留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe(III)Ox/ZnO催化剂的制备及其光催化CH4氧化性能

郝英东 刘双 孙楠楠 魏伟

郝英东, 刘双, 孙楠楠, 魏伟. Fe(III)Ox/ZnO催化剂的制备及其光催化CH4氧化性能[J]. 燃料化学学报(中英文), 2022, 50(9): 1160-1166. doi: 10.1016/S1872-5813(22)60016-1
引用本文: 郝英东, 刘双, 孙楠楠, 魏伟. Fe(III)Ox/ZnO催化剂的制备及其光催化CH4氧化性能[J]. 燃料化学学报(中英文), 2022, 50(9): 1160-1166. doi: 10.1016/S1872-5813(22)60016-1
HAO Ying-dong, LIU Shuang, SUN Nan-nan, WEI Wei. Photocatalytic oxidation of CH4 to oxygenates on Fe(III)Ox/ZnO[J]. Journal of Fuel Chemistry and Technology, 2022, 50(9): 1160-1166. doi: 10.1016/S1872-5813(22)60016-1
Citation: HAO Ying-dong, LIU Shuang, SUN Nan-nan, WEI Wei. Photocatalytic oxidation of CH4 to oxygenates on Fe(III)Ox/ZnO[J]. Journal of Fuel Chemistry and Technology, 2022, 50(9): 1160-1166. doi: 10.1016/S1872-5813(22)60016-1

Fe(III)Ox/ZnO催化剂的制备及其光催化CH4氧化性能

doi: 10.1016/S1872-5813(22)60016-1
基金项目: 上海市科学技术委员会(19YF1452800, 19ZR1463500)资助
详细信息
    通讯作者:

    E-mail:sunnn@sari.ac.cn

    weiwei@sari.ac.cn

  • 中图分类号: O643.36

Photocatalytic oxidation of CH4 to oxygenates on Fe(III)Ox/ZnO

Funds: The project was supported by Shanghai Science and Technology Committee (19YF1452800, 19ZR1463500)
  • 摘要: 基于浸渍法制备了不同Fe含量的nFe(III)Ox/ZnO光催化剂,并对所得样品进行了XRD、N2吸附-脱附、TEM、XPS、UV-vis以及PL表征。结果发现,通过改变浸渍液中Fe物种的浓度,能够实现最终样品中Fe含量的调控,在实验涉及的范围内,Fe的负载没有造成ZnO载体在晶相、形貌和孔道结构等方面的显著变化,但却改变了催化剂表面的电子状态,从而引入了更多的O空位。此外,Fe的修饰增加了光生载流子的分离效率,显著提升了样品的CH4光催化性能。通过对溶剂体积,H2O2浓度以及反应时间等参数的优化,0.1Fe(III)Ox/ZnO样品表现出了最佳的性能,其液相氧化产物(CH3OH、CH3OOH、HCHO)的产率和选择性分别达到了5443 μmol/(gcat·h)和99%。基于自由基捕获实验,发现H2O2在光生载流子的作用下形成的·${{\rm{O}}_2^-} $自由基是CH4活化为·CH3的关键。
  • FIG. 1879.  FIG. 1879.

    FIG. 1879.  FIG. 1879.

    图  1  ZnO和nFe(III)Ox/ZnO样品的(a)XRD谱图,(b)N2吸附-脱附等温曲线

    Figure  1  (a) XRD patterns and (b) nitrogen adsorption-desorption isotherms of ZnO and nFe(III )Ox /ZnO

    图  2  (a),(b),(c)0.1Fe(III)Ox/ZnO样品的TEM照片,(d)0.1Fe(III)Ox/ZnO样品的不同元素分布

    Figure  2  (a), (b) and (c) TEM images of 0.1Fe(III)Ox/ZnO, (d) EDS mapping images for various elements

    图  3  ZnO和nFe(III)Ox/ZnO的XPS谱图(a)Zn 2p,(b)Fe 2p,(c)O 1s

    Figure  3  XPS profiles of ZnO and nFe(III)Ox/ZnO (a) Zn 2p, (b) Fe 2p, (c) O 1s

    图  4  ZnO和0.1Fe(III)Ox/ZnO的(a)UV-vis吸收谱图,(b)PL谱图

    Figure  4  (a) Ultraviolet-visible diffusive reflectance spectra, (b) PL spectra of ZnO and 0.1Fe(III)Ox/ZnO

    图  5  ZnO和nFe(III)Ox/ZnO催化剂上的光催化CH4氧化液相产物产率及选择性(a)不同Fe负载量,(b)不同H2O体积,(b)不同H2O2浓度,(d)不同反应时间

    Figure  5  Product yields and selectivity by ZnO and nFe(III)Ox/ZnO with (a) different amounts of Fe, (b) varying water amount, (c) varying H2O2 amount, (d) different reaction time

    图  6  (a)加入不同自由基捕获剂的光催化CH4氧化液相产物产率及选择性,(b)反应路径

    Figure  6  (a) Product yields and selectivity over ZnO and nFe(III)Ox/ZnO with different quenchers, (b) Sketch of the proposed reaction mechanism for photocatalytic CH4 oxidation to CH3OOH, CH3OH, and HCHO on 0.1Fe(III)Ox/ZnO

    表  1  ZnO和nFe(III)Ox/ZnO催化剂的孔结构特性

    Table  1  Pore structure characteristics of ZnO and nFe(III)Ox/ZnO catalysts

    SampleFe loading w/%Surface area/(m2·g−1)
    ZnO16
    0.1Fe(III)Ox/ZnO0.0819
    0.5Fe(III)Ox/ZnO0.5015
    1.0Fe(III)Ox/ZnO0.9916
    2.0Fe(III)Ox/ZnO1.5512
    下载: 导出CSV

    表  2  不同催化剂的CH4光催化活性对比

    Table  2  Comparison of catalytic activity in oxidation of methane to liquid oxygenates

    EntryCatalystConditionProductReference
    10.1Fe(III)Ox/ZnO5 mg catalyst, 90 mL H2O, 5 mmol/L H2O2,
    3 MPa CH4, 3 h, RT,
    300 W Xe lamp, 320−780 nm
    liquid products: CH3OOH + CH3OH + HCHO,
    total productivity: 5.44 mmol/(gcat·h)
    this work
    2q-BiVO410 mg catalyst, 10 mL H2O, 1 MPa O2,
    1 MPa CH4, RT, 7 h,
    Hg lamp, 300−400 nm
    liquid products: CH3OH + C2H5OH + HCHO,
    total productivity: 2.16 mmol/(gcat·h)
    [13]
    3Au-CoOx/TiO210 mg catalyst, 100 mL H2O, 0.1 MPa O2,
    2 MPa CH4, 2 h, 25 ℃,
    Xe lamp, 300−500 nm
    liquid product: CH3OOH + CH3OH + HCHO,
    total productivity: 2.5 mmol/(gcat·h)
    [12]
    4ZnO nanosheets4 mg catalyst, 10 mL H2O, 5 mmol/L H2O2,
    0.1 MPa CH4, 1h, 50 ℃, 300 W Xe lamp
    liquid products: CH3OOH +
    CH3OH + HOCH2OOH + HCOOH,
    total productivity: 2.21 mmol/(gcat·h)
    [23]
    下载: 导出CSV
  • [1] BP. BP Statistical Review of World Energy 2021, 2021.
    [2] 刘华, 刘晓艳, 王爱琴, 张涛. 单原子催化甲烷直接转化的研究进展[J]. 中国科学:化学,2021,51(2):175−187. doi: 10.1360/SSC-2020-0191

    (LIU Hua, LIU Xiao-yan, WANG Ai-qin, ZHANG Tao. Direct conversion of methane on single-atoms catalysts[J]. Sci Sin (Chim),2021,51(2):175−187. doi: 10.1360/SSC-2020-0191
    [3] TANG Y, LI Y, TAO F. Activation and catalytic transformation of methane under mild conditions[J]. Chem Soc Rev,2022,51(1):376−423. doi: 10.1039/D1CS00783A
    [4] SONG H, MENG X G, WANG Z J, LIU H M, YE J H. Solar-energy-mediated methane conversion[J]. Joule,2019,3(7):1606−1636. doi: 10.1016/j.joule.2019.06.023
    [5] SCHWACH P, PAN X L, BAO X H. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: Challenges and prospects[J]. Chem Rev,2017,117(13):8497−8520. doi: 10.1021/acs.chemrev.6b00715
    [6] GANGADHARAN P, KANCHI K C, LOU H H. Evaluation of the economic and environmental impact of combining dry reforming with steam reforming of methane[J]. Chem Eng Res Des,2012,90(11):1956−1968. doi: 10.1016/j.cherd.2012.04.008
    [7] CABALLERO A, PEREZ P J. Methane as raw material in synthetic chemistry: The final frontier[J]. Chem Soc Rev,2013,42(23):8809−8820. doi: 10.1039/c3cs60120j
    [8] ZHOU L A, MARTIREZ J M P, FINZEL J, ZHANG C, SWEARER D F, TIAN S, ROBATJAZI H, LOU M H, DONG L L, HENDERSON L, CHRISTOPHER P, CARTER E A, NORDLANDER P, HALAS N J. Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts[J]. Nat Energy,2020,5(1):61−70. doi: 10.1038/s41560-019-0517-9
    [9] LI Z H, YI Z G, LI Z S, ZOU Z G. Photocatalytic and thermocatalytic conversion of methane[J]. Sol Rrl,2021,5(6):2000596. doi: 10.1002/solr.202000596
    [10] TANG P, ZHU Q, WU Z, MA D. Methane activation: The past and future[J]. Energy Environ Sci,2014,7(8):2580−2591. doi: 10.1039/C4EE00604F
    [11] VILLA K, MURCIA-LOPEZ S, MORANTE J R, ANDREU T. An insight on the role of La in mesoporous WO3 for the photocatalytic conversion of methane into methanol[J]. Appl Catal B: Environ,2016,187:30−36. doi: 10.1016/j.apcatb.2016.01.032
    [12] SONG H, MENG X G, WANG S Y, ZHOU W, SONG S, KAKO T, YE J H. Selective photo-oxidation of methane to methanol with oxygen over dual-cocatalyst-modified titanium dioxide[J]. ACS Catal,2020,10(23):14318−14326. doi: 10.1021/acscatal.0c04329
    [13] FAN Y Y, ZHOU W C, QIU X Y, LI H D, JIANG Y H, SUN Z H, HAN D X, NIU L, TANG Z Y. Selective photocatalytic oxidation of methane by quantum-sized bismuth vanadate[J]. Nat Sustain,2021,4:509−515. doi: 10.1038/s41893-021-00682-x
    [14] LI Z, PAN X, YI Z. Photocatalytic oxidation of methane over CuO-decorated ZnO nanocatalysts[J]. J Mater Chem,2019,7(2):469−475. doi: 10.1039/C8TA09592B
    [15] CHEN X B, SHEN S H, GUO L J, MAO S S. Semiconductor-based photocatalytic hydrogen generation[J]. Chem Rev,2010,110(11):6503−6570. doi: 10.1021/cr1001645
    [16] CHEN X X, LI Y P, PAN X Y, CORTIE D, HUANG X T, YI Z G. Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts[J]. Nat Commun,2016,7:12273. doi: 10.1038/ncomms12273
    [17] SONG H, MENG X G, WANG S Y, ZHOU W, WANG X S, KAKO T, YE J H. Direct and selective photocatalytic oxidation of CH4 to oxygenates with O2 on cocatalysts/ZnO at room temperature in water[J]. J Am Chem Soc,2019,141(51):20507−20515. doi: 10.1021/jacs.9b11440
    [18] CHEN J, STEPANOVIC S, DRAKSHARAPU A, GRUDEN M, BROWNE W R. A Non-heme iron photocatalyst for light-driven aerobic oxidation of methanol[J]. Angew Chem Int Ed,2018,57(12):3207−3211. doi: 10.1002/anie.201712678
    [19] XIE J J, JIN R X, LI A, BI Y P, RUAN Q S, DENG Y C, ZHANG Y J, YAO S Y, SANKAR G, MA D, TANG J W. Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species[J]. Nat Catal,2018,1(11):889−896. doi: 10.1038/s41929-018-0170-x
    [20] CHENG M, YANG L, LI H Y, BAI W, XIAO C, XIE, Y. Constructing charge transfer channel between dopants and oxygen vacancies for enhanced visible-light-driven water oxidation[J]. Nano Res,2021,14(10):3365−3371. doi: 10.1007/s12274-021-3605-7
    [21] ZHOU W C, QIU X Y, JIANG Y H, FAN Y Y, WEI S L, HAN D X, NIU L, TANG Z Y. Highly selective aerobic oxidation of methane to methanol over gold decorated zinc oxide via photocatalysis[J]. J Mater Chem,2020,8(26):13277−13284. doi: 10.1039/D0TA02793F
    [22] AGARWAL N, FREAKLEY S J, MCVICKER R U, ALTHAHBAN S M, DIMITRATOS, N, HE Q, MORGAN D J, JENKINS R L, WILLOCK D J, TAYLOR S H, KIELY C J, HUTCHINGS G J. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions[J]. Science,2017,358(6360):223−226. doi: 10.1126/science.aan6515
    [23] ZHU S, LI X D, PAN Z K, JIAO X C, ZHENG K, LI L, SHAO W W, ZU X L, HU J, ZHU J F, SUN Y F, XIE Y. Efficient photooxidation of methane to liquid oxygenates over ZnO nanosheets at atmospheric pressure and near room temperature[J]. Nano Lett,2021,21(9):4122−4128. doi: 10.1021/acs.nanolett.1c01204
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  1822
  • HTML全文浏览量:  72
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-09
  • 修回日期:  2022-03-15
  • 录用日期:  2022-04-12
  • 网络出版日期:  2022-04-28
  • 刊出日期:  2022-10-21

目录

    /

    返回文章
    返回