留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

循环流化床煤气化炉灰渣的组成结构特征与热转化性能

胡小波 杨晓勤 莫文龙 张书培 高吉 魏贤勇 樊星

胡小波, 杨晓勤, 莫文龙, 张书培, 高吉, 魏贤勇, 樊星. 循环流化床煤气化炉灰渣的组成结构特征与热转化性能[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60024-0
引用本文: 胡小波, 杨晓勤, 莫文龙, 张书培, 高吉, 魏贤勇, 樊星. 循环流化床煤气化炉灰渣的组成结构特征与热转化性能[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60024-0
HU Xiao-Bo, YANG Xiao-Qin, MO Wen-Long, ZHANG Shu-Pei, Gao Ji, WEI Xian-Yong, FAN Xing. Structural characteristics and thermal conversion performance of ash and slag from circulating fluidized bed gasifier[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60024-0
Citation: HU Xiao-Bo, YANG Xiao-Qin, MO Wen-Long, ZHANG Shu-Pei, Gao Ji, WEI Xian-Yong, FAN Xing. Structural characteristics and thermal conversion performance of ash and slag from circulating fluidized bed gasifier[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60024-0

循环流化床煤气化炉灰渣的组成结构特征与热转化性能

doi: 10.1016/S1872-5813(22)60024-0
基金项目: 新疆宜化循环流化床煤气化工艺固废综合利用研究与开发、新疆宜化化工有限公司高碱低灰熔点煤循环流化床气化工艺优化与示范、新疆维吾尔自治区引进高层次人才天池计划和煤炭加工与高效洁净利用教育部重点实验室开放基金
详细信息
    作者简介:

    胡小波(1995-)男,陕西宝鸡人,在读硕士研究生。Tel: 15894605546,E-mail: 1142744208@qq.com

    通讯作者:

    E-mail: mowenlong@xju.edu.cn

  • 中图分类号: TQ536.4

Structural characteristics and thermal conversion performance of ash and slag from circulating fluidized bed gasifier

Funds: Research and development on comprehensive utilization of solid waste in Xinjiang Yihua circulating fluidized bed coal gasification process, optimization and demonstration of circulating fluidized bed gasification process of high alkali and low ash melting point coal of Xinjiang Yihua Chemical Co., Ltd, Tianchi project for introducing high-level talents to Xinjiang Uyghur Autonomous Region (China) and Key Laboratory of Coal Processing and Efficient Utilization from Ministry of Education
  • 摘要: 通过工业分析、元素分析和傅里叶红外光谱测试基于循环流化床的新疆准东煤(ZDC)气化灰渣(FA:飞灰;BA:底渣),获得灰渣的基本性质和官能团种类。结果显示,BA的灰分含量高达99.30%,而FA的固定碳和碳元素含量较高,分别为69.3%和73.78%。进一步采用Raman、XRPES和SEM表征ZDC和FA的碳质形式和表面形貌,利用TG-DTG技术考察ZDC和FA的热解、燃烧和气化反应特性。XRPES结果显示,FA表面C元素含量为89.42%,主要以>C−C<和>C−H的形式存在,而O元素主要以>C=O的形式存在。碱土金属Ca与上述涉碳官能团结合,导致FA无序程度较高。SEM观察到熔融矿物质球形颗粒附着和镶嵌在FA表面和孔道中,导致表面粗糙多孔。热转化特性显示,FA的热解和燃烧最大失重速率峰温度均较ZDC明显升高,表明FA的热解和燃烧性能降低。然而,FA的100%碳转化率所用气化时间仅为ZDC的一半,气化性能显著提高,原因在于FA具有发达的孔道结构、较多的无定形碳及丰富的活性位点,强化了气化剂CO2的扩散过程。因此,FA可直接回收用作循环流化床的气化原料。
  • 图  1  工业循环流化气化炉示意图

    Figure  1  Diagram of the industrial CFB gasifier

    图  2  ZDC、FA和BA的红外光谱谱图

    Figure  2  FT-IRS spectra of ZDC, FA, and BA

    图  3  ZDC和FA的拉曼谱图及拟合峰

    Figure  3  Raman spectrum and the fitting peak of ZDC and FA

    图  4  ZDC和FA的Raman光谱谱图

    Figure  4  Result of Raman spectra of ZDC and FA

    图  5  ZDC和FA的C 1s和O 1s光谱谱图及其拟合曲线

    Figure  5  C 1s and O 1s spectra and their fitting curves of ZDC and FA

    图  6  ZDC和FA的扫描电子显微镜图像

    Figure  6  Scanning electron microscope images of ZDC and FA

    图  7  ZDC和FA热解的TG和DTG曲线

    Figure  7  Pyrolysis TG and DTG curves of ZDC and FA

    图  8  ZDC和FA燃烧的TG和DTG曲线

    Figure  8  Combustion TG and DTG curves of ZDC and FA

    图  9  ZDC和FA的气化反应性(a)碳转化率和时间(b)反应速率和碳转化率

    Figure  9  Gasification reactivity of ZDC and FA (a) Carbon conversion versus time and (b) reaction rate versus carbon conversion

    表  1  样品的工业分析和元素分析

    Table  1  Proximate and ultimate analysis

    SampleProximate analysis wad/%LOI /%Ultimate analysis wdaf/%H/CQHHV/
    (MJ·kg−1)
    MAVFCCHNO*S
    ZDC10.962.7327.7958.52/68.424.272.6324.200.480.7528.00
    FA1.2723.685.7569.30/73.780.572.5022.111.040.0925.53
    BA0.3099.300.300.100.840.550.042.25/0.35//
    ad: air-dry basis; daf: dry and ash-free basis; M: moisture; A: ash; V: volatile matter; FC: fixed carbon; LOI: A weight loss percentage on ignition (900 ℃, 30 min); *: by difference
    下载: 导出CSV

    表  2  ZDC、FA和BA的灰成分分析

    Table  2  Ash compositions of ZDC, FA and BA

    SampleContent w/%
    CaOFe2O3SO3MgONa2OAl2O3SiO2SrOClK2OTiO2
    ZDC47.9720.4511.375.324.392.652.561.891.800.100.35
    FA37.539.1611.6512.953.197.5811.351.302.431.030.76
    BA36.779.770.8012.802.138.4725.461.030.140.530.93
    下载: 导出CSV

    表  3  ZDC和FA的Raman光谱拟合峰归属和面积比例

    Table  3  Assignment and area of Raman spectrum fitting peaks of ZDC and FA

    BandCenter /cm−1AssignmentArea /%
    ZDCFA
    G1580stretching vibration mode of carbon atom in the graphite crystalline27.5225.32
    D11350the vibration of disordered graphitic lattices within plan imperfections,
    such as defects and heteroatoms
    32.6537.59
    D21620vibration mode involving graphene layers9.585.03
    D31530amorphous sp2-band forms, including organic molecules, fragments, or
    functional groups, and in poorly organized carbonaceous materials
    17.7920.47
    D41200mixed sp2-sp3 mixed bond in poorly organized structures,
    such as the periphery of crystallites
    12.4511.59
    下载: 导出CSV

    表  4  ZDC和FA中C和O的分布形式

    Table  4  Distribution of C and O forms in ZDC and FA from analysis with XRPES

    Elemental peakFunctionalityBinding energy /eVMolar content /%
    ZDCFA
    C 1s>C−C<284.452.9245.42
    >C−H285.230.0630.52
    >C−O−286.39.363.21
    >C=O287.35.642.91
    −COO−288.62.0111.10
    π−π*291.56.84
    O 1s>C=O531.619.3057.65
    >C−OH532.433.7719.65
    >C−O−533.126.7214.02
    −COOH534.120.208.68
    下载: 导出CSV

    表  5  ZDC和FA燃烧曲线的特征参数

    Table  5  Combustion characteristic parameters of ZDC and FA

    SampleTs /℃Tmax /℃Tf /℃(dw/dt)max /(%·min−1)(dw/dt)mean /(%·min−1)S/ (%2·min−2·℃−3)D/ (%·min−1·℃−2)
    ZDC368.2411.0630.122.366.5021.5×10−71.48×10−4
    FA456.8479.2634.320.354.206.54×10−77.71×10−4
    下载: 导出CSV
  • [1] LI J W, CHEN Z C, LI L K, QIAN Y Y, YUAN Z H, ZENG L Y, LI Z Q. Study on pore and chemical structure characteristics of atmospheric circulating fluidized bed coal gasification fly ash[J]. J Cleaner Prod,2021,308(7):127395.
    [2] ZHANG W W, HUANG S, WU S Y, WU Y Q, GAO J S. Study on the structure characteristics and gasification activity of residual carbon in biomass ashes obtained from different gasification technologies[J]. Fuel,2019,254:115699.1−115699.9.
    [3] JIANG D H, SONG W J, WANG X F, ZHU Z P. Physicochemical properties of bottom ash obtained from an industrial CFB gasifier[J]. J Energy Inst,2021,95:1−7. doi: 10.1016/j.joei.2020.12.004
    [4] LIU X D, JIN Z W, JING Y H, FAN P P, QI Z L, BAO W R, WANG J C, YAN X H, LV P, DONG L P. Review of the characteristics and graded utilisation of coal gasification slag[J]. Chin J Chem Eng,2021,35(07):92−106.
    [5] DAI G F, ZHENG S J, WANG X B, BAI Y H, DONG Y S, DU J, SUN X W, TAN H Z. Combustibility analysis of high-carbon fine slags from an entrained flow gasifier[J]. J Environ Manage,2020,271:111009. doi: 10.1016/j.jenvman.2020.111009
    [6] GUO F H, MIAO Z K, GUO Z K, LI J, ZHANG Y X, WU J J. Properties of flotation residual carbon from gasification fine slag[J]. Fuel,2020,267:117043. doi: 10.1016/j.fuel.2020.117043
    [7] DU M J, HUANG J J, LIU Z Y, ZHOU X, GUO S, WANG Z Q, FANG Y T. Reaction characteristics and evolution of constituents and structure of a gasification slag during acid treatment[J]. Fuel,2018,224:178−185. doi: 10.1016/j.fuel.2018.03.073
    [8] ZHANG Y C, LI H X, WU C L. Study on distribution, chemical states and binding energy shifts of elements on the surface of gasification fine ash[J]. Res Chem Intermed,2019,45(7):3855−3864. doi: 10.1007/s11164-019-03824-1
    [9] MIAO Z K, CHEN L Q, CHEN K N, ZHANG X X, ZHANG Y X, WU J J. Physical properties and microstructures of residual carbon and slag particles present in fine slag from entrained-flow coal gasification[J]. Adv Powder Technol,2020,31(9):3781−3789. doi: 10.1016/j.apt.2020.07.019
    [10] WEI R D, REN L W, GENG F J. Gasification reactivity and characteristics of coal chars and petcokes[J]. J Energy Inst,2021,96:25−30. doi: 10.1016/j.joei.2020.07.012
    [11] LV D P, BAI Y H, WANG J F, SONG X D, SU W G, YU G S, ZHU H, TANG G J. Structural features and combustion reactivity of residual carbon in fine slag from entrained-flow gasification[J]. J Fuel Chem Technol,2021,49(2):129−136. doi: 10.1016/S1872-5813(21)60011-7
    [12] WU S H, HUANG S, JI L Y, WU Y Q, GAO J S. Structure characteristics and gasification activity of residual carbon from entrained-flow coal gasification slag[J]. Fuel,2014,122:67−75. doi: 10.1016/j.fuel.2014.01.011
    [13] ZHANG H X, ZHU Z P, DONG Q, YU K S, LU Q G. Structural properties and gasification reactivity of Shenmu fly ash obtained from a 5t/d circulating fluidized bed gasifier[J]. Procedia Eng,2015,102:1104−1111. doi: 10.1016/j.proeng.2015.01.233
    [14] JING X L, WANG Z Q, YU Z L, ZHANG Q, LI C Y, FANG Y T. Experimental and kinetic investigations of CO2 gasification of fine chars separated from a pilot-scale fluidized-bed gasifier[J]. Energy Fuels,2013,27:2422−2430. doi: 10.1021/ef4002296
    [15] KELEOPILE L, SUN R, LIAO J. Fly ash and coal char reactivity from thermo-gravimetric (TGA) experiments[J]. Fuel Process Technol,2011,92(6):1178−1186. doi: 10.1016/j.fuproc.2011.01.007
    [16] LI X, LI J, WU G G, BAI Z Q, L W. Clean and efficient utilization of sodium-rich Zhundong coals in China: Behaviors of sodium species during thermal conversion processes[J]. Fuel,2018,218:162−173. doi: 10.1016/j.fuel.2018.01.027
    [17] PARIKH J, CHANNIWALA S. GHOSALG. A correlation for calculating HHV from proximate analysis of solid fuels[J]. Fuel,2004,84(5):487−494.
    [18] DIAO R, ZHU X F, WANG C, ZHU X F. Synergistic effect of physicochemical properties and reaction temperature on gasification reactivity of walnut shell chars[J]. Energy Convers Manage,2018,204:112313.
    [19] GUO Y, GUO F H, ZHOU L, GUO Z K, MIAO Z K, LIU H, ZHANG X X, WU J J, ZHANG Y X. Investigation on co-combustion of coal gasification fine slag residual carbon and sawdust char blends: Physiochemical properties, combustion characteristic and kinetic behavior[J]. Fuel,2021,292(2):120387.
    [20] PAINTER P C, COLEMAN M M, JENKINS R G, WHANG P W, WALKER J. Fourier Transform Infrared study of mineral matter in coal. A novel method for quantitative mineralogical analysis[J]. Fuel,1978,57(6):337−344. doi: 10.1016/0016-2361(78)90170-9
    [21] YU P, KIRKPARTRICK R J, POE B, MCMILLAN P F, CONG X D. Structure of calcium silicate hydrate (C-S-H): Near-, Mid-, and Far-Infrared spectroscopy[J]. J Am Ceram Soc,1999,82(3):742−748.
    [22] YU S H, ZHANG C, ZHANG X P, LI X, WEI B, TAN P, FANG Q Y, CHEN G, XIA J. Release and transformation characteristics of Na/Ca/S compounds of Zhundong coal during combustion/CO2 gasification[J]. J Energy Inst,2020,93(2):752−765. doi: 10.1016/j.joei.2019.05.007
    [23] YASERI S, VERKI V M, MAHDIKHANI M. Utilization of high volume cement kiln dust and rice husk ash in the production of sustainable geopolymer[J]. J Cleaner Prod,2019,230:592−602. doi: 10.1016/j.jclepro.2019.05.056
    [24] GUO Y, MA C F, ZHANG Y X, ZHOU L, HUO Z K, MIAO Z K, ZHAO X, WU J J, GUO F H. Comparative study on the structure characteristics, combustion reactivity, and potential environmental impacts of coal gasification fine slag with different particle size fractions[J]. Fuel,2022,311:122493. doi: 10.1016/j.fuel.2021.122493
    [25] LI F H, LIU Q R, LI M, FANG Y T. Understanding fly-ash formation during fluidized-bed gasification of high-silicon-aluminum coal based on its characteristics[J]. Energy,2018,150:142−152. doi: 10.1016/j.energy.2018.02.137
    [26] JOHNSON C A, PATRICK J W, THOMAS K M. Mark Thomas. Characterization of coal chars by Raman spectroscopy, X-ray diffraction and reflectance measurements[J]. Fuel,1986,65(9):1284−1290. doi: 10.1016/0016-2361(86)90243-7
    [27] HUANG S, WU S Y, WU Y Q, GAO J S. Structure characteristics and gasification activity of residual carbon from updraft fixed-bed biomass gasification ash[J]. Energy Convers Manage,2017,136:108−118. doi: 10.1016/j.enconman.2016.12.091
    [28] QIU P H, DU C S, LIU L. Structural characteristics of char derived from acid-washed coal pyrolysis and its corrections with char reactivity[J]. J China Coal Soc,2017,42:233−239.
    [29] FUCHS W, SANDHOFF A G. Theory of Coal Pyrolysis[J]. Ind Eng Chem,1942,34(5):567−571. doi: 10.1021/ie50389a010
    [30] WANG N, MAO M, MAO G Y, YIN J B, HE R X, ZHOU H C, LI N, LIU Q S, ZHI K D. Investigation on carbide slag catalytic effect of Mongolian bituminous coal steam gasification process[J]. Chemosphere,2021,264:128500. doi: 10.1016/j.chemosphere.2020.128500
    [31] WANG H, LIU S L, LI X T, YANG D W, WANG X Y, SONG C. Morphological and structural evolution of bituminous coal slime particles during the process of combustion[J]. Fuel,2018,218:49−58. doi: 10.1016/j.fuel.2018.01.022
    [32] WANGER N J, MATJIE R H, SLAGHUIS J H, HEERDEN V. Characterization of unburned carbon present in coarse gasification ash[J]. Fuel,2008,87(6):683−691. doi: 10.1016/j.fuel.2007.05.022
    [33] PAN C C, LIANG Q F, GUO X L, DAI Z H, LIU H F, GONG X. Characteristics of different sized slag particles from entrained-flow coal gasification[J]. Energy Fuels,2016,30(2):1487−1495. doi: 10.1021/acs.energyfuels.5b01326
    [34] MO W L, WU Z F, HE X Q, QIANG W J, WEI B, WEI X Y, WU Y L, FAN X, MA F Y. Functional group characteristics and pyrolysis/combustion performance of fly ashes from Karamay oily sludge based on FT-IR and TG-DTG analyses[J]. Fuel,2021,296(5):120669.
    [35] 景旭亮, 王志青, 张乾, 房倚天. 流化床气化炉半焦细粉的燃烧特性及其动力学研究[J]. 燃料化学学报,2014,42(1):13−21.

    JING Xu-liang, WANG Zhi-qing, ZHANG Qian, FANG Yi-tian. Combustion property and kinetics of fine chars derived from fluidized bed gasifier[J]. J Fuel Chem Technol,2014,42(1):13−21.
    [36] ZHANG X S, SONG X D, SU W G, WEI J T, BAI Y H, YU G S. In-situ study on gasification reaction characteristics of Ningdong coal chars with CO2[J]. J Fuel Chem Technol,2019,47(4):385−392. doi: 10.1016/S1872-5813(19)30018-0
    [37] MIAO Z K, GUO F H, ZHAO X, GUO Z K, GUO Y, ZHANG Y X, WU J J. Effects of acid treatment on physicochemical properties and gasification reactivity of fine slag from Texaco gasifier[J]. Chem Eng Res Des,2021,169:1−8. doi: 10.1016/j.cherd.2021.01.020
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  30
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-16
  • 录用日期:  2022-04-18
  • 修回日期:  2022-04-17
  • 网络出版日期:  2022-05-05

目录

    /

    返回文章
    返回