留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

构筑三维有序介孔少层MoS2/C复合材料及其电化学析氢性能

李博文 韩乔 余宗宝 杨占旭

李博文, 韩乔, 余宗宝, 杨占旭. 构筑三维有序介孔少层MoS2/C复合材料及其电化学析氢性能[J]. 燃料化学学报(中英文), 2022, 50(10): 1288-1298. doi: 10.1016/S1872-5813(22)60019-7
引用本文: 李博文, 韩乔, 余宗宝, 杨占旭. 构筑三维有序介孔少层MoS2/C复合材料及其电化学析氢性能[J]. 燃料化学学报(中英文), 2022, 50(10): 1288-1298. doi: 10.1016/S1872-5813(22)60019-7
LI Bo-wen, HAN Qiao, YU Zong-bao, YANG Zhan-xu. Fabrication of 3D ordered mesoporous MoS2/C composite with few-layered MoS2 for electrochemical hydrogen evolution[J]. Journal of Fuel Chemistry and Technology, 2022, 50(10): 1288-1298. doi: 10.1016/S1872-5813(22)60019-7
Citation: LI Bo-wen, HAN Qiao, YU Zong-bao, YANG Zhan-xu. Fabrication of 3D ordered mesoporous MoS2/C composite with few-layered MoS2 for electrochemical hydrogen evolution[J]. Journal of Fuel Chemistry and Technology, 2022, 50(10): 1288-1298. doi: 10.1016/S1872-5813(22)60019-7

构筑三维有序介孔少层MoS2/C复合材料及其电化学析氢性能

doi: 10.1016/S1872-5813(22)60019-7
基金项目: 国家自然科学基金(21671092),辽宁省“兴辽英才”创新领军人才项目(XLYC1802057)和辽宁省-沈阳材料科学国家研究中心联合研发基金(2019010280-JH3/301)资助
详细信息
    通讯作者:

    E-mail:zhanxuy@126.com

  • 中图分类号: O646

Fabrication of 3D ordered mesoporous MoS2/C composite with few-layered MoS2 for electrochemical hydrogen evolution

Funds: The project was supported by the National Natural Science Foundation of China (21671092), Liaoning Province "Xing Liao Talents" Innovation Leading Talent Project (XLYC1802057) and Liaoning Province-Shenyang National Research Center for Materials Science Joint R&D Fund Project (2019010280-JH3/301).
  • 摘要: 本研究通过液相纳米铸造法,以SBA-15为硬模板,蔗糖为碳源,四硫代钼酸铵(ATTM)为MoS2前驱体,合成了三维有序介孔结构少层MoS2/C复合材料。该催化剂的三维有序介孔结构提供了较高的比表面积并为电化学析氢反应(HER)提供了物质和电子传输的通道,无定形碳的限制作用使少层MoS2薄片均匀分散,暴露大量MoS2的边缘活性位点,避免MoS2团聚的发生,并增加了材料的导电性。在酸性条件下实现高效析氢,电流密度为10 mA/cm2时,过电位为165 mV,Tafel斜率为91.1 mV/dec。本研究为构建高比表面积和少层MoS2均匀分散的三维结构HER催化剂提供了依据。
  • FIG. 1926.  FIG. 1926.

    FIG. 1926.  FIG. 1926.

    图  1  MoS2/C-X-SBA-15复合材料制备流程图

    Figure  1  MoS2/C-X-SBA-15 composite preparation flow chart

    图  2  (a) SBA-15、(b) MoS2/C-1-SBA-15、((c), (d)) MoS2/C-10-SBA-15、((e), (f)) MoS2/C-40-SBA-15和((g), (h)) MoS2/C-60-SBA-15的SEM照片

    Figure  2  SEM images of (a) SBA-15, (b) MoS2/C-1-SBA-15, ((c), (d)) MoS2/C-10-SBA-15, ((e), (f)) MoS2/C-40-SBA-15, ((g), (h)) MoS2/C-60-SBA-15

    图  3  ((a), (b)) SBA-15、((c), (d)) MoS2/C-1-SBA-15、((e), (f)) MoS2/C-10-SBA-15的TEM照片和(g) MoS2/C-10-SBA-15的HRTEM照片

    Figure  3  TEM images of ((a), (b)) SBA-15, ((c), (d)) MoS2/C-1-SBA-15, ((e), (f)) MoS2/C-10-SBA-15, HRTEM image of (g), MoS2/C-10-SBA-15

    图  4  (a) MoS2/C-40-SBA-15、(b) 利用超声波破碎机对MoS2/C-40-SBA-15进行破碎处理后、(e) MoS2/C-60-SBA-15的TEM照片和(c) 破碎MoS2/C-40-SBA-1、(f) MoS2/C-60-SBA-15的HRTEM照片、(d) MoS2/C-40-SBA-15的EDS元素分布照片

    Figure  4  TEM images of (a) MoS2/C-40-SBA-15, (b) broken MoS2/C-40-SBA-15 by ultrasonic crusher, (e) MoS2/C-60-SBA-15, HRTEM images of (c) broken MoS2/C-40-SBA-15, (f) MoS2/C-60-SBA-15, EDX elemental mapping of (d) MoS2/C-40-SBA-15

    图  5  (a) MoS2/C-X-SBA-15、SBA-15的小角度XRD谱图和(b) MoS2/C-X-SBA-15大角度XRD谱图

    Figure  5  (a) Small-angle XRD patterns of MoS2/C-X-SBA-15 and SBA-15, (b) Wide-angle XRD patterns of MoS2/C-X-SBA-15

    图  6  SBA-15和MoS2/C-X-SBA-15的(a):氮吸附-脱附曲线图; (b):孔径分布

    Figure  6  (a) Nitrogen adsorption-desorption isotherm diagram; (b) Pore size distribution diagram of SBA-15 and MoS2/C-X-SBA-15

    图  7  MoS2/C-X-SBA-15的Raman 谱图

    Figure  7  Raman spectra of MoS2/C-X-SBA-15

    图  8  MoS2/C-40-SBA-15的XPS谱图

    Figure  8  (a) XPS survey spectrum and high-resolution XPS spectra of (b) C 1s; (c) Mo 3d; (d) S 2p of MoS2/C-40-SBA-15 sample

    图  9  MoS2/C-X-SBA-15的电化学性能测试

    Figure  9  (a) LSV curves of MoS2/C-X-SBA-15 and Pt, (b) the corresponding Tafel plots of samples, (c) Nyquist plots of MoS2/C-X-SBA-15, (d) the curves of HER durability of MoS2/C-40-SBA-15 tested with a constant current at 10 mA/cm2

    图  10  MoS2/C-40-SBA-15稳定性测试后的SEM照片

    Figure  10  SEM image of MoS2/C-40-SBA-15 after stability test

    图  11  ((a)−(d)) MoS2/C-X-SBA-15在不同扫速下的CV曲线、(e) MoS2/C-X-SBA-15的拟合Cdl

    Figure  11  ((a)−(d)) CV curves of MoS2/C-X-SBA-15 at different scan rates, (e) The double-layer capacitance (Cdl) calculated by liner fitting of the capacitive currents of different catalysts versus scan rate from 20 mV/s to 100 mV/s

    表  1  样品的介孔结构

    Table  1  Textural Properties of Mesostructured Products

    Sample named/nmCell parameter (a0)/nmaSurface area/(m2∙g−1)bPore size/nmcPore volume/(cm3∙g−1)d
    SBA-15 9.12 10.5 493 9.41 1.12
    MoS2/C-1-SBA-15 8.41 9.71 1264 5.88
    1.64
    MoS2/C-10-SBA-15 8.74 10.09 563 4.89
    0.80
    MoS2/C-40-SBA-15 8.73 10.08 348
    5.68 0.92
    MoS2/C-60-SBA-15 72
    4.89 0.26
    a: Lattice parameters estimated from XRD patterns (a0=2d100/$ \sqrt{3} $), b: The surface area calculated by BET method,
    c: Calculate the aperture from the adsorption branch, d: Total pore volume measured at p/p0 =0.99
    下载: 导出CSV
  • [1] YU Z, YAO H, YANG Y, YUAN M, LI C, HE H, CHAN T-S, YAN D, MA S, ZAPOL P, KANATZIDIS M G. MoOxSy/Ni3S2 microspheres on Ni foam as highly efficient, durable electrocatalysts for hydrogen evolution reaction[J]. Chem Mater,2022,34(2):798−808. doi: 10.1021/acs.chemmater.1c03682
    [2] SONG Z Z, YU Z B, WU H D, XIAO W, GENG Z X, REN T Q, SHI C W, YANG Z X. Preparation of CoSOH/Co(OH)2 composite nanosheets and its catalytic performance for oxygen evolution[J]. J Fuel Chem Technol,2021,49(10):1549−1557. doi: 10.1016/S1872-5813(21)60077-4
    [3] YAN D, ZHANG L, CHEN Z, XIAO W, YANG X. Nickel-based metal-organic framework-derived bifunctional electrocatalysts for hydrogen and oxygen evolution reactions[J]. Acta Phys-Chim Sin,2020,10:2009054.
    [4] ZHU J, HU L, ZHAO P, LEE L Y S, WONG K Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles[J]. Chem Rev,2020,120(2):851−918. doi: 10.1021/acs.chemrev.9b00248
    [5] WAN L, SHI C-W, YU Z-B, WU H-D, XIAO W, GENG Z-X, REN T-Q, HAN Q, YANG Z-X. Preparation of WS2/C composite material and its electrocatalytic hydrogen evolution performance[J]. J Fuel Chem Technol,2021,49(9):1362−1370. doi: 10.1016/S1872-5813(21)60078-6
    [6] ZHENG Z, YU L, GAO M, CHEN X, ZHOU W, MA C, WU L, ZHU J, MENG X, HU J, TU Y, WU S, MAO J, TIAN Z, DENG D. Boosting hydrogen evolution on MoS2 via co-confining selenium in surface and cobalt in inner layer[J]. Nat Commun,2020,11(1):3315. doi: 10.1038/s41467-020-17199-0
    [7] LI S, ZHOU S, WANG X, TANG P, PASTA M, WARNER J H. Increasing the electrochemical activity of basal plane sites in porous 3D edge rich MoS2 thin films for the hydrogen evolution reaction[J]. Mater Today Energy,2019,13:134−144. doi: 10.1016/j.mtener.2019.05.002
    [8] JOYNER J, OLIVEIRA E F, YAMAGUCHI H, KATO K, VINOD S, GALVAO D S, SALPEKAR D, ROY S, MARTINEZ U, TIWARY C S, OZDEN S, AJAYAN P M. Graphene supported MoS2 structures with high defect density for an efficient HER electrocatalysts[J]. ACS Appl Mater Interfaces,2020,12(11):12629−12638. doi: 10.1021/acsami.9b17713
    [9] BOLAR S, SHIT S, SAMANTA P, CHANDRA MURMU N, KOLYA H, KANG C-W, KUILA T. Conducting scaffold supported defect rich 3D rGO-CNT/MoS2 nanostructure for efficient HER electrocatalyst at variable pH[J]. Composites, Part B,2022,230:109489. doi: 10.1016/j.compositesb.2021.109489
    [10] DENG J, LI H, WANG S, DING D, CHEN M, LIU C, TIAN Z, NOVOSELOV K S, MA C, DENG D, BAO X. Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production[J]. Nat Commun,2017,8:14430. doi: 10.1038/ncomms14430
    [11] GE J, ZHANG D, QIN Y, DOU T, JIANG M, ZHANG F, LEI X. Dual-metallic single Ru and Ni atoms decoration of MoS2 for high-efficiency hydrogen production[J]. Appl Catal B: Environ,2021,298:120557. doi: 10.1016/j.apcatb.2021.120557
    [12] WANG Y, WANG D, GAO J, HAO X, LI Z, ZHOU J, GAO F. Optimized electronic structure and p-band centre control engineering to enhance surface absorption and inherent conductivity for accelerated hydrogen evolution over a wide pH range[J]. Phys Chem Chem Phys,2020,22(26):14537−14543. doi: 10.1039/D0CP02131H
    [13] LUO M, LIU S, ZHU W, YE G, WANG J, HE Z. An electrodeposited MoS2-MoO3−x/Ni3S2 heterostructure electrocatalyst for efficient alkaline hydrogen evolution[J]. Chem Eng J,2022,428:131055. doi: 10.1016/j.cej.2021.131055
    [14] GE J, JIN J, CAO Y, JIANG M, ZHANG F, GUO H, LEI X. Heterostructure Ni3S4-MoS2 with interfacial electron redistribution used for enhancing hydrogen evolution[J]. RSC Adv,2021,11(32):19630−19638. doi: 10.1039/D1RA02828F
    [15] KEIVANIMEHR F, HABIBZADEH S, BAGHBAN A, ESMAEILI A, MOHADDESPOUR A, MASHHADZADEH A H, GANJALI M R, SAEB M R, FIERRO V, CELZARD A. Electrocatalytic hydrogen evolution on the noble metal-free MoS2/carbon nanotube heterostructure: A theoretical study[J]. Sci Rep,2021,11(1):3958. doi: 10.1038/s41598-021-83562-w
    [16] WANG X, ZHANG Y, SI H, ZHANG Q, WU J, GAO L, WEI X, SUN Y, LIAO Q, ZHANG Z, AMMARAH K, GU L, KANG Z, ZHANG Y. Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2[J]. J Am Chem Soc,2020,142(9):4298−4308. doi: 10.1021/jacs.9b12113
    [17] GE J, ZHANG D, JIN J, HAN X, WANG Y, ZHANG F, LEI X. Oxygen atoms substituting sulfur atoms of MoS2 to activate the basal plane and induce the phase transition for boosting hydrogen evolution[J]. Mater Today Energy,2021,22:100854. doi: 10.1016/j.mtener.2021.100854
    [18] ZHAO X, BAO J, ZHOU Y, ZHANG Y, SHENG X, WU B, WANG Y, ZUO C, BU X. Heterostructural MoS2/NiS nanoflowers via precise interface modification for enhancing electrocatalytic hydrogen evolution[J]. New J Chem,2022,24(12):8344.
    [19] YUN Q, LU Q, ZHANG X, TAN C, ZHANG H. Three-dimensional architectures constructed from transition-metal dichalcogenide nanomaterials for electrochemical energy storage and conversion[J]. Angew Chem Int Ed Eng,2018,57(3):626−646. doi: 10.1002/anie.201706426
    [20] KIBSGAARD J, CHEN Z, REINECKE B N, JARAMILLO T F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis[J]. Nat Mater,2012,11:963−969. doi: 10.1038/nmat3439
    [21] LIU Y, LI W, WU H, LU S. Carbon dots enhance ruthenium nanoparticles for efficient hydrogen production in alkaline[J]. Acta Phys-Chim Sin,2021,37(1):2009082.
    [22] MENG X, YU L, MA C, NAN B, SI R, TU Y, DENG J, DENG D, BAO X. Three-dimensionally hierarchical MoS2/graphene architecture for high-performance hydrogen evolution reaction[J]. Nano Energy,2019,61:611−616. doi: 10.1016/j.nanoen.2019.04.049
    [23] ZHAI P, ZHANG Y, WU Y, GAO J, ZHANG B, CAO S, ZHANG Y, LI Z, SUN L, HOU J. Engineering active sites on hierarchical transition bimetal oxides/sulfides heterostructure array enabling robust overall water splitting[J]. Nat Commun,2020,11(1):5462. doi: 10.1038/s41467-020-19214-w
    [24] SHI Y F, WAN Y, LIU R L, TU B, ZHAO D Y. Synthesis of highly ordered mesoporous crystalline WS2 and MoS2 via a high-temperature reductive sulfuration route[J]. J Am Chem Soc,2007,129(30):9522−9531.
    [25] LU S, WANG W, YANG S, CHEN W, ZHUANG Z, TANG W, HE C, QIAN J, MA D, YANG Y, HUANG S. Amorphous MoS2 confined in nitrogen-doped porous carbon for improved electrocatalytic stability toward hydrogen evolution reaction[J]. Nano Res,2019,12(12):3116−3122. doi: 10.1007/s12274-019-2563-9
    [26] ZHU J, CHEN Z, JIA L, LU Y, WEI X, WANG X, WU W D, HAN N, LI Y, WU Z. Solvent-free nanocasting toward universal synthesis of ordered mesoporous transition metal sulfide@N-doped carbon composites for electrochemical applications[J]. Nano Re,2019,12(9):2250−2258. doi: 10.1007/s12274-019-2299-8
    [27] ZHAO D, FENG J, HUO Q, MELOSH N, FREDRICKSON G, CHMELKA B F, STUCKY G. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 Å pores[J]. Science,1998,279:5350.
    [28] 柴永明, 赵会吉, 柳云骐, 刘晨光. 四硫代钼酸铵制备方法改进[J]. 无机盐工业,2007,39(5):12−15. doi: 10.3969/j.issn.1006-4990.2007.05.005

    CHAI Yong-ming, ZHAO Hui-ji, LIU Yun-ji, LIU Chen-guang. Improvement on preparation method of ammonium tetrathiomolybdate[J]. Inorganic Chemicals Industry,2007,39(5):12−15. doi: 10.3969/j.issn.1006-4990.2007.05.005
    [29] JUN S, JOO S H, RYOO R, KRUK M, JARONIEC M, LIU Z, OHSUNA T, TERASAKI O. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure[J]. J Am Chem Soc,2000,122(43):10712−10713. doi: 10.1021/ja002261e
    [30] OH I, YOUN J-S, PARK Y-K, JEON K-J. Heterostructure of 3D sea-grape-like MoS2/graphene on carbon cloth for enhanced water splitting[J]. Appl Surf Sci,2020,529(1):147089.
    [31] SUN D, MIAO X, HE Y, WANG L, ZHOU X, MA G, LEI Z. 3D interconnected porous graphitic carbon@MoS2 anchored on carbonized cotton cloth as an anode for enhanced lithium storage performance[J]. Electrochim Acta,2019,320(10):134616.
    [32] LIU S, LI B, MOHITE S V, DEVARAJI P, MAO L, XING R. Ultrathin MoS2 nanosheets in situ grown on rich defective Ni0.96S as heterojunction bifunctional electrocatalysts for alkaline water electrolysis[J]. Int J Hydrog Energy,2020,45(55):29929−29937. doi: 10.1016/j.ijhydene.2020.08.034
    [33] WANG Y, WEI R, ZHANG B, LV H, XU D, HAO Q, LIU B. Template-assisted self-sulfuration formation of MoS2 nanosheets embedded in ordered mesoporous carbon for lithium storage[J]. ACS Appl Energy Mater,2019,2(9):6158−6162. doi: 10.1021/acsaem.9b01262
    [34] LEI L, HUANG D, LAI C, ZHANG C, DENG R, CHEN Y, CHEN S, WANG W. Interface modulation of Mo2C@foam nickel via MoS2 quantum dots for the electrochemical oxygen evolution reaction[J]. J Mater Chem A,2020,8(30):15074−15085. doi: 10.1039/D0TA05045H
    [35] HUANG H, HUANG W, YANG Z, HUANG J, LIN J, LIU W, LIU Y. Strongly coupled MoS2 nanoflake-carbon nanotube nanocomposite as an excellent electrocatalyst for hydrogen evolution reaction[J]. J Mater Chem A,2017,5(4):1558−1566. doi: 10.1039/C6TA09612C
    [36] LIU N, YANG L, WANG S, ZHONG Z, HE S, YANG X, GAO Q, TANG Y. Ultrathin MoS2 nanosheets growing within an in-situ-formed template as efficient electrocatalysts for hydrogen evolution[J]. J Power Sources,2015,275:588−594. doi: 10.1016/j.jpowsour.2014.11.039
    [37] GUO S W, GAO Z Y, SONG J L, BULIN C K, ZHANG B W. Electrocatalytic hydrogen evolution performance of ultra-thin MoS2 loaded graphene hybrids[J]. Chin J Inorg Chem,2019,35(7):1195−1202.
    [38] 于静, 张婷, 刘琦, 刘婧媛, 王君. 氮掺杂碳纤维负载镍钴硒化物的制备及其电催化析氢性能[J]. 无机化学学报,2022,38(1):63−72. doi: 10.11862/CJIC.2022.021

    YU Jing, ZHANG Ting, LIU Qi, LIU Jing-yuan, WANG Jun. Preparation of nitrogen-doped carbon fiber supported nickel-cobalt selenides for electrocatalytic hydrogen evolution performance[J]. Chin J Inorg Chem,2022,38(1):63−72. doi: 10.11862/CJIC.2022.021
    [39] MCCRORY C C, JUNG S, FERRER I M, CHATMAN S M, PETERS J C, JARAMILLO T F. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices[J]. JACS,2015,137(13):4347−4357.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  562
  • HTML全文浏览量:  211
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-18
  • 修回日期:  2022-04-05
  • 录用日期:  2022-04-08
  • 网络出版日期:  2022-04-29
  • 刊出日期:  2022-10-31

目录

    /

    返回文章
    返回