Photocatalytic oxidation of CH4 to oxygenates on Fe(III)Ox/ZnO
-
摘要: 基于浸渍法制备了不同Fe含量的nFe(III)Ox/ZnO光催化剂,并对所得样品进行了XRD、N2吸附-脱附、TEM、XPS、UV-vis以及PL表征。结果发现,通过改变浸渍液中Fe物种的浓度,能够实现最终样品中Fe含量的调控,在实验涉及的范围内,Fe的负载没有造成ZnO载体在晶相、形貌和孔道结构等方面的显著变化,但却改变了催化剂表面的电子状态,从而引入了更多的O空位。此外,Fe的修饰增加了光生载流子的分离效率,显著提升了样品的CH4光催化性能。通过对溶剂体积,H2O2浓度以及反应时间等参数的优化,0.1Fe(III)Ox/ZnO样品表现出了最佳的性能,其液相氧化产物(CH3OH、CH3OOH、HCHO)的产率和选择性分别达到了5443 μmol/(gcat·h)和99%。基于自由基捕获实验,发现H2O2在光生载流子的作用下形成的·
${{\rm{O}}_2^-} $ 自由基是CH4活化为·CH3的关键。Abstract: A series of nFe(III)Ox/ZnO photocatalysts with different Fe contents was prepared by impregnation method, and the samples were characterized by XRD, N2 physisorption, TEM, XPS, UV-vis and PL. It was found that by changing the concentration of Fe species in the impregnation solution, the Fe content in the final sample could be properly adjusted. Within the scope of this work, the loading of Fe does not cause significant changes in the phase, morphology, and porous structure of the ZnO support. However, the electronic state of the catalyst surface was altered considerably, with more O-vacancies were introduced. Fe species enhanced the separation of photo-induced electron-hole pairs, which was responsible to improve the performance of photocatalytic CH4 conversion. Through the optimization of solvent volume, H2O2 concentration and reaction time, the 0.1Fe(III)Ox/ZnO sample showed the best performance over which the yield and selectivity of liquid oxidation products (CH3OH, CH3OOH, HCHO) was 5443 μmol/(gcat·h) and 99%, respectively. Based on radical quenching experiments, it was found that the ·${{\rm{O}}_2^-} $ radicals derived from H2O2 played a major role for the activation of CH4 to ·CH3.-
Key words:
- methane /
- photocatalysis /
- ZnO /
- oxidation /
- activation
-
表 1 ZnO和nFe(III)Ox/ZnO催化剂的孔结构特性
Table 1 Pore structure characteristics of ZnO and nFe(III)Ox/ZnO catalysts
Sample Fe loading w/% Surface area/(m2·g−1) ZnO − 16 0.1Fe(III)Ox/ZnO 0.08 19 0.5Fe(III)Ox/ZnO 0.50 15 1.0Fe(III)Ox/ZnO 0.99 16 2.0Fe(III)Ox/ZnO 1.55 12 表 2 不同催化剂的CH4光催化活性对比
Table 2 Comparison of catalytic activity in oxidation of methane to liquid oxygenates
Entry Catalyst Condition Product Reference 1 0.1Fe(III)Ox/ZnO 5 mg catalyst, 90 mL H2O, 5 mmol/L H2O2,
3 MPa CH4, 3 h, RT,
300 W Xe lamp, 320−780 nmliquid products: CH3OOH + CH3OH + HCHO,
total productivity: 5.44 mmol/(gcat·h)this work 2 q-BiVO4 10 mg catalyst, 10 mL H2O, 1 MPa O2,
1 MPa CH4, RT, 7 h,
Hg lamp, 300−400 nmliquid products: CH3OH + C2H5OH + HCHO,
total productivity: 2.16 mmol/(gcat·h)[13] 3 Au-CoOx/TiO2 10 mg catalyst, 100 mL H2O, 0.1 MPa O2,
2 MPa CH4, 2 h, 25 ℃,
Xe lamp, 300−500 nmliquid product: CH3OOH + CH3OH + HCHO,
total productivity: 2.5 mmol/(gcat·h)[12] 4 ZnO nanosheets 4 mg catalyst, 10 mL H2O, 5 mmol/L H2O2,
0.1 MPa CH4, 1h, 50 ℃, 300 W Xe lampliquid products: CH3OOH +
CH3OH + HOCH2OOH + HCOOH,
total productivity: 2.21 mmol/(gcat·h)[23] -
[1] BP. BP Statistical Review of World Energy 2021, 2021. [2] 刘华, 刘晓艳, 王爱琴, 张涛. 单原子催化甲烷直接转化的研究进展[J]. 中国科学:化学,2021,51(2):175−187. doi: 10.1360/SSC-2020-0191(LIU Hua, LIU Xiao-yan, WANG Ai-qin, ZHANG Tao. Direct conversion of methane on single-atoms catalysts[J]. Sci Sin (Chim),2021,51(2):175−187. doi: 10.1360/SSC-2020-0191 [3] TANG Y, LI Y, TAO F. Activation and catalytic transformation of methane under mild conditions[J]. Chem Soc Rev,2022,51(1):376−423. doi: 10.1039/D1CS00783A [4] SONG H, MENG X G, WANG Z J, LIU H M, YE J H. Solar-energy-mediated methane conversion[J]. Joule,2019,3(7):1606−1636. doi: 10.1016/j.joule.2019.06.023 [5] SCHWACH P, PAN X L, BAO X H. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: Challenges and prospects[J]. Chem Rev,2017,117(13):8497−8520. doi: 10.1021/acs.chemrev.6b00715 [6] GANGADHARAN P, KANCHI K C, LOU H H. Evaluation of the economic and environmental impact of combining dry reforming with steam reforming of methane[J]. Chem Eng Res Des,2012,90(11):1956−1968. doi: 10.1016/j.cherd.2012.04.008 [7] CABALLERO A, PEREZ P J. Methane as raw material in synthetic chemistry: The final frontier[J]. Chem Soc Rev,2013,42(23):8809−8820. doi: 10.1039/c3cs60120j [8] ZHOU L A, MARTIREZ J M P, FINZEL J, ZHANG C, SWEARER D F, TIAN S, ROBATJAZI H, LOU M H, DONG L L, HENDERSON L, CHRISTOPHER P, CARTER E A, NORDLANDER P, HALAS N J. Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts[J]. Nat Energy,2020,5(1):61−70. doi: 10.1038/s41560-019-0517-9 [9] LI Z H, YI Z G, LI Z S, ZOU Z G. Photocatalytic and thermocatalytic conversion of methane[J]. Sol Rrl,2021,5(6):2000596. doi: 10.1002/solr.202000596 [10] TANG P, ZHU Q, WU Z, MA D. Methane activation: The past and future[J]. Energy Environ Sci,2014,7(8):2580−2591. doi: 10.1039/C4EE00604F [11] VILLA K, MURCIA-LOPEZ S, MORANTE J R, ANDREU T. An insight on the role of La in mesoporous WO3 for the photocatalytic conversion of methane into methanol[J]. Appl Catal B: Environ,2016,187:30−36. doi: 10.1016/j.apcatb.2016.01.032 [12] SONG H, MENG X G, WANG S Y, ZHOU W, SONG S, KAKO T, YE J H. Selective photo-oxidation of methane to methanol with oxygen over dual-cocatalyst-modified titanium dioxide[J]. ACS Catal,2020,10(23):14318−14326. doi: 10.1021/acscatal.0c04329 [13] FAN Y Y, ZHOU W C, QIU X Y, LI H D, JIANG Y H, SUN Z H, HAN D X, NIU L, TANG Z Y. Selective photocatalytic oxidation of methane by quantum-sized bismuth vanadate[J]. Nat Sustain,2021,4:509−515. doi: 10.1038/s41893-021-00682-x [14] LI Z, PAN X, YI Z. Photocatalytic oxidation of methane over CuO-decorated ZnO nanocatalysts[J]. J Mater Chem,2019,7(2):469−475. doi: 10.1039/C8TA09592B [15] CHEN X B, SHEN S H, GUO L J, MAO S S. Semiconductor-based photocatalytic hydrogen generation[J]. Chem Rev,2010,110(11):6503−6570. doi: 10.1021/cr1001645 [16] CHEN X X, LI Y P, PAN X Y, CORTIE D, HUANG X T, YI Z G. Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts[J]. Nat Commun,2016,7:12273. doi: 10.1038/ncomms12273 [17] SONG H, MENG X G, WANG S Y, ZHOU W, WANG X S, KAKO T, YE J H. Direct and selective photocatalytic oxidation of CH4 to oxygenates with O2 on cocatalysts/ZnO at room temperature in water[J]. J Am Chem Soc,2019,141(51):20507−20515. doi: 10.1021/jacs.9b11440 [18] CHEN J, STEPANOVIC S, DRAKSHARAPU A, GRUDEN M, BROWNE W R. A Non-heme iron photocatalyst for light-driven aerobic oxidation of methanol[J]. Angew Chem Int Ed,2018,57(12):3207−3211. doi: 10.1002/anie.201712678 [19] XIE J J, JIN R X, LI A, BI Y P, RUAN Q S, DENG Y C, ZHANG Y J, YAO S Y, SANKAR G, MA D, TANG J W. Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species[J]. Nat Catal,2018,1(11):889−896. doi: 10.1038/s41929-018-0170-x [20] CHENG M, YANG L, LI H Y, BAI W, XIAO C, XIE, Y. Constructing charge transfer channel between dopants and oxygen vacancies for enhanced visible-light-driven water oxidation[J]. Nano Res,2021,14(10):3365−3371. doi: 10.1007/s12274-021-3605-7 [21] ZHOU W C, QIU X Y, JIANG Y H, FAN Y Y, WEI S L, HAN D X, NIU L, TANG Z Y. Highly selective aerobic oxidation of methane to methanol over gold decorated zinc oxide via photocatalysis[J]. J Mater Chem,2020,8(26):13277−13284. doi: 10.1039/D0TA02793F [22] AGARWAL N, FREAKLEY S J, MCVICKER R U, ALTHAHBAN S M, DIMITRATOS, N, HE Q, MORGAN D J, JENKINS R L, WILLOCK D J, TAYLOR S H, KIELY C J, HUTCHINGS G J. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions[J]. Science,2017,358(6360):223−226. doi: 10.1126/science.aan6515 [23] ZHU S, LI X D, PAN Z K, JIAO X C, ZHENG K, LI L, SHAO W W, ZU X L, HU J, ZHU J F, SUN Y F, XIE Y. Efficient photooxidation of methane to liquid oxygenates over ZnO nanosheets at atmospheric pressure and near room temperature[J]. Nano Lett,2021,21(9):4122−4128. doi: 10.1021/acs.nanolett.1c01204 -