留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

链状ZSM-5分子筛耦合Cu-Fe3O4用于CO2加氢制轻质芳烃

徐祥龙 文承彦 金科 林溢琦 马隆龙 王晨光

徐祥龙, 文承彦, 金科, 林溢琦, 马隆龙, 王晨光. 链状ZSM-5分子筛耦合Cu-Fe3O4用于CO2加氢制轻质芳烃[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60017-3
引用本文: 徐祥龙, 文承彦, 金科, 林溢琦, 马隆龙, 王晨光. 链状ZSM-5分子筛耦合Cu-Fe3O4用于CO2加氢制轻质芳烃[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60017-3
XU Xiang-long, WEN Cheng-yan, JIN Ke, LIN Yi-qi, MA Long-long, WANG Chen-guang. Chain-like ZSM-5 zeolite coupled with Cu-Fe3O4 for CO2 hydrogenation to light aromatics[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60017-3
Citation: XU Xiang-long, WEN Cheng-yan, JIN Ke, LIN Yi-qi, MA Long-long, WANG Chen-guang. Chain-like ZSM-5 zeolite coupled with Cu-Fe3O4 for CO2 hydrogenation to light aromatics[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60017-3

链状ZSM-5分子筛耦合Cu-Fe3O4用于CO2加氢制轻质芳烃

doi: 10.1016/S1872-5813(22)60017-3
基金项目: 广东省重点领域研发计划(2020B1111570001),江苏省研究生科研与实践创新计划(KYCX20_0095)和中央高校基本科研业务费专项资金(3203002104D)资助
详细信息
    通讯作者:

    马隆龙,13829724756, mall@seu.edu.cn

    王晨光,13825023727,wangcg@ms.giec.ac.cn

  • 共同第一作者
  • 中图分类号: TK6

Chain-like ZSM-5 zeolite coupled with Cu-Fe3O4 for CO2 hydrogenation to light aromatics

Funds: R&D Plan of Key Fields in Guangdong Province (2020B1111570001),Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX20_0095)and the Fundamental Research Funds for the Central Universities (3203002104D)
  • 摘要: 近年来,二氧化碳(CO2)的捕获与利用已受到广泛关注,尤其是CO2加氢直接生产轻质芳烃产品(如:苯、甲苯和二甲苯等)是一条具有潜力的路线。但有效调控芳烃产物分布及提高目标芳烃选择性仍是一个巨大的挑战。在此,本研究提供了一种由铜改性铁基催化剂耦合链状ZSM-5沸石组成的双功能催化剂用于CO2加氢一步高效制备轻质芳烃。采用了XRD、SEM、TEM、ICP-AES、Py-FTIR和N2吸附-脱附等表征手段对双功能催化剂组分进行了分析,研究了分子筛酸密度和长径比(即b轴/a轴)对芳烃选择性及分布的影响。结果表明,具有高酸密度及适当长径比的链状ZSM-5分子筛分子筛组分能促进产物的C−C偶联和抑制CH4的生成,能有效提高芳烃的选择性及甲苯的时空收率(STY)。
    1)  共同第一作者
  • 图  1  不同长径比的CZ5和Cu-Fe3O4的XRD谱图

    Figure  1  XRD patterns of catalysts with different CZ5 and Cu-Fe3O4

    图  2  Cu-Fe3O4的(a) SEM、(b,c) TEM和(d-f) EDS-mapping照片

    Figure  2  (a) SEM, (b,c) TEM images and (d-f) EDS-mapping of Cu-Fe3O4

    图  3  不同链长的CZ5的SEM和TEM照片以及b轴长度分布

    Figure  3  SEM and TEM images and b-axis length distributions of the samples (a1,a2) CZ5-3.7, (b1,b2) CZ5-2.9, (c1,c2) CZ5-1.7 and (d1,d2) CZ5-0.6.

    图  4  CZ5样品在77 K下N2吸附-脱附等温曲线

    Figure  4  N2 adsorption-desorption isotherms at 77 K

    图  5  CZ5样品于350 ℃时的吡啶红外吸附谱图

    Figure  5  Py-FTIR spectra with pyridine (Py) adsorption at 350 ℃ of CZ5

    图  6  催化剂的CO2加氢反应性能

    Figure  6  Catalytic performance in CO2 hydrogenation.

    (a) hydrocarbon distribution, CO2 conversion, and CO selectivity; (b) the relative content and STY of BTX

    图  7  不同氛围下甲苯在BTX中相对占比随长径比的变化

    Figure  7  The content of toluene in BTX varies with height-to-diameter ratio under different atmospheres

    表  1  CZ5样品物理化学性质

    Table  1  Physicochemical properties of CZ5

    CatalystSi/Al*Lewis acid amount/ (μmol·g−1Brønsted acid amount/(μmol·g−1Total amount/
    (μmol·g−1
    SBET
    /(m2·g−1)
    CZ5-0.6-41.81659.132.741.8
    CZ5-0.6-44.7835.239.544.7398.8
    CZ5-0.6-61.0618.852.261.0
    CZ5-1.7-52.4884.348.152.4377.6
    CZ5-2.9-59.5853.156.459.5376.3
    CZ5-3.7-28.7902.326.528.7369.7
    *Calculated from ICP-AES
    下载: 导出CSV
  • [1] MAC DOWELL N, FENNELL P S, SHAH N, MAITLAND G C. The role of CO2 capture and utilization in mitigating climate change[J]. Nat Clim Change,2017,7(4):243−9. doi: 10.1038/nclimate3231
    [2] RA E C, KIM K Y, KIM E H, LEE H, AN K, LEE J S. Recycling Carbon Dioxide through Catalytic Hydrogenation: Recent Key Developments and Perspectives [J]. Acs Catal, 2020.
    [3] LIM X Z. How to Make the Most of Carbon Dioxide[J]. Nature,2015,526(7575):628−30. doi: 10.1038/526628a
    [4] GAO P, ZHANG L, LI S, ZHOU Z, SUN Y. Novel Heterogeneous Catalysts for CO2 Hydrogenation to Liquid Fuels[J]. ACS Cent Sci,2020,6(10):1657−70. doi: 10.1021/acscentsci.0c00976
    [5] RA E C, KIM K Y, KIM E H, LEE H, AN K, LEE J S. Recycling Carbon Dioxide through Catalytic Hydrogenation: Recent Key Developments and Perspectives[J]. Acs Catal,2020,10(19):11318−45. doi: 10.1021/acscatal.0c02930
    [6] WANG Y, GAO W, KAZUMI S, LI H, YANG G, TSUBAKI N. Direct and Oriented Conversion of CO2 into Value-Added Aromatics[J]. Chemistry,2019,25(20):5149−53. doi: 10.1002/chem.201806165
    [7] GUO L S, CUI Y, ZHANG P P, PENG X B, YONEYAMA Y, YANG G H, TSUBAKI N. Enhanced Liquid Fuel Production from CO2 Hydrogenation: Catalytic Performance of Bimetallic Catalysts over a Two-Stage Reactor System[J]. Chemistryselect,2018,3(48):13705−11. doi: 10.1002/slct.201803335
    [8] AITBEKOVA A, GOODMAN E D, WU L H, BOUBNOV A, HOFFMAN A S, GENC A, CHENG H, CASALENA L, BARE S R, CARGNELLO M. Engineering of Ruthenium-Iron Oxide Colloidal Heterostructures: Improved Yields in CO2 Hydrogenation to Hydrocarbons[J]. Angew Chem Int Edit,2019,58(48):17451−7. doi: 10.1002/anie.201910579
    [9] WILLIAMSON D L, HERDES C, TORRENTE-MURCIANO L, JONES M D, MATTIA D. N-Doped Fe@CNT for Combined RWGS/FT CO2 Hydrogenation[J]. Acs Sustain Chem Eng,2019,7(7):7395−402. doi: 10.1021/acssuschemeng.9b00672
    [10] AMOYAL M, VIDRUK-NEHEMYA R, LANDAU M V, HERSKOWITZ M. Effect of potassium on the active phases of Fe catalysts for carbon dioxide conversion to liquid fuels through hydrogenation[J]. J Catal,2017,348:29−39. doi: 10.1016/j.jcat.2017.01.020
    [11] ZHANG J F, ZHANG M, CHEN S Y, WANG X X, ZHOU Z L, WU Y Q, ZHANG T, YANG G H, HAN Y Z, TAN Y S. Hydrogenation of CO2 into aromatics over a ZnCrOx-zeolite composite catalyst[J]. Chem Commun,2019,55(7):973−6. doi: 10.1039/C8CC09019J
    [12] ZHANG X B, ZHANG A F, JIANG X, ZHU J, LIU J H, LI J J, ZHANG G H, SONG C S, GUO X W. Utilization of CO2 for aromatics production over ZnO/ZrO2-ZSM-5 tandem catalyst[J]. J CO2 Util,2019,29:140−5. doi: 10.1016/j.jcou.2018.12.002
    [13] NI Y M, CHEN Z Y, FU Y, LIU Y, ZHU W L, LIU Z M. Selective conversion of CO2 and H2 into aromatics[J]. Nat Commun,2018,9.
    [14] ZHOU C, SHI J Q, ZHOU W, CHENG K, ZHANG Q H, KANG J C, WANG Y. Highly Active ZnO-ZrO2 Aerogels Integrated with HZSM-5 for Aromatics Synthesis from Carbon Dioxide[J]. Acs Catal,2020,10(1):302−10. doi: 10.1021/acscatal.9b04309
    [15] YANG H Y, ZHANG C, GAO P, WANG H, LI X P, ZHONG L S, WEI W, SUN Y H. A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons[J]. Catal Sci Technol,2017,7(20):4580−98. doi: 10.1039/C7CY01403A
    [16] DORNER R W, HARDY D R, WILLIAMS F W, WILLAUER H D. Heterogeneous catalytic CO2 conversion to value-added hydrocarbons[J]. Energ Environ Sci,2010,3(7):884−90. doi: 10.1039/c001514h
    [17] Liu J, Zhang A, Jiang X, Min L, Sun Y, Song C, Guo X. Selective CO2 Hydrogenation to Hydrocarbons on Cu-Promoted Fe-Based Catalysts: Dependence on Cu–Fe Interaction[J]. Acs Sustain Chem Eng,2018,6:10182−10190. doi: 10.1021/acssuschemeng.8b01491
    [18] SONG G, LI M, YAN P, NAWAZ M A, LIU D. High Conversion to Aromatics via CO2-FT over a CO-Reduced Cu-Fe2O3 Catalyst Integrated with HZSM-5[J]. Acs Catal,2020,11268−79.
    [19] JAE J, TOMPSETT G A, FOSTER A J, HAMMOND K D, AUERBACH S M, LOBO R F, HUBER G W. Investigation into the shape selectivity of zeolite catalysts for biomass conversion[J]. J Catal,2011,279(2):257−68. doi: 10.1016/j.jcat.2011.01.019
    [20] NEZAM I, ZHOU W, GUSMAO G S, REALFF M J, WANG Y, MEDFORD A J, JONES C W. Direct aromatization of CO2 via combined CO2 hydrogenation and zeolite-based acid catalysis[J]. J CO2 Util,2021,45.
    [21] ZHOU W, CHENG K, KANG J C, ZHOU C, SUBRAMANIAN V, ZHANG Q H, WANG Y. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chem Soc Rev,2019,48(12):3193−228. doi: 10.1039/C8CS00502H
    [22] OLSON D H, KOKOTAILO G T, LAWTON S L, MEIER W M. Crystal-Structure and Structure-Related Properties of Zsm-5[J]. J Phys Chem-Us,1981,85(15):2238−43. doi: 10.1021/j150615a020
    [23] KOKOTAILO G T, LAWTON S L, OLSON D H, OLSON D H, MEIER W M. Structure of Synthetic Zeolite Zsm-5[J]. Nature,1978,272(5652):437−8. doi: 10.1038/272437a0
    [24] WANG N, HOU Y L, SUN W J, CAI D L, CHEN Z H, LIU L M, GE B H, HU L, QIAN W Z, WEI F. Modulation of b-axis thickness within MFI zeolite: Correlation with variation of product diffusion and coke distribution in the methanol-to hydrocarbons conversion[J]. Appl Catal B-Environ,2019,243:721−33. doi: 10.1016/j.apcatb.2018.11.023
    [25] WANG T, YANG C, GAO P, ZHOU S, LI S, WANG H, SUN Y. ZnZrOx integrated with chain-like nanocrystal HZSM-5 as efficient catalysts for aromatics synthesis from CO2 hydrogenation[J]. Applied Catalysis B-Environ,2021,286.
    [26] ZHANG Y L, MA L L, TU J L, WANG T J, LI X J. One-pot synthesis of promoted porous iron-based microspheres and its Fischer-Tropsch performance[J]. Appl Catal A-Gen,2015,499:139−45. doi: 10.1016/j.apcata.2015.04.017
    [27] QUAN Y H, LI S Y, WANG S, LI Z K, DONG M, QIN Z F, CHEN G, WEI Z H, FAN W B, WANG J G. Synthesis of Chainlike ZSM-5 Zeolites: Determination of Synthesis Parameters, Mechanism of Chainlike Morphology Formation, and Their Performance in Selective Adsorption of Xylene Isomers[J]. Acs Appl Mater Inter,2017,9(17):14899−910. doi: 10.1021/acsami.7b02738
    [28] WANG Y, KAZUMI S, GAO W Z, GAO X H, LI H J, GUO X Y, YONEYAMA Y, YANG G H, TSUBAKI N. Direct conversion of CO2 to aromatics with high yield via a modified Fischer-Tropsch synthesis pathway[J]. Appl Catal B-Environ,2020,269.
    [29] CUI X, GAO P, LI S G, YANG C G, LIU Z Y, WANG H, ZHONG L S, SUN Y H. Selective Production of Aromatics Directly from Carbon Dioxide Hydrogenation[J]. Acs Catal,2019,9(5):3866−76. doi: 10.1021/acscatal.9b00640
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  2
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-26
  • 录用日期:  2022-04-12
  • 修回日期:  2022-03-19
  • 网络出版日期:  2022-05-11

目录

    /

    返回文章
    返回