2Fe3S4Fe1−xSFeSFe2O3Fe3O4FeFe3+
    (spm)
    Fe2+
    (spm)
    Cat-50-00.03.715.17.640.022.18.72.01.0
    Cat-50-950.016.331.75.112.72.624.95.31.4
    Cat-150-021.614.423.90.024.211.05.0
    Cat-150-9515.620.643.82.52.84.310.4
    Cat-300-020.99.426.20.028.212.92.4
    Cat-300-956.77.953.25.813.29.33.9
    下载: 导出CSV

    表  13  不同温度下分压为0和95时的(S/Fe)atom结果

    Table  13  (S/Fe) atom results for 0 and 95 in different temperature

    Cat-50-0Cat-50-95Cat-150-0Cat-150-95Cat-300-0Cat-300-95
    S/Fe0.871.160.821.230.950.91
    下载: 导出CSV

    表  14  不同温度下分压为0和95时的XPS拟合

    Table  14  XPS fitting results of 0 and 95 in different temperature

    Content/%
    Fe(0)Fe(Ⅱ)−SFe(Ⅲ)-SFe(Ⅱ)−OFe(Ⅲ)−O${\rm{S} }_{2}^{{2-} } $S2−S/S8
    Cat-50-00.02.30.96.490.47.178.914.0
    Cat-50-950.022.732.615.229.533.966.10.0
    Cat-150-00.025.25.322.147.438.660.21.3
    Cat-150-950.028.523.521.726.337.962.10.0
    Cat-300-00.023.713.113.349.945.354.70.0
    Cat-300-950.029.825.221.523.519.580.50.0
    下载: 导出CSV
  • [1] LIU Z, SHI S, LI Y. Coal liquefaction technologies—Development in China and challenges in chemical reaction engineering[J]. Chem Eng Sci,2010,65(1):12−17. doi: 10.1016/j.ces.2009.05.014
    [2] WILLIAMS R H, LARSON E D. A comparison of direct and indirect liquefaction technologies for making fluid fuels from coal[J]. Energy Sustain Dev,2003,7(4):103−129. doi: 10.1016/S0973-0826(08)60382-8
    [3] PETRAKIS L, GRANDY D W. Formation and behaviour of coal free radicals in pyrolysis and liquefaction conditions[J]. Nature,1981,289(5797):476−477. doi: 10.1038/289476a0
    [4] PETRAKIS L, GRANDY D W, JONES G L. Use of in-situ electron paramagnetic resonance to assess formation of free radicals and their role in the hydroliquefaction of coal[J]. Fuel,1983,62(9):1066−1069. doi: 10.1016/0016-2361(83)90142-4
    [5] POUTSMA M L. Free-radical thermolysis and hydrogenolysis of model hydrocarbons relevant to processing of coal[J]. Energy Fuels,1990,4(2):113−131. doi: 10.1021/ef00020a001
    [6] KEOGH R A, DAVIS B H. Comparison of liquefaction pathways of a bituminous and subbituminous coal[J]. Energy Fuels,1994,8(2):289−293. doi: 10.1021/ef00044a001
    [7] VASIREDDY S, MORREALE B, CUGINI A, SONG C, SPIVEY J J. Clean liquid fuels from direct coal liquefaction: chemistry, catalysis, technological status and challenges[J]. Energy Environ Sci,2011,4(2):311−345. doi: 10.1039/C0EE00097C
    [8] DADYBURJOR D B, FOUT T E, ZONDLO J W. Ferric-sulfide-based catalysts made using reverse micelles: Effect of preparation on performance in coal liquefaction[J]. Catal Today,2000,63(1):33−41. doi: 10.1016/S0920-5861(00)00443-0
    [9] STRUCK R T, ZIELKE C W. Hydrocracking of coal to light distillate with molten zinc chloride[J]. Fuel,1981,60(9):795−800. doi: 10.1016/0016-2361(81)90140-X
    [10] KANEKO T, TAZAWA K, KOYAMA T, SATOU K, SHIMASAKI K, KAGEYAMA Y. Transformation of iron catalyst to the active phase in coal liquefaction[J]. Energy Fuels,1998,12(5):897−904. doi: 10.1021/ef9702310
    [11] NAKAO Y, YOKOYAMA S, MAEKAWA Y, KAERIYAMA K. Coal liquefaction by colloidal iron sulphide catalyst[J]. Fuel,1984,63(5):721−722. doi: 10.1016/0016-2361(84)90176-5
    [12] SHAH N, ZHAO J, HUGGINS F E, HUFFMAN G P. In situ XAFS spectroscopic studies of direct coal liquefaction catalysts[J]. Energy Fuels,1996,10(2):417−420. doi: 10.1021/ef950157q
    [13] HU H, BAI J, ZHU H, CHEN G. Catalytic liquefaction of coal with highly dispersed Fe2S3 impregnated in-situ[J]. Energy Fuels,2001,15(4):830−834. doi: 10.1021/ef000227f
    [14] LIU Z, YANG J, ZONDLO J W, STILLER A H. In situ impregnated iron-based catalysts for direct coal liquefaction[J]. Fuel,1996,75(1):51−57. doi: 10.1016/0016-2361(95)00226-X
    [15] 任相坤, 房鼎业, 金嘉璐, 高晋生. 煤直接液化技术开发新进展[J]. 化工进展,2010,29(2):198−204.

    REN Xiang-kun, FANG Ding-ye, JIN Jia-lu, GAO Jin-sheng. New proceed achieved in the direct coal liquefaction[J]. Chem Ind Eng Prog,2010,29(2):198−204.
    [16] 王仲义, 闫作杰, 单敏, 陈平平, 童健. 器外预硫化加氢裂化催化剂开工技术应用总结[J]. 炼油技术与工程,2021,51(1):4.

    WANG Zhong-yi, YAN Zuo-jie, SHAN Min, CHEN Ping-ping, DONG Jian. Application summary of Start-up technology of ex-situ presulfiding Hydrocracking catalyst[J]. Pet Refin Eng,2021,51(1):4.
    [17] 张黎, 范文青, 肖文灿, 徐琳, 刘长坤. 加氢催化剂预硫化技术探讨[J]. 广东化工,2020,47(12):2.

    ZHANG Li, FAN Wen-qing, XIAO Wen-chan, XU Lin, LIU Chang-kun. Study on the technology of pre-sulfurization for hydrogented catalyst[J]. Guangdong Chem Ind,2020,47(12):2.
    [18] 孟祥彬, 高善彬, 胡胜, 于春梅, 孙发明, 刘李佳. 以单质硫为硫化介质的加氢催化剂间歇釜器外预硫化工艺[J]. 化工进展,2015,34(7):77−81.

    MENG Xiang-bin, GAO Shan-bin, HU Sheng, YU Chun-mei, SUN Fa-ming, LIU Li-jia. Presulfidation with sulphur for hydrogenation catalyst in a batch reactor[J]. Chem Ind Eng Prog,2015,34(7):77−81.
    [19] 高善彬, 董群, 迟克彬, 谭明伟, 刘彦峰, 孟祥彬. 以H2S为硫化介质的加氢催化剂间歇釜器外预硫化工艺[J]. 化工进展,2010,29(9):1654−1657+1665.

    GAO Shan-bin, DONG Qun, CHI Ke-bin, TAN Ming-wei, LIU Yan-feng, MENG Xiang-bin. Presulfidation with H2S for hydrogenation catalyst by batch reactor[J]. Chem Ind Eng Prog,2010,29(9):1654−1657+1665.
    [20] 姚军. 器内和器外预硫化技术[J]. 当代化工研究,2016,(4):2.

    YAO Jun. Technology for in-situ presufurzation and ex-situ presufiding[J]. Modern Chem Res,2016,(4):2.
    [21] NARKIEWICZ M R, MATHEWS J P. Improved low-volatile bituminous coal representation: Incorporating the molecular-weight distribution[J]. Energy Fuels,2008,22(5):3104−3111. doi: 10.1021/ef700779j
    [22] LI L, HOU Y, WU W, LIANG S, REN S. Behaviors of tetralin and 9, 10-dihydroanthracene as hydrogen donor solvents in the hydrogenolysis of coal-related model compounds[J]. Fuel Process Technol,2019,191:202−210. doi: 10.1016/j.fuproc.2019.04.005
    [23] NIU B, JIN L, LI Y, SHI Z, HU H. Isotope analysis for understanding the hydrogen transfer mechanism in direct liquefaction of Bulianta coal[J]. Fuel,2017,203:82−89. doi: 10.1016/j.fuel.2017.04.079
    [24] 陈晨, 李海杰, 白杨, 冯富祥, 田磊, 杨勇, 刘源, 郭强. 预硫化温度对煤直接液化催化剂组分转变及其催化性能的影响[J]. 燃料化学学报,2022,50(1):54−62. doi: 10.1016/S1872-5813(21)60118-4

    CHEN Chen, LI Hai-jie, BAI Yang, FENG Fu-xiang, TIAN Lei, YANG Yong, LIU yuan, GUO Qiang. Effect of sulfidation temperature on component transformation and catalytic performance of direct coal liquefaction catalyst[J]. J Fuel Chem Technol,2022,50(1):54−62. doi: 10.1016/S1872-5813(21)60118-4
  • 加载中
图(11) / 表(14)
计量
  • 文章访问数:  613
  • HTML全文浏览量:  79
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-16
  • 修回日期:  2022-03-11
  • 录用日期:  2022-03-17
  • 网络出版日期:  2022-03-29
  • 刊出日期:  2022-10-21

目录

    /

    返回文章
    返回