留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

引入Al2O3对Pt/ZSM-23催化剂加氢异构性能的调控

白迪 孟记朋 邹驰 李闯 梁长海

白迪, 孟记朋, 邹驰, 李闯, 梁长海. 引入Al2O3对Pt/ZSM-23催化剂加氢异构性能的调控[J]. 燃料化学学报(中英文), 2023, 51(2): 175-185. doi: 10.1016/S1872-5813(22)60034-3
引用本文: 白迪, 孟记朋, 邹驰, 李闯, 梁长海. 引入Al2O3对Pt/ZSM-23催化剂加氢异构性能的调控[J]. 燃料化学学报(中英文), 2023, 51(2): 175-185. doi: 10.1016/S1872-5813(22)60034-3
BAI Di, MENG Ji-peng, ZOU Chi, LI Chuang, LIANG Chang-hai. Manipulation of hydroisomerization performance on Pt/ZSM-23 by introducing Al2O3[J]. Journal of Fuel Chemistry and Technology, 2023, 51(2): 175-185. doi: 10.1016/S1872-5813(22)60034-3
Citation: BAI Di, MENG Ji-peng, ZOU Chi, LI Chuang, LIANG Chang-hai. Manipulation of hydroisomerization performance on Pt/ZSM-23 by introducing Al2O3[J]. Journal of Fuel Chemistry and Technology, 2023, 51(2): 175-185. doi: 10.1016/S1872-5813(22)60034-3

引入Al2O3对Pt/ZSM-23催化剂加氢异构性能的调控

doi: 10.1016/S1872-5813(22)60034-3
基金项目: 国家自然科学基金(22038008),辽宁省“兴辽英才计划”(XLYC1908033),大连市支持高层次人才创新创业项目计划(重点领域创新团队支持计划项目2019RT10) 和中央高校基本科研业务费(DUT21TD103)资助
详细信息
    通讯作者:

    Tel: +86-0411-84986353, Fax: +86-0411-84986353, E-mail: chuangli@dlut.edu.cn

    changhai@dlut.edu.cn

  • 中图分类号: O643.32

Manipulation of hydroisomerization performance on Pt/ZSM-23 by introducing Al2O3

Funds: The project was supported by the the National Natural Science Foundation of China (22038008), Liaoning Revitalization Talent Program (XLYC1908033), Dalian Innovation Team Support Plan in Key Areas (2019RT10) and the Fundamental Research Funds for the Central Universities (DUT21TD103).
  • 摘要: 采用双模板剂合成了ZSM-23分子筛,并制备ZSM-23-Al2O3复合载体,通过引入Al2O3调控Pt/ZSM-23催化剂的正十六烷(n-C16)加氢异构性能。采用XRD、SEM、TEM、N2物理吸附-脱附及NH3-TPD等方法探讨Al2O3对催化剂结构性质和化学性质的影响。结果表明,引入Al2O3可以提高Pt在复合载体上的分散度,降低催化剂的酸性位点浓度,有效调控了催化剂的金属-酸性浓度平衡(CPt/CA)。适宜的金属-酸性浓度平衡有利于提高对异构产物的选择性并抑制裂化副反应。Al2O3同时对ZSM-23晶粒起到了分散作用,改善了其分子筛纳米晶粒团聚现象,增加了ZSM-23中孔口的暴露数量,促进反应物和中间体的扩散。复合载体催化剂呈现了出色的异构选择性,其中,Pt/(9Z-1Al)催化剂由于具有适宜的金属-酸性浓度平衡呈现最高的异构产物收率,可达60%,明显高于Pt/ZSM-23催化剂的异构体收率(42%)。反应温度低于310 ℃时,Pt/ZSM-23催化剂的吸附模型符合孔口吸附,而高温时则为锁钥吸附。引入Al2O3后ZSM-23有更多相邻孔口暴露,吸附模型以锁钥择形为主,导致了7/8Me-C15异构产物的大量生成。
  • FIG. 2093.  FIG. 2093.

    FIG. 2093.  FIG. 2093.

    图  1  不同催化剂的XRD谱图

    Figure  1  XRD patterns of various catalysts

    图  2  ZSM-23、Al2O3及复合载体的SEM照片和相应的Al元素Mapping照片

    Figure  2  SEM images of ZSM-23, Al2O3 and ZSM-23-Al2O3 composites, and the corresponding Al element mapping images

    图  3  (a) Pt/ZSM-23、Pt/Al2O3及其复合载体催化剂的N2物理吸附-脱附等温线和 (b) NLDFT孔径分布

    Figure  3  (a) N2 physical adsorption-desorption isotherms and (b) NLDFT pore size distributions of Pt/ZSM-23, Pt/Al2O3, and Pt catalysts supported on ZSM-23-Al2O3

    图  4  催化剂样品的NH3-TPD谱图

    Figure  4  NH3-TPD profiles of the catalysts

    图  5  Pt/ZSM-23、Pt/Al2O3及其复合载体催化剂的TEM图片、金属粒径分布图((a)−(e))以及ZSM-23和γ-Al2O3的Zeta电位变化曲线(f)

    Figure  5  TEM images and metal particle size distributions of Pt/ZSM-23, Pt/Al2O3 and the composite catalysts ((a)−(e)) and Zeta potential curves of ZSM-23 and γ-Al2O3 (f)

    图  6  正十六烷在不同催化剂作用下的加氢异构化

    Figure  6  Hydroisomerization of n-C16 over various catalysts: (a) Conversion of n-C16, (b) Selectivity of i-C16, and ((c)−(f)) yield of various products, including (c) total i-C16, (d) mono-branched, (e) multi-branched, and (f) cracked fractions

    图  7  不同催化剂作用下多支链异构产物(MuB)与单支链异构产物(MB)比值随n-C16转化率的变化(a)及不同催化剂对应的异构体产物分布随温度的变化(b)−(f)

    Figure  7  Ratio values of multi-branched (MuB) to mono-branched (MB) i-C16 versus conversion of n-C16 (a) and i-C16 product distribution with temperature (b)−(f) of catalysts

    表  1  Pt/ZSM-23、Pt/Al2O3及其复合载体催化剂的结构性质

    Table  1  Textural properties of Pt/ZSM-23, Pt/Al2O3, and Pt catalysts supported ZSM-23-Al2O3

    SampleSBETa /
    (m2·g−1)
    Smicrob /
    (m2·g−1)
    Sextc /
    (m2·g−1)
    vtotald /
    (cm3·g−1)
    Pt/ZSM-232211191020.78
    Pt/(9Z-1Al)219951240.79
    Pt/(7Z-3Al)189681210.70
    Pt/(5Z-5Al)137211160.60
    Pt/Al2O3600600.09
    a BET method, b t-plot method, c Sext = SBETSmicro,
    d vtotal determined at p/p0 = 0.99
    下载: 导出CSV

    表  2  由NH3-TPD确定的催化剂酸性位浓度

    Table  2  Concentration of acid sites of catalysts determined by NH3-TPD

    Sample(Si/Al2)aAcidic sites/ (NH3 mmol·g−1)b
    weakmediumstrongtotal
    Pt/ZSM-23790.1240.0610.1080.293
    Pt/(9Z-1Al)520.1100.0330.0690.213
    Pt/(7Z-3Al)290.0960.0290.0620.187
    Pt/(5Z-5Al)210.0760.0200.0500.146
    Pt/Al2O30.0410.0060.0190.066
    a determined by ICP-AES, b determined by NH3-TPD and calculated by the deconvolution method
    下载: 导出CSV

    表  3  催化剂的金属担载特性及酸性质

    Table  3  Metal loading and acid properties of catalysts

    SamplePt wa/%dPtb /nmDc /%CPtd /(μmol·g−1)CA /(μmol·g−1)CPt/CA
    Pt/ZSM-230.602.2850151690.09
    Pt/(9Z-1Al)0.642.2051171020.17
    Pt/(7Z-3Al)0.692.135319910.21
    Pt/(5Z-5Al)0.731.955822700.31
    Pt/Al2O30.821.507532251.27
    a determined by ICP-AES, b average size with standard deviations analyzed by more than 200 particles from TEM images, tolerance scope was ± 0.49 nm, which was obtained via normally distributed data statistics, c D = 1.13/dPt size[27], d CPt denotes density of surface Pt atoms, calculated by Pt loading and dispersion
    下载: 导出CSV
  • [1] ZHANG S, ZHANG Y, TIERNEY J W, WENDER I. Anion-modified zirconia: Effect of metal promotion and hydrogen reduction on hydroisomerization of n-hexadecane and Fischer-Tropsch waxes[J]. Fuel Process Technol,2001,69(1):59−71. doi: 10.1016/S0378-3820(00)00133-8
    [2] CALEMMA V, PERATELLO S, PEREGO C. Hydroisomerization and hydrocracking of long chain n-alkanes on Pt/amorphous SiO2-Al2O3 catalyst[J]. Appl Catal A: Gen,2000,190(1/2):207−218. doi: 10.1016/S0926-860X(99)00292-6
    [3] REGALI F, LIOTTA L F, VENEZIA A M, MONTES V, BOUTONNET M, JRS S. Effect of metal loading on activity, selectivity and deactivation behavior of Pd/silica-alumina catalysts in the hydroconversion of n-hexadecane[J]. Catal Today,2014,223(3):87−96.
    [4] MARTENS J A, VANBUTSELE, JACOBS P A, DENAYER, OCAKOGLU. Evidences for pore mouth and key-lock catalysis in hydroisomerization of long n-alkanes over 10-ring tubular pore bifunctional zeolites[J]. Catal Today,2001,65(2):111−116.
    [5] MARTENS J A, JACOBS P A, WEITKAMP J. Attempts to rationalize the distribution of hydrocracked products. I qualitative description of the primary hydrocracking modes of long chain paraffins in open zeolites[J]. Appl Catal,1986,20(1/2):239−281. doi: 10.1016/0166-9834(86)80020-3
    [6] ZHANG M, LIU Q, LONG H, SUN L, MURAYAMA T, QI C. Insights into Au nanoparticle size and chemical state of Au/ZSM-5 catalyst for catalytic cracking of n-octane to increase propylene production[J]. J Phys Chem C,2021,125(29):16013−16023. doi: 10.1021/acs.jpcc.1c04608
    [7] 侯冉冉, 胡志海, 郭庆洲, 毕云飞, 高杰, 李洪辉. 加氢异构催化剂性质对长链烷烃异构行为的影响[J]. 石油学报(石油加工),2022,38(1):20−28.

    HOU Ran-ran, HU Zhi-hai, GUO Qing-zhou, BI Yun-fei, GAO Jie, LI Hong-hui. Effects of catalysts on catalytic performance in long chain n-alkanes isomerization[J]. Acta Pet Sin(Pet Process Sect),2022,38(1):20−28.
    [8] BURTON A W. A priori phase prediction of zeolites:   Case study of the structure-directing effects in the synthesis of MTT-type zeolites[J]. J Am Chem Soc,2007,129(24):7627−7637. doi: 10.1021/ja070303u
    [9] JR A, LAPIERRE R B, SCHLENKER J L, WOOD J D, VALYOCSIK E W, RUBIN M K, HIGGINS J B, ROHRBAUGH W J. The framework topology of ZSM-23: A high silica zeolite[J]. Zeolites,1985,5(6):352−354. doi: 10.1016/0144-2449(85)90123-X
    [10] HOLZINGER J, NIELSEN M, BEATO P, BROGAARD R Y, BUONO C, DYBALLA M. Identification of distinct framework aluminum sites in zeolite ZSM-23: A combined computational and experimental 27Al NMR study[J]. J Phys Chem C,2019,123(13):7831−7844. doi: 10.1021/acs.jpcc.8b06891
    [11] DEGNAN T F. Applications of zeolites in petroleum refining[J]. Top Catal,2000,13(4):349−356. doi: 10.1023/A:1009054905137
    [12] HENGSAWAD T, SRIMINGKWANCHAI C, BUTNARK S, RESASCO D E, JONGPATIWUT S. Effect of metal-acid balance on hydroprocessed renewable jet fuel synthesis from hydrocracking and hydroisomerization of biohydrogenated diesel over Pt-supported catalysts[J]. Ind Eng Chem Res,2018,57(5):1429−1440. doi: 10.1021/acs.iecr.7b04711
    [13] CHEN Y, LI C, WANG L, ZHANG M, LIANG C. Seed-assisted synthesis of ZSM-23 zeolites in the absence of alkali metal ions[J]. Microporous Mesoporous Mater,2017,252:146−153. doi: 10.1016/j.micromeso.2017.06.013
    [14] HUYBRECHTS W, THYBAUT J W, DE WAELE B R, VANBUTSELE G, HOUTHOOFD K J, BERTINCHAMPS F, DENAYER J F M, GAIGNEAUX E M, MARIN G B, BARON G V, JACOBS P A, MARTENS J A. Bifunctional catalytic isomerization of decane over MTT-type aluminosilicate zeolite crystals with siliceous rim[J]. J Catal,2006,239(2):451−459. doi: 10.1016/j.jcat.2006.02.020
    [15] SMIRNOVA M Y, PIRYUTKO L V, BRESTER Y S, PARFENOV M V, NOSKOV A S. Effect of the ZSM-23 synthesis method on the properties of Pt/ZSM-23/Al2O3 catalysts in n-decane conversion[J]. Pet Chem,2020,60(2):212−218. doi: 10.1134/S0965544120020085
    [16] HUYBRECHTS W, VANBUTSELE G, HOUTHOOFD K J, BERTINCHAMPS F, NARASIMHAN C, GAIGNEAUX E M. Skeletal isomerization of octadecane on bifunctional ZSM-23 zeolite catalyst[J]. Catal Lett,2005,100(3/4):235−242. doi: 10.1007/s10562-004-3461-6
    [17] CHEN Y, LI C, CHEN X, LIU Y, LIANG C. Synthesis of ZSM-23 zeolite with dual structure directing agents for hydroisomerization of n-hexadecane[J]. Microporous Mesoporous Mater,2018,268:216−224. doi: 10.1016/j.micromeso.2018.04.033
    [18] ALVAREZ F, RIBEIRO F R, PEROT G, THOMAZEAU C, GUISNET M. Hydroisomerization and hydrocracking of alkanes: 7. Influence of the balance between acid and hydrogenating functions on the transformation of n-decane on PtHY catalysts[J]. J Catal,1996,162(2):179−189. doi: 10.1006/jcat.1996.0275
    [19] ZHANG Y, LIU D, LOU B, YU R, MEN Z. Hydroisomerization of n-decane over micro/mesoporous Pt-containing bifunctional catalysts: Effects of the MCM-41 incorporation with Y zeolite[J]. Fuel,2018,226(15):204−212.
    [20] BATALHA N, PINARD L, BOUCHY C, GUILLON E, GUISNET M. n-Hexadecane hydroisomerization over Pt-HBEA catalysts. Quantification and effect of the intimacy between metal and protonic sites[J]. J Catal,2013,307:122−131. doi: 10.1016/j.jcat.2013.07.014
    [21] 向江南, 刘伟, 刘成连, 王琰, 陈树伟, 毕士楠, 范彬彬, 李瑞丰. 低硅铝比ZSM-48分子筛合成及其正构十二烷临氢异构催化性能研究[J]. 燃料化学学报,2020,48(1):83−90. doi: 10.3969/j.issn.0253-2409.2020.01.010

    XIANG Jiang-nan, LIU Wei, LIU Cheng-lian, WANG Yan, CHEN Shu-wei, BI Shi-nan, FAN Bin-bin, LI Rui-feng. Synthesis and hydroisomerization performance of n-C12 over ZSM-48 molecular sieve with low silicon-aluminum ratio[J]. J Fuel Chem Technol,2020,48(1):83−90. doi: 10.3969/j.issn.0253-2409.2020.01.010
    [22] MÖLLER K, BEIN T. Crystallization and porosity of ZSM-23[J]. Microporous Mesoporous Mater,2011,143(2):253−262.
    [23] 戴清, 杨玉旺, 裴仁彦, 吴同旭, 蔡奇, 郭秋双. ZSM-23/活性氧化铝复合催化剂在甲醇脱水反应中的应用研究[J]. 无机盐工业,2018,50(2):70−74.

    DAI Qing, YANG Yu-wang, PEI Ren-yan, WU Tong-xu, CAI Qi, GUO Qiu-shuang. Study on application of ZSM-23/active Al2O3 composite catalysts in methanol dehydration reaction[J]. Inorg Chem Ind,2018,50(2):70−74.
    [24] LV G, WANG C, CHI K, LIU H, WANG P, MA H, QU W, TIAN Z. Effects of Pt site distributions on the catalytic performance of Pt/SAPO-11 for n-dodecane hydroisomerization[J]. Catal Today,2018,316:43−50. doi: 10.1016/j.cattod.2018.04.072
    [25] ZECEVIC J, VANBUTSELE G, DE JONG K P, MARTENS J A. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons[J]. Nature,2015,528(7581):245−248. doi: 10.1038/nature16173
    [26] BEN MOUSSA O, TINAT L, JIN X, BAAZIZ W, DURUPTHY O, SAYAG C, BLANCHARD J. Heteroaggregation and selective deposition for the fine design of nanoarchitectured bifunctional catalysts: Application to hydroisomerization[J]. ACS Catal,2018,8(7):6071−6078. doi: 10.1021/acscatal.8b01461
    [27] CHENG K, WAL L I, YOSHIDA H, OENEMA J, HARMEL J. Impact of the spatial organization of bifunctional metal-zeolite catalysts on the hydroisomerization of light alkanes[J]. Angew Chem Int Ed,2020,132(9):3620−3628. doi: 10.1002/ange.201915080
    [28] BATALHA N, PINARD L, POUILLOUX Y, GUISNET M. Bifunctional hydrogenating/acid catalysis: Quantification of the intimacy criterion[J]. Catal Lett,2013,143(6):587−591. doi: 10.1007/s10562-013-1003-9
    [29] TIAN S, CHEN J. Hydroisomerization of n-dodecane on a new kind of bifunctional catalyst: Nickel phosphide supported on SAPO-11 molecular sieve[J]. Fuel Process Technol,2014,122:120−128. doi: 10.1016/j.fuproc.2014.01.031
    [30] KINGER G, VINEK H. n-Nonane hydroconversion on Ni and Pt containing HMFI, HMOR and HBEA[J]. Appl Catal A: Gen,2001,218(1):139−149.
    [31] MENG J, CUI T, BAI D, LI C, CHEN X, LIANG C. Excellent catalytic performance over hierarchical ZSM-48 zeolite: Cooperative effects of enhanced mesoporosity and highly-accessible acidity[J]. Fuel,2022,324:124589.
    [32] 宁强, 刘粟侥, 张怀科, 陈志强, 任杰. 金属前躯体溶剂对Pt/ZSM-22催化剂临氢异构性能的影响[J]. 燃料化学学报,2018,46(12):1454−1461. doi: 10.3969/j.issn.0253-2409.2018.12.006

    NING Qiang, LIU Su-yao, ZHANG Huai-ke, CHEN Zhi-qiang, REN Jie. Effect of metal precursor solvent on n-dodecane isomerization of Pt/ZSM-22[J]. J Fuel Chem Technol,2018,46(12):1454−1461. doi: 10.3969/j.issn.0253-2409.2018.12.006
    [33] 宋成业, 孟记朋, 李闯, 帕哈尔·泽耀东, 梁长海. ZSM-22/ZSM-23共晶分子筛的合成及其正十六烷加氢异构催化性能(英文)[J]. 燃料化学学报,2021,49(5):712−726. doi: 10.1016/S1872-5813(21)60061-0

    SONG Cheng-ye, MENG Ji-peng, LI Chuang, ZEYAODONG P, LIANG Chang-hai. Synthesis of ZSM-22/ZSM-23 intergrowth zeolite as the catalyst support for hydroisomerization of n-hexadecane[J]. J Fuel Chem Technol,2021,49(5):712−726. doi: 10.1016/S1872-5813(21)60061-0
    [34] WEI C, ZHANG G, ZHAO L, GAO J, XU C. Effect of metal-acid balance and textual modifications on hydroisomerization catalysts for n-alkanes with different chain length: A mini-review[J]. Fuel,2021,315:122809.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  384
  • HTML全文浏览量:  72
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-29
  • 修回日期:  2022-05-17
  • 录用日期:  2022-05-23
  • 网络出版日期:  2022-06-09
  • 刊出日期:  2023-01-18

目录

    /

    返回文章
    返回