留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TiO2负载V-W复合双金属催化剂氯苯催化燃烧性能研究

邢德风 王胜 王建成 潘大海 宋学顶

邢德风, 王胜, 王建成, 潘大海, 宋学顶. TiO2负载V-W复合双金属催化剂氯苯催化燃烧性能研究[J]. 燃料化学学报(中英文), 2022, 50(9): 1221-1227. doi: 10.1016/S1872-5813(22)60010-0
引用本文: 邢德风, 王胜, 王建成, 潘大海, 宋学顶. TiO2负载V-W复合双金属催化剂氯苯催化燃烧性能研究[J]. 燃料化学学报(中英文), 2022, 50(9): 1221-1227. doi: 10.1016/S1872-5813(22)60010-0
XING De-feng, WANG Sheng, WANG Jian-cheng, PAN Da-hai, SONG Xue-ding. Study on catalytic combustion of chlorobenzene over TiO2-supported V-W composite bimetallic catalysts[J]. Journal of Fuel Chemistry and Technology, 2022, 50(9): 1221-1227. doi: 10.1016/S1872-5813(22)60010-0
Citation: XING De-feng, WANG Sheng, WANG Jian-cheng, PAN Da-hai, SONG Xue-ding. Study on catalytic combustion of chlorobenzene over TiO2-supported V-W composite bimetallic catalysts[J]. Journal of Fuel Chemistry and Technology, 2022, 50(9): 1221-1227. doi: 10.1016/S1872-5813(22)60010-0

TiO2负载V-W复合双金属催化剂氯苯催化燃烧性能研究

doi: 10.1016/S1872-5813(22)60010-0
基金项目: 国家自然科学基金重点项目(U20A20132)资助
详细信息
    通讯作者:

    E-mail: wangsheng@dicp.ac.cn

  • 中图分类号: X511

Study on catalytic combustion of chlorobenzene over TiO2-supported V-W composite bimetallic catalysts

Funds: The project was supported by National Natural Science Foundation of China (U20A20132)
More Information
  • 摘要: 本研究采用等体积浸渍法制备了一系列TiO2负载V-W双金属氧化物催化剂,考察了V/W比例对于氯苯催化燃烧活性和HCl选择性的影响。结果表明,适量W的掺杂(5V5W-Ti 和3V7W-Ti)提高了氯苯催化燃烧活性和HCl选择性。结合BET、XRD、XPS、H2-TPR、NH3-TPD和Py-FTIR等表征,说明其高的活性是由于其高活性组分分散度和丰富的催化剂表面吸附氧;适量W的掺杂显著增强了催化剂表面酸性,尤其是强酸和Brønsted酸,从而提高了产物中HCl的选择性。
  • FIG. 1886.  FIG. 1886.

    FIG. 1886.  FIG. 1886.

    图  1  xV(10−x)W-Ti催化剂的XRD谱图

    Figure  1  XRD patterns of xV(10−x )W-Ti catalysts ( x =1, 3, 5, 9 and 10)

    图  2  xV(10−x)W-Ti催化剂的H2-TPR谱图

    Figure  2  H2-TPR profiles of xV(10−x )W-Ti catalysts ( x =1, 3, 5, 9 and 10)

    图  3  xV(10−x)W-Ti催化剂的NH3-TPD谱图

    Figure  3  NH3-TPD profiles of xV(10−x)W-Ti catalysts ( x =1, 3, 5, 9 and 10)

    图  4  10V-Ti、5V5W-Ti和1V9W-Ti催化剂的Py-FTIR谱图

    Figure  4  Py-FTIR profiles of 10V-Ti, 5V5W-Ti and 1V9W-Ti catalysts

    图  5  10V-Ti、5V5W-Ti和1V9W-Ti催化剂的(a) Ti 2p, (b) V 2p, (c) W 4f和(d) O 1s轨道的XPS谱图

    Figure  5  XPS spectra of (a) Ti 2 p , (b) V 2 p, (c) W 4 f and (d) O 1 s for 10V-Ti, 5V5W-Ti and 1V9W-Ti catalysts

    图  6  xV(10−x)W-Ti催化剂对(a)CB转化率和(b)HCl生成率的影响

    Figure  6  Effect of xV(10−x)W-Ti catalysts on (a) CB conversion and (b) HCl production ( x =1, 3, 5, 9 and 10; GHSV=20000 h−1, CB=100 μg/mL)

    图  7  (a)10V-Ti催化剂的氯苯催化氧化活性曲线;(b)分别在300和325 ℃下对10V-Ti催化剂进行长期稳定性实验

    Figure  7  (a) Activity curve of chlorobenzene catalytic oxidation of 10V-Ti catalyst; (b) long-term stability of 10V-Ti catalyst at 300 and 325 ℃, respectively (GHSV=20000 h−1, CB=1000 μg/mL)

    表  1  xV(10−x)W-Ti催化剂的比表面积和孔容

    Table  1  Specific surface area and pore volume of xV(10−x)W-Ti catalysts ( x =1, 3, 5, 9 and 10)

    SampleSBET/(m2·g−1Pore volume/(mL·g−1
    α-TiO289.730.26
    10V-Ti33.040.18
    9V1W-Ti54.710.16
    5V5W-Ti50.350.20
    3V7W-Ti51.960.22
    1V9W-Ti69.810.23
    下载: 导出CSV

    表  2  10V-Ti、5V5W-Ti和1V9W-Ti催化剂的酸量

    Table  2  Acid amount of 10V-Ti, 5V5W-Ti and 1V9W-Ti catalysts

    SampleB acid/ (μmol·g−1)L acid/ (μmol·g−1)Total acidity/ (μmol·g−1)
    1V9W-Ti51.0328.2979.32
    5V5W-Ti50.8361.21112.03
    10V-Ti14.2659.3773.63
    下载: 导出CSV

    表  3  10V-Ti、5V5W-Ti和1V9W-Ti催化剂表面元素价态及不同氧物种含量

    Table  3  Surface elemental valence states and oxygen species content of 10V-Ti, 5V5W-Ti and 1V9W-Ti catalysts

    SampleV5+/(V5++V4+)Oβ/(Oα+Oβ+Oγ)Oγ/(Oα+Oβ+Oγ)
    1V9W-Ti0.650.140.06
    5V5W-Ti0.730.160.06
    10V-Ti0.640.120.05
    下载: 导出CSV
  • [1] DELAIGLE R, DEBECKER D P, BERTINCHAMPS F, GAIGNEAUX E M. Revisiting the behaviour of vanadia-based catalysts in the abatement of (chloro)-aromatic pollutants: Towards an integrated understanding[J]. Top Catal,2009,52:501−516. doi: 10.1007/s11244-009-9181-9
    [2] 关丽萍. 工业源VOCs排放特征及控制思路分析[J]. 现代化工,2018,38(10):20−22.

    GUAN Li-ping. Emission characteristics and control ideas of VOCs from industrial source[J]. Mod Chem Ind,2018,38(10):20−22.
    [3] BRINK R, KRZAN M, FEIJEN-JEURISSEN M, LOUW R, MULDER P. The role of the support and dispersion in the catalytic combustion of chlorobenzene on noble metal based catalysts[J]. Appl Catal B: Environ,2000,24(3):255−264.
    [4] ARANZABAL A. The reaction pathway and kinetic mechanism of the catalytic oxidation of gaseous lean TCE on Pd/alumina catalysts[J]. J Catal,2003,214(1):130−135. doi: 10.1016/S0021-9517(02)00091-X
    [5] WANG J, WANG X, LIU X, ZHU T, GUO Y, QI H. Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts: The effects of chlorine substituents[J]. Catal Today,2015,241:92−99. doi: 10.1016/j.cattod.2014.04.002
    [6] GANNOUN C, DELAIGLE R, ELOY P, DEBECKER D P, GHORBEL A, GAIGNEAUX, E M. Sol-gel derived V2O5-TiO2 mesoporous materials as catalysts for the total oxidation of chlorobenzene[J]. Catal Commun,2011,15(1):1−5. doi: 10.1016/j.catcom.2011.08.001
    [7] LU S, ZHAO R, LEE C W, GULLETT B K, ZHAO Y X. Decomposition of trace chlorobenzene over V2O5-WO3/TiO2-based catalysts in simulated flue gas[J]. Int J Environ Pollut,2017,61(3/4):314. doi: 10.1504/IJEP.2017.087774
    [8] 黄海凤, 宁星杰, 蒋孝佳, 顾蕾, 卢晗锋. V-M/TiO2(M = Cu、Cr、Ce、Mn、Mo)催化燃烧含氯有机废气[J]. 中国环境科学,2014,34(9):2179−2185.

    HUANG Hai-feng, NING Xing-jie, JIANG Xiao-jia, GU Lei, LU Han-feng. Catalytic combustion of chlorinated volatile organic compounds over V-M/TiO2(M = Cu, Cr, Ce, Mn, Mo) catalysts[J]. China Environ Sci,2014,34(9):2179−2185.
    [9] ALBONETTI S, BLASIOLI S, BONELLI R, MENGOU J E, SCIRÈ S, TRIFIRÒ F. The role of acidity in the decomposition of 1, 2-dichlorobenzene over TiO2-based V2O5/WO3 catalysts[J]. Appl Catal A: Gen,2008,341(1-2):18−25. doi: 10.1016/j.apcata.2007.12.033
    [10] BERTINCHAMPS F, ATTIANESE A, MESTDAGH M M, GAIGNEAUX E M. Catalysts for chlorinated VOCs abatement: Multiple effects of water on the activity of VOx based catalysts for the combustion of chlorobenzene[J]. Catal Today,2006,112(1/4):165−168. doi: 10.1016/j.cattod.2005.11.043
    [11] SINQUIN G, PETIT C, LIBS S, HINDERMANN J P, KIENNEMANN A. Catalytic destruction of chlorinated C2 compounds on a LaMnO3+δ perovskite catalyst[J]. Appl Catal B: Environ,2001,32(1):37−47.
    [12] TARALUNGA M, MIJOIN J, MAGNOUX P. Catalytic destruction of chlorinated POPs—Catalytic oxidation of chlorobenzene over PtHFAU catalysts[J]. Appl Catal B: Environ,2005,60(3/4):163−171. doi: 10.1016/j.apcatb.2005.02.024
    [13] CEN W, LIU Y, WU Z, LIU J, WANG H, WENG X. Cl species transformation on CeO2(111) surface and its effects on CVOCs catalytic abatement: A first-principles investigation[J]. J Phys Chem C,2014,118(13):6758−6766. doi: 10.1021/jp411532b
    [14] CHIN S, PARK E, KIM M, BAE G N, JURNG J. Effect of the support material (TiO2) synthesis conditions in chemical vapor condensation on the catalytic oxidation for 1, 2-dichlorobenzene over V2O5/TiO2[J]. Powder Technol,2012,217(2):388−393.
    [15] WU M, UNG K C, DAI Q, WANG X. Catalytic combustion of chlorinated VOCs over VOx/TiO2 catalysts[J]. Catal Commun,2012,18:72−75. doi: 10.1016/j.catcom.2011.11.028
    [16] CAO S, WANG H, YU F, SHI M, CHEN S, WENG X, LIU Y, WU Z. Catalyst performance and mechanism of catalytic combustion of dichloromethane (CH2Cl2) over Ce doped TiO2[J]. J Colloid Interf Sci,2016,463:233−241. doi: 10.1016/j.jcis.2015.10.061
    [17] YAZAWA Y, YOSHIDA H, TAKAGI N, KOMAI S I, SATSUMA A, HATTORI T. Acid strength of support materials as a factor controlling oxidation state of palladium catalyst for propane combustion[J]. J Catal,1999,187:15−23. doi: 10.1006/jcat.1999.2583
    [18] YAZAWA Y, YOSHIDA H, TAKAGI N, KOMAI S I, SATSUMA A, HATTORI T. Oxidation state of palladium as a factor controlling catalytic activity of Pd/SiO2-Al2O3 in propane combustion[J]. Appl Catal B: Environ,1998,19:261−266. doi: 10.1016/S0926-3373(98)00080-0
    [19] ZHOU W, ZHANG Q, ZHOU Y, WEI Q, DU L, DING S, JIANG S, ZHANG Y. Effects of Ga- and P-modified USY-based NiMoS catalysts on ultra-deep hydrodesulfurization for FCC diesels[J]. Catal Today,2018,305:171−181. doi: 10.1016/j.cattod.2017.07.006
    [20] JIANG Y, GAO X, ZHANG Y, WU W, SONG H, LUO Z, CEN K. Effects of PbCl2 on selective catalytic reduction of NO with NH3 over vanadia-based catalysts[J]. J Hazard Mater,2014,274:270−278. doi: 10.1016/j.jhazmat.2014.04.026
    [21] LAI J K, WACHS I E. A perspective on the selective catalytic reduction (SCR) of NO with NH3 by supported V2O5-WO3/TiO2 catalysts[J]. ACS Catal,2018,8:6537−6551. doi: 10.1021/acscatal.8b01357
    [22] ODENBRAND, INGEMAR, C U. CaSO4 deactivated V2O5-WO3/TiO2 SCR catalyst for a diesel power plant. Characterization and simulation of the kinetics of the SCR reactions[J]. Appl Catal B: Environ,2018,234:365−377. doi: 10.1016/j.apcatb.2018.03.063
    [23] LI P, ZHAO X, JIA C J, SUN H, SUN L, CHENG X, LIU L, FAN W. ZnWO4/BiOI heterostructures with highly efficient visible light photocatalytic activity: The case of interface lattice and energy level match[J]. J Mater Chem A,2013,1(10):3421−3429. doi: 10.1039/c3ta00442b
    [24] XU H, CAO Y, XIE J, HU J, LI Y, JIA D. A construction of Ag-modified raspberry-like AgCl/Ag2WO4 with excellent visible-light photocatalytic property and stability[J]. Mater Res Bull,2018,102:342−352. doi: 10.1016/j.materresbull.2018.02.047
    [25] CAMPOSECO R, CASTILLO S, MUGICA V, MEJÍA-CENTENO I, MARÍN J. Role of V2O5-WO3/H2Ti3O7-nanotube-model catalysts in the enhancement of the catalytic activity for the SCR-NH3 process[J]. Chem Eng J,2014,242:313−320. doi: 10.1016/j.cej.2014.01.002
    [26] XU X, LI L, HUANG J, JIN H, FANG X, LIU W, ZHANG N, WANG H, WANG X. Engineering Ni3+ cations in NiO lattice at the atomic level by Li+ doping: The Roles of Ni3+ and oxygen species for CO oxidation[J]. ACS Catal,2018,8:8033−8045. doi: 10.1021/acscatal.8b01692
    [27] LIMA T M, DE MACEDO V, SILVA D S A, CASTELBLANCO W N, PEREIRA C A, RONCOLATTO R E, GAWANDE M B, ZBOŘIL R, VARMA R S, URQUIETA-GONZÁLEZ E A. Molybdenum-promoted cobalt supported on SBA-15: Steam and sulfur dioxide stable catalyst for CO oxidation[J]. Appl Catal B: Environ,2020,277:119248. doi: 10.1016/j.apcatb.2020.119248
    [28] ZHANG C, WANG C, ZHAN W, GUO Y, GUO Y, LU G, BAYLET A, GIROIR-FENDLER A. Catalytic oxidation of vinyl chloride emission over LaMnO3 and LaB0.2Mn0.8O3 (B = Co, Ni, Fe) catalysts[J]. Appl Catal B: Environ,2013,129:509−516. doi: 10.1016/j.apcatb.2012.09.056
    [29] YANG Y, HUANG J, WANG S, DENG S, WANG B, YU G. Catalytic removal of gaseous unintentional POPs on manganese oxide octahedral molecular sieves[J]. Appl Catal B: Environ,2013,142−143:568−578. doi: 10.1016/j.apcatb.2013.05.048
    [30] YANG Y, ZHANG S, WANG S, ZHANG K, WANG H, HUANG J, DENG S, WANG B, WANG Y, YU G. Ball milling synthesized MnOx as highly active catalyst for gaseous POPs removal: Significance of mechanochemically induced oxygen vacancies[J]. Environ Sci Technol,2015,49:4473−4480. doi: 10.1021/es505232f
    [31] HUANG X, PENG Y, LIU X, LI K, DENG Y, LI J. The promotional effect of MoO3 doped V2O5/TiO2 for chlorobenzene oxidation[J]. Catal Commun,2015,69:161−164. doi: 10.1016/j.catcom.2015.04.020
    [32] CHOI J S, YOUN H K, KWAK B H, WANG Q, YANG K S, CHUNG J S. Preparation and characterization of TiO2-masked Fe3O4 nano particles for enhancing catalytic combustion of 1, 2-dichlorobenzene and incineration of polymer wastes[J]. Appl Catal B: Environ,2009,91:210−216. doi: 10.1016/j.apcatb.2009.05.026
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  349
  • HTML全文浏览量:  213
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-26
  • 修回日期:  2022-03-24
  • 录用日期:  2022-03-28
  • 网络出版日期:  2022-04-06
  • 刊出日期:  2022-10-21

目录

    /

    返回文章
    返回