留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

萘低温催化热缩聚机理研究

屈鑫旺 左萍萍 李允梅 李娜 申文忠

屈鑫旺, 左萍萍, 李允梅, 李娜, 申文忠. 萘低温催化热缩聚机理研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60021-5
引用本文: 屈鑫旺, 左萍萍, 李允梅, 李娜, 申文忠. 萘低温催化热缩聚机理研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60021-5
QU Xin-wang, ZUO Ping-ping, LI Yun-mei, LI Na, SHEN Wen-zhong. Catalytic thermal polycondensation mechanism of naphthalene at low temperature[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60021-5
Citation: QU Xin-wang, ZUO Ping-ping, LI Yun-mei, LI Na, SHEN Wen-zhong. Catalytic thermal polycondensation mechanism of naphthalene at low temperature[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60021-5

萘低温催化热缩聚机理研究

doi: 10.1016/S1872-5813(22)60021-5
详细信息
  • 中图分类号: TQ241.5

Catalytic thermal polycondensation mechanism of naphthalene at low temperature

More Information
    Corresponding author: Li na,E-mail: lina@sxicc.ac.cn, Shen Wen-zhong E-mail: shenwzh@sxicc.ac.cn
  • 摘要: 萘在高温煤焦油中的含量可达10%以上,以萘为原料进行催化缩聚是制备中间相沥青和功能炭材料的有效途径。本研究以无水AlCl3为催化剂,系统研究了萘在不同温度(90−170 ℃)及AlCl3与萘物质的量比(1∶100−30∶100)下的常压聚合过程。研究表明,当温度低于110 ℃时,缩聚产物主要由多联三环化合物构成,重质产物仅占29.5%;温度为150 ℃时,缩聚产物以四至五环迫位芳香缩合物为主,中质组分含量保持在50%;温度为170 ℃时,缩聚产物中存在大量六环芳香核,原料转化率高达90.7%,而且产物的流动性能及在THF中的溶解性好,有利于高温热缩聚及后续石墨化工艺。本研究在提出“齐聚-热解-稠环化”基础上,考察了萘聚合产物的结构与组成:当AlCl3与萘物质的量比为1∶100时,对萘短链齐聚进行模拟,可得二至七级萘齐聚物,而将用量比提升至10∶100时,萘受AlCl3催化热解可产生乙炔和甲基萘。该研究阐明了萘沥青前驱体的形成机理,可为进一步萘催化缩聚制备中间相沥青的产物控制和沥青缩聚轻组分的循环再利用提供理论依据。
  • 图  1  AlCl3与萘物质的量比为 10∶100时90–170 ℃萘缩聚物的同步荧光光谱谱图

    Figure  1  Synchronous fluorescence spectra of naphthalene polycondensates at 90–170 ℃ with the molar mass ratio of AlCl3 to naphthalene as 10∶100

    图  2  AlCl3与萘物质的量比为10∶100时90–170 ℃反应8 h萘缩聚物的组分分布

    Figure  2  Composition distributions of naphthalene polycondensates at 90–170 ℃ for 8 h with the molar mass ratio of AlCl3 to naphthalene as 10∶100

    图  3  150 ℃时AlCl3与萘物质的量比为1∶100–30∶100萘缩聚物的同步荧光光谱谱图

    Figure  3  Synchronous fluorescence spectra of naphthalene polycondensates with the molar ratios of AlCl3 to naphthalene at 1:100–30:100 at 150 ℃

    图  4  150 ℃时AlCl3与萘物质的量比为1∶100–30∶100反应8 h萘缩聚物的组分分布

    Figure  4  Composition distributions of naphthalene polycondensates at 150 ℃ for 8 h with the molar ratios of AlCl3 to naphthalene at 1∶100–30∶100

    图  5  150、170 ℃下AlCl3与萘物质的量比1∶100及10∶100的萘缩聚物 MALDI-TOF质谱谱图

    Figure  5  MALDI-TOF mass spectra of naphthalene polycondensates at 150 and 170 ℃, the molar ratios of AlCl3 to naphthalene at 1∶100 and 10∶100

    图  6  碳正离子引发齐聚及结构异构体的形成示意图

    Figure  6  Carbocation initiates oligomerization and formation of structural isomers

    图  7  多联萘裂解形成甲基萘自由基示意图

    Figure  7  Cracking of polynaphthalene to form methylnaphthalene radical

    图  8  150 ℃下AlCl3与萘物质的量比为10∶100时反应尾气的在线质谱图(N2流量50 mL /min)

    Figure  8  Mass spectrum of reaction tail gas at 150 ℃ and the molar ratio of AlCl3 to naphthalene at 10∶100, N2 flow rate 50 mL /min

    图  9  萘催化加氢裂解生成小分子产物示意图

    PRO:质子化;HT:氢转移;ISO:异构化;ARO:稠环化;RO:开环

    Figure  9  Catalytic hydrocracking of naphthalene to produce small molecules PRO: protonation; HT: hydrogen transfer; ISO: isomerization; ARO: aromatization; RO: ring opening

    图  10  150 ℃下AlCl3与萘物质的量比为10∶100萘缩聚物及1,1'-联萘的固体13C-NMR谱图

    Figure  10  Solid state 13C -NMR spectra of naphthalene polycondensates and 1,1'-binaphthalene

    a: N-10-150-8; b: N-10-150-0.5; c: 1,1'-binaphthalene

    图  11  1,1'-联萘13C-NMR化学位移

    Figure  11  13C-NMR chemical shift of 1,1'-binaphthalene

    图  12  萘、1,1'-联萘以及150 ℃下AlCl3与萘物质的量比为10∶100萘缩聚物的红外光谱谱图

    Figure  12  Infrared spectra of naphthalene, 1,1'-binaphthalene and naphthalene polycondensates at 150 ℃, the molar ratio of AlCl3 to naphthalene at 10∶100

    图  13  萘缩聚过程的热解、齐聚和芳构化示意图

    PRO:质子化;HT:氢转移;ISO:异构化;ADR:加成;RO:开环

    Figure  13  Oligomerization, pyrolysis and aromatization of naphthalene polycondensation

    PRO: protonation; HT: hydrogen transfer; ISO: isomerization; ADR: addition reaction; RO: ring opening

  • [1] KORD S, MIRI R, AYATOLLAHI S, Escrochi M. Asphaltene deposition in carbonate rocks: Experimental investigation and numerical simulation[J]. Energy Fuels,2012,26(10):6186−6199. doi: 10.1021/ef300692e
    [2] LIM T H, KIM M S, YEO S Y, JEONG E. Preparation and evaluation of isotropic and mesophase pitch-based carbon fibers using the pelletizing and continuous spinning process[J]. J Ind Text,2018,48(7):1242−1253.
    [3] KO S, CHOI J E, LEE C W, JEON Y P. Preparation of petroleum-based mesophase pitch toward cost-competitive high-performance carbon fibers[J]. Carbon Lett,2020,30(1):35−44. doi: 10.1007/s42823-019-00067-3
    [4] BARAN D, YARDIM M F, ATAKUL H, EKINCI E. Synthesis of carbon foam with high compressive strength from an asphaltene pitch[J]. New Carbon Mater,2013,28(2):127−1232. doi: 10.1016/S1872-5805(13)60071-2
    [5] QIN F, TIAN X, GUO Z, SHEN W. Asphaltene-based porous carbon nanosheet as electrode for supercapacitor[J]. ACS Sustain Chem Eng,2018,6(11):15708−15719. doi: 10.1021/acssuschemeng.8b04227
    [6] LEE K S, PARK C W, KIN J D. Synthesis of ZnO/activated carbon with high surface area for supercapacitor electrodes[J]. Colloid Surf A-Physicochem Eng Asp,2018,555:482−490. doi: 10.1016/j.colsurfa.2018.06.077
    [7] CHWASTIAK S, BARR J B, DIDCHENKO R. High strength carbon fibers from mesophase pitch[J]. Carbon,1979,17(1):49−53. doi: 10.1016/0008-6223(79)90069-1
    [8] TEKINALP H L, CERVO E G, FATHOLLAHI B, THIES M C. The effect of molecular composition and structure on the development of porosity in pitch-based activated carbon fibers[J]. Carbon,2013,52:267−277. doi: 10.1016/j.carbon.2012.09.028
    [9] LI P, ZONG Z, LIU F, WANG Y, WEI X, FAN X, ZHAO Y, ZHAO W. Sequential extraction and characterization of liquefaction residue from Shenmu–Fugu subbituminous coal[J]. Fuel Process Technol,2015,136:1−7. doi: 10.1016/j.fuproc.2014.04.013
    [10] KIM C J, RYU S K, RHEE B S. Properties of coal-tar pitch-based mesophase separated by high-temperature centrifugation[J]. Carbon,1993,31(5):833−838. doi: 10.1016/0008-6223(93)90023-4
    [11] CERVO E G, THIES M C. Control of molecular weight distribution of petroleum pitches via multistage supercritical extraction[J]. J Supercrit Fluids,2010,51(3):345−352. doi: 10.1016/j.supflu.2009.09.010
    [12] HUTCHENSON K W, ROEBERS J R, THIES M C. Fractionation of petroleum pitch by supercritical fluid extraction[J]. Carbon,1991,29(2):215−223. doi: 10.1016/0008-6223(91)90072-Q
    [13] LI M, ZHANG Y, YU S, XIE C, LIU D, LIU S, ZHAO R, BIAN B. Preparation and characterization of petroleum-based mesophase pitch by thermal condensation with in-process hydrogenation[J]. RSC Adv,2018,8(53):30230−30238. doi: 10.1039/C8RA04679D
    [14] YAMADA Y, MATSUMOTO S, FUKUDA K, HONDA H. Optically anisotropic texture in tetrhydroqulnoline soluble matter of carbomceous mesophase[J]. Tanso,1981,107:144−146.
    [15] MOCHIDA I, KUDO K, FUKUDA N, TAKESHITA K, TAKAHASHI R. Carbonization of pitches — IV Carbonization of polycyclic aromatic hydrocarbons under the presence of aluminum chloride catalyst[J]. Carbon,1975,13(2):135−139. doi: 10.1016/0008-6223(75)90270-5
    [16] HOSSEINI M S, CHARTRAND P. Thermodynamics and phase relationship of carbonaceous mesophase appearing during coal tar pitch carbonization[J]. Fuel,2020,275.
    [17] MOCHIDA I, SAKANISHI K. Catalysis in coal liquefaction[J]. Adv Catal,1994,40:39−85.
    [18] YOON S H, KORAI Y, MOCHIDA I. Spinning characteristics of mesophase pitches derived from naphthalene and methylnaphthalene with HF BF3[J]. Carbon,1993,31(6):849−856. doi: 10.1016/0008-6223(93)90184-C
    [19] MOCHIDA I, KORAI Y, KU C, WATANABE F, SAKAI Y. Chemistry of synthesis, structure, preparation and application of aromatic-derived mesophase pitch[J]. Carbon,2000,38(2):305−328. doi: 10.1016/S0008-6223(99)00176-1
    [20] MOCHIDA I, INOUE S, MAEDA K, TAKESHITA K. Carbonization of aromatic hydrocarbons — VI Carbonization of heterocyclic compounds catalyzed by aluminum chloride[J]. Carbon,1977,15(1):9−16. doi: 10.1016/0008-6223(77)90068-9
    [21] FORTIN F, YOON S H, KORAI Y, MOCHIDA I. Reorganization of molecular alignment in naphthalene and methyl-naphthalene derived pitches[J]. Carbon,1994,32(5):979−989. doi: 10.1016/0008-6223(94)90058-2
    [22] YOON S H, KORAI Y, MOCHIDA I, KATO I. The flow properties of mesophase pitches derived from methylnaphthalene and naphthalene in the temperature range of their spinning[J]. Carbon,1994,32(2):273−280. doi: 10.1016/0008-6223(94)90190-2
    [23] TOSHIMA H, MOCHIDA I, KORAI Y, HINO T. Modification of petroleum-derived mesophase pitch by blending naphthalene-derived partially isotropic pitches[J]. Carbon,1992,30(5):773−779. doi: 10.1016/0008-6223(92)90161-O
    [24] MOCHIDA I, SHIMIZU K, KORAI Y, SAKAI Y, FUJIYAMA S, TOSHIMA H, HONO T. Mesophase pitch catalytically prepared from anthracene with HF BF3[J]. Carbon,1992,30(1):55−61. doi: 10.1016/0008-6223(92)90106-7
    [25] SALIM S S, BELL A T. Effects of Lewis acid catalysts on the hydrogenation and cracking of two-ring aromatic and hydroaromatic structures related to coal[J]. Fuel,1982,61(8):745−754. doi: 10.1016/0016-2361(82)90251-4
    [26] SALIM S S, BELL A T. Effects of Lewis acid catalysts on the hydrogenation and cracking of three-ring aromatic and hydroaromatic structures related to coal[J]. Fuel,1984,63(4):469−476. doi: 10.1016/0016-2361(84)90281-3
    [27] SAITOH T, ITOH H, HIRAIDE M. Admicelle-enhanced synchronous fluorescence spectrometry for the selective determination of polycyclic aromatic hydrocarbons in water[J]. Talanta,2009,79(2):177−182. doi: 10.1016/j.talanta.2009.03.022
    [28] CHEN S, XIE S, FAN C, GUO J, LI X. Microstructure and performance of carbonization products of component from soft coal pitch[J]. J Saudi Chem Soc,2018,22(3):316−321. doi: 10.1016/j.jscs.2016.06.003
    [29] BOROVIK A S, BARRON A R. Reaction of olefins with aluminium chloride stabilized arene-mercury complexes[J]. Main Group Chem,2005,4(2):135−144. doi: 10.1080/10241220500296951
    [30] LASKIN A, TAMBURU C, DUBNIKOVA F, LIFSHITZ A. Production of major reaction products in the initial steps of the thermal decomposition of naphthalene. Experimental shock-tube results and computer simulation[J]. Proc Combust Inst,2015,35(1):299−307. doi: 10.1016/j.proci.2014.06.019
    [31] CHOI Y, LEE J, SHIN J, LEE S, KIM D, LEE J K. Selective hydroconversion of naphthalenes into light alkyl-aromatic hydrocarbons[J]. Appl Catal A-Gen,2015,492:140−150. doi: 10.1016/j.apcata.2014.12.001
    [32] GARGIULO V, APICELLA B, ALFÈ M, RUSSO C, STANZIONE F, TREGROSSI A, AMORESANO A, MILLAN M, CIAJOLO A. Structural characterization of large polycyclic aromatic hydrocarbons. Part 1: The case of coal tar pitch and naphthalene-derived pitch[J]. Energy Fuels,2015,29(9):5714−5722. doi: 10.1021/acs.energyfuels.5b01327
    [33] ALFÈ M, APICELLA B, TREGROSSI A, CIAJOLO A. Identification of large polycyclic aromatic hydrocarbons in carbon particulates formed in a fuel-rich premixed ethylene flame[J]. Carbon,2008,46(15):2059−2066. doi: 10.1016/j.carbon.2008.08.019
    [34] HSIEH P Y, WIDEGREN J A, SLIFKA A J, HAGEN A J, RORRER R A L. Direct measurement of trace polycyclic aromatic hydrocarbons in diesel fuel with 1H and 13C NMR spectroscopy: Effect of PAH content on fuel lubricity[J]. Energy Fuels,2015,29(7):4289−4297. doi: 10.1021/acs.energyfuels.5b01193
    [35] SMIRNOV M B, POLUDETKINA E N, VANYUKOVA N A, PARENAGO O P. Comparative 13C NMR analysis of the composition of saturated petroleum and bitumenoid hydrocarbons: Potentialities and outlook[J]. Pet Chem,2011,51(2):107−116. doi: 10.1134/S0965544111020125
  • 加载中
图(13)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  15
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-11
  • 录用日期:  2022-03-29
  • 修回日期:  2022-03-11
  • 网络出版日期:  2022-04-29

目录

    /

    返回文章
    返回