留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of Zn on performance of Ni/SiO2 for hydrodeoxygenation of anisole

WANG Dan-dan GU Xiao-yu SHI Hao-nan CHEN Ji-xiang

王丹丹, 谷孝雨, 史浩楠, 陈吉祥. Zn对Ni/SiO2催化剂苯甲醚氢脱氧性能的影响[J]. 燃料化学学报(中英文), 2022, 50(10): 1341-1350. doi: 10.1016/S1872-5813(22)60029-X
引用本文: 王丹丹, 谷孝雨, 史浩楠, 陈吉祥. Zn对Ni/SiO2催化剂苯甲醚氢脱氧性能的影响[J]. 燃料化学学报(中英文), 2022, 50(10): 1341-1350. doi: 10.1016/S1872-5813(22)60029-X
WANG Dan-dan, GU Xiao-yu, SHI Hao-nan, CHEN Ji-xiang. Effect of Zn on performance of Ni/SiO2 for hydrodeoxygenation of anisole[J]. Journal of Fuel Chemistry and Technology, 2022, 50(10): 1341-1350. doi: 10.1016/S1872-5813(22)60029-X
Citation: WANG Dan-dan, GU Xiao-yu, SHI Hao-nan, CHEN Ji-xiang. Effect of Zn on performance of Ni/SiO2 for hydrodeoxygenation of anisole[J]. Journal of Fuel Chemistry and Technology, 2022, 50(10): 1341-1350. doi: 10.1016/S1872-5813(22)60029-X

Zn对Ni/SiO2催化剂苯甲醚氢脱氧性能的影响

doi: 10.1016/S1872-5813(22)60029-X
详细信息
  • 中图分类号: O643

Effect of Zn on performance of Ni/SiO2 for hydrodeoxygenation of anisole

Funds: The project was supported by the National Natural Science Foundation of China (21576193 and 21176177).
More Information
  • 摘要: 采用等体积浸渍法制备了Ni/SiO2及NixZn/SiO2(x代表Ni/Zn原子比)催化剂,在常压固定床反应器上考察了催化剂苯甲醚气相加氢脱氧性能。研究发现,经550 ℃还原后NixZn/SiO2中形成了Ni-Zn合金,当Ni/Zn原子比为30时可获得较小合金晶粒尺寸和较高H2化学吸附量。在苯甲醚加氢脱氧反应中, Ni-Zn合金的形成有利于苯甲醚直接脱氧形成苯,同时抑制了CO甲烷化及C−C键氢解,这是因为形成合金后亲氧性金属Zn对Ni的几何隔离作用。Ni30Zn/SiO2催化剂的活性和苯选择性均高于Ni/SiO2。结果表明,Ni30Zn/SiO2催化剂失活与产物水氧化Ni-Zn 合金表面及积炭有关。
  • Figure  1  XRD patterns of calcined Ni/SiO2, Ni30Zn/SiO2 and Ni10Zn/SiO2

    Figure  2  H2-TPR profiles of (a) reduced and (b) calcined Ni/SiO2 and NixZn/SiO2 catalysts

    Figure  3  XRD patterns of reduced Ni/SiO2 and NixZn/SiO2 catalysts

    Figure  4  TEM images and particle size distributions of (a) Ni/SiO2, (b) Ni30Zn/SiO2 and (c) Ni10Zn/SiO2

    Figure  5  H2-TPD profiles of reduced Ni/SiO2 and NixZn/SiO2 catalysts

    Figure  6  Proposed reaction pathway in HDO of anisole

    Figure  7  Performance of Ni/SiO2, Ni30Zn/SiO2 and Ni10Zn/SiO2 in HDO of anisole

    (a): anisole conversion and product selectivity; (b): $n_{{\rm{CH}}_4} $/nΔAnisole, nCO/nΔAnisole and $n_{{\rm{CH}}_3{\rm{OH}}} $/nΔAnisole molar ratios reaction conditions: 300 °C, 0.1 MPa, H2/anisole molar ratio of 25, anisole WHSV of 2 h−1

    Figure  8  Possible reaction mechanism in HDO of anisole on NixZn/SiO2

    Figure  9  Performance of Ni30Zn/SiO2 in HDO of anisole as a function of WHSV

    (a): Anisole conversion and product selectivity; (b): $n_{{\rm{CH}}_4} $/nΔAnisole, nCO/nΔAnisole and $n_{{\rm{CH}}_3{\rm{OH}}} $/nΔAnisole molar ratios reaction conditions: 300 °C, 0.1 MPa, H2/anisole molar ratio of 25

    Figure  10  Effect of reaction temperature on Ni30Zn/SiO2 for HDO of anisole

    (a): Anisole conversion and product selectivity; (b): $n_{{\rm{CH}}_4} $/nΔAnisole, nCO/nΔAnisole and $n_{{\rm{CH}}_3{\rm{OH}}} $/nΔAnisole molar ratios reaction conditions: 0.1 MPa, H2/anisole molar ratio of 25, anisole WHSV of 2 h−1

    Figure  11  Anisole conversion and product selectivity on Ni30Zn/SiO2 with time on stream

    reaction conditions: 300 °C, 0.1 MPa, H2/anisole molar ratio of 25, anisole WHSV of 2 h−1

    Figure  12  XRD patterns of fresh and spent Ni30Zn/SiO2 catalysts

    Table  1  Properties of different catalysts

    CatalystSBET/(m2∙g−1)dp/nmvp/(cm3∙g−1)Crystallite
    size/nm
    Ni/SiO24095.70.7811.0
    Ni30Zn/SiO23055.70.6510.4
    Ni10Zn/SiO22445.70.5112.5
    Spent-Ni30Zn/SiO23396.60.568.5
    下载: 导出CSV
  • [1] CHHEDA J N, HUBER G W, DUMESIC J A. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals[J]. Angew Chem Int Ed Eng,2007,46(38):7164−7183. doi: 10.1002/anie.200604274
    [2] SCHUTYSER W, RENDERS T, VAN DEN BOSCH S, KOELEWIJN S F, BECKHAM G T, SELS B F. Chemicals from lignin: An interplay of lignocellulose fractionation, depolymerisation, and upgrading[J]. Chem Soc Rev,2018,47(3):852−908. doi: 10.1039/C7CS00566K
    [3] LI X, CHEN G, LIU C, MA W, YAN B, ZHANG J. Hydrodeoxygenation of lignin-derived bio-oil using molecular sieves supported metal catalysts: A critical review[J]. Renew Sustainable Energy Rev,2017,71:296−308. doi: 10.1016/j.rser.2016.12.057
    [4] LIU C, WANG H, KARIM A M, SUN J, WANG Y. Catalytic fast pyrolysis of lignocellulosic biomass[J]. Chem Soc Rev,2014,43(22):7594−7623. doi: 10.1039/C3CS60414D
    [5] HUBER G W, IBORRA S, CORMA A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering[J]. Chem Rev,2006,106(9):4044−4098. doi: 10.1021/cr068360d
    [6] LASKAR D D, YANG B, WANG H, LEE J. Pathways for biomass-derived lignin to hydrocarbon fuels[J]. Biofuels Bioprod Biorefin,2013,7(5):602−626. doi: 10.1002/bbb.1422
    [7] BJELIĆ A, GRILC M, LIKOZAR B. Catalytic hydrogenation and hydrodeoxygenation of lignin-derived model compound eugenol over Ru/C: Intrinsic microkinetics and transport phenomena[J]. Chem Eng J,2018,333:240−259. doi: 10.1016/j.cej.2017.09.135
    [8] LU M, DU H, WEI B, ZHU J, LI M, SHAN Y, SHEN J, SONG C. Hydrodeoxygenation of guaiacol on Ru catalysts: Influence of TiO2-ZrO2 composite oxide supports[J]. Ind Eng Chem Res,2017,56(42):12070−12079. doi: 10.1021/acs.iecr.7b02569
    [9] LEE C R, YOON J S, SUH Y-W, CHOI J-W, HA J-M, SUH D J, PARK Y-K. Catalytic roles of metals and supports on hydrodeoxygenation of lignin monomer guaiacol[J]. Catal Commun,2012,17:54−58. doi: 10.1016/j.catcom.2011.10.011
    [10] HONG Y-K, LEE D-W, EOM H-J, LEE K-Y. The catalytic activity of Pd/WOx/γ-Al2O3 for hydrodeoxygenation of guaiacol[J]. Appl Catal B: Environ,2014,150−151:438−445.
    [11] LEE K, GU G H, MULLEN C A, BOATENG A A, VLACHOS D G. Guaiacol hydrodeoxygenation mechanism on Pt(111): Insights from density functional theory and linear free energy relations[J]. ChemSusChem,2015,8(2):315−322. doi: 10.1002/cssc.201402940
    [12] GRIFFIN M B, FERGUSON G A, RUDDY D A, BIDDY M J, BECKHAM G T, SCHAIDLE J A. Role of the support and reaction conditions on the vapor-phase deoxygenation of m-cresol over Pt/C and Pt/TiO2 catalysts[J]. ACS Catal,2016,6(4):2715−2727. doi: 10.1021/acscatal.5b02868
    [13] ZHAO N, ZHENG Y, CHEN J. Remarkably reducing carbon loss and H2 consumption on Ni-Ga intermetallic compounds in deoxygenation of methyl esters to hydrocarbons[J]. J Energy Chem,2020,41:194−208. doi: 10.1016/j.jechem.2019.05.019
    [14] JIN S, XIAO Z, LI C, CHEN X, WANG L, XING J, LI W, LIANG C. Catalytic hydrodeoxygenation of anisole as lignin model compound over supported nickel catalysts[J]. Catal Today,2014,234:125−132. doi: 10.1016/j.cattod.2014.02.014
    [15] CHEN J, SHI H, LI L, LI K. Deoxygenation of methyl laurate as a model compound to hydrocarbons on transition metal phosphide catalysts[J]. Appl Catal B: Environ,2014,144:870−884. doi: 10.1016/j.apcatb.2013.08.026
    [16] NIE L, DE SOUZA P M, NORONHA F B, AN W, SOOKNOI T, RESASCO D E. Selective conversion of m-cresol to toluene over bimetallic Ni-Fe catalysts [J]. J Mol Catal A: Chem, 2014, 388389: 47–55.
    [17] YANG F, LIU D, WANG H, LIU X, HAN J, GE Q, ZHU X. Geometric and electronic effects of bimetallic Ni-Re catalysts for selective deoxygenation of m-cresol to toluene[J]. J Catal,2017,349:84−97. doi: 10.1016/j.jcat.2017.01.001
    [18] ZHENG Y, ZHAO N, CHEN J. Enhanced direct deoxygenation of anisole to benzene on SiO2-supported Ni-Ga alloy and intermetallic compound[J]. Appl Catal B: Environ,2019,250:280−291. doi: 10.1016/j.apcatb.2019.02.073
    [19] SUN J, KARIM A M, ZHANG H, KOVARIK L, LI X S, HENSLEY A J, MCEWEN J-S, WANG Y. Carbon-supported bimetallic Pd-Fe catalysts for vapor-phase hydrodeoxygenation of guaiacol[J]. J Catal,2013,306:47−57. doi: 10.1016/j.jcat.2013.05.020
    [20] PARK C W, KIM J W, KIM H U, PARK Y K, LAM S S, HA J M, JAE J. Bimetallic Ni-Re catalysts for the efficient hydrodeoxygenation of biomass‐derived phenols[J]. Int J Energy Res,2021,45(11):16349−16361. doi: 10.1002/er.6882
    [21] HAN Y, AI L, SHI Y, CHEN J. Efficient direct deoxygenation of bio-oil model compound (anisole) on highly dispersed SiO2-supported Ni3Ga intermetallic compound prepared by direct impregnation-reduction method[J]. J Energy Inst,2021,98:20−28. doi: 10.1016/j.joei.2021.05.005
    [22] GUPTA S, KHAN T S, SAHA B, HAIDER M A. Synergistic effect of Zn in a bimetallic PdZn catalyst: Elucidating the role of undercoordinated sites in the hydrodeoxygenation reactions of biorenewable platforms[J]. Ind Eng Chem Res,2019,58(35):16153−16163. doi: 10.1021/acs.iecr.9b00577
    [23] SHI D, ARROYO-RAMÍREZ L, VOHS J M. The use of bimetallics to control the selectivity for the upgrading of lignin-derived oxygenates: Reaction of anisole on Pt and PtZn catalysts[J]. J Catal,2016,340:219−226. doi: 10.1016/j.jcat.2016.05.020
    [24] LI X, ZHANG C, CHENG H, HE L, LIN W, YU Y, ZHAO F. Effect of Zn doping on the hydrogenolysis of glycerol over ZnNiAl catalyst[J]. J Mol Catal A: Chem,2014,395:1−6. doi: 10.1016/j.molcata.2014.07.021
    [25] PAN Z, WANG R, CHEN J. Deoxygenation of methyl laurate as a model compound on Ni-Zn alloy and intermetallic compound catalysts: Geometric and electronic effects of oxophilic Zn[J]. Appl Catal B: Environ,2018,224:88−100. doi: 10.1016/j.apcatb.2017.10.040
    [26] BARROSO M N, GOMEZ M F, ARRúA L A, ABELLO M C. Hydrogen production by ethanol reforming over NiZnAl catalysts[J]. Appl Catal A: Gen,2006,304:116−123. doi: 10.1016/j.apcata.2006.02.033
    [27] LI K, WANG R, CHEN J. Hydrodeoxygenation of anisole over silica-supported Ni2P, MoP, and NiMoP catalysts[J]. Energy Fuels,2011,25(3):854−863. doi: 10.1021/ef101258j
    [28] ZHAO L, MU X, LIU T, FANG K. Bimetallic Ni-Co catalysts supported on Mn-Al oxide for selective catalytic CO hydrogenation to higher alcohols[J]. Catal Sci Technol,2018,8(8):2066−2076. doi: 10.1039/C7CY02555F
    [29] KONG X, ZHU Y, ZHENG H, ZHU Y, FANG Z. Inclusion of Zn into metallic Ni enables selective and effective synthesis of 2, 5-dimethylfuran from bioderived 5-hydroxymethylfurfural[J]. ACS Sustainable Chem Eng,2017,5(12):11280−11289. doi: 10.1021/acssuschemeng.7b01813
    [30] WANG H, MALE J, WANG Y. Recent advances in hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds[J]. ACS Catal,2013,3(5):1047−1070. doi: 10.1021/cs400069z
    [31] RUNNEBAUM R C, LOBO-LAPIDUS R J, NIMMANWUDIPONG T, BLOCK D E, GATES B C. Conversion of anisole catalyzed by platinum supported on alumina: The reaction network[J]. Energy Fuels,2011,25(10):4776−4785. doi: 10.1021/ef2010699
    [32] YU X, CHEN J, REN T. Promotional effect of Fe on performance of Ni/SiO2 for deoxygenation of methyl laurate as a model compound to hydrocarbons[J]. RSC Adv,2014,4(87):46427−46436. doi: 10.1039/C4RA07932A
    [33] HIBBITTS D D, FLAHERTY D W, IGLESIA E. Role of branching on the rate and mechanism of C–C cleavage in alkanes on metal surfaces[J]. ACS Catal,2015,6(1):469−482.
    [34] RODRIGUEZ J A, KUHN M. Interaction of zinc with transition-metal surfaces:   Electronic and chemical perturbations induced by bimetallic bonding[J]. J Phys Chem,1996,100(1):381−389. doi: 10.1021/jp952249m
    [35] ZHOU G, BARRIO L, AGNOLI S, SENANAYAKE S D, EVANS J, KUBACKA A, ESTRELLA M, HANSON J C, MARTINEZ-ARIAS A, FERNANDEZ-GARCIA M, RODRIGUEZ J A. High activity of Ce1−xNixO2−y for H2 production through ethanol steam reforming: Tuning catalytic performance through metal-oxide interactions[J]. Angew Chem Int Ed Eng,2010,49(50):9680−9684. doi: 10.1002/anie.201004966
    [36] GAN L-Y, TIAN R-Y, YANG X-B, LU H-D, ZHAO Y-J. Catalytic reactivity of CuNi alloys toward H2O and CO dissociation for an efficient water-gas shift: A DFT study[J]. J Phys Chem C,2011,116(1):745−752.
    [37] SAIDI M, ROSTAMI P, RAHIMPOUR H R, ROSHANFEKR FALLAH M A, RAHIMPOUR M R, GATES B C, RAEISSI S. Kinetics of upgrading of anisole with hydrogen catalyzed by platinum supported on alumina[J]. Energy Fuels,2015,29(8):4990−4997. doi: 10.1021/acs.energyfuels.5b00297
    [38] SAIDI M, MORADI P. Catalytic hydrotreatment of lignin-derived pyrolysis bio‐oils using Cu/γ-Al2O3 catalyst: Reaction network development and kinetic study of anisole upgrading[J]. Int J Energy Res,2021,45(6):8267−8284. doi: 10.1002/er.6642
    [39] PARSELL T H, OWEN B C, KLEIN I, JARRELL T M, MARCUM C L, HAUPERT L J, AMUNDSON L M, KENTTäMAA H I, RIBEIRO F, MILLER J T, ABU-OMAR M M. Cleavage and hydrodeoxygenation (HDO) of C–O bonds relevant to lignin conversion using Pd/Zn synergistic catalysis[J]. Chem Sci,2013,4(2):806−813. doi: 10.1039/C2SC21657D
    [40] SAHA B, BOHN C M, ABU-OMAR M M. Zinc-assisted hydrodeoxygenation of biomass-derived 5-hydroxymethylfurfural to 2, 5-dimethylfuran[J]. ChemSusChem,2014,7(11):3095−3101. doi: 10.1002/cssc.201402530
    [41] FRIEDRICH M, TESCHNER D, KNOP-GERICKE A, ARMBRüSTER M. Surface and subsurface dynamics of the intermetallic compound ZnNi in methanol steam reforming[J]. J Phys Chem C,2012,116(28):14930−14935. doi: 10.1021/jp303174h
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  405
  • HTML全文浏览量:  177
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-27
  • 修回日期:  2022-04-17
  • 录用日期:  2022-04-17
  • 网络出版日期:  2022-05-12
  • 刊出日期:  2022-10-31

目录

    /

    返回文章
    返回