留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分子筛结构设计及酸性调控在合成气催化转化中的应用进展

庹杰 李石擎 徐浩 关业军 吴鹏

庹杰, 李石擎, 徐浩, 关业军, 吴鹏. 分子筛结构设计及酸性调控在合成气催化转化中的应用进展[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60035-5
引用本文: 庹杰, 李石擎, 徐浩, 关业军, 吴鹏. 分子筛结构设计及酸性调控在合成气催化转化中的应用进展[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60035-5
TUO Jie, LI Shi-qing, XU Hao, GUAN Ye-jun, WU Peng. A progress of structure design and acidity tunning of zeolites in catalytic syngas conversion[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60035-5
Citation: TUO Jie, LI Shi-qing, XU Hao, GUAN Ye-jun, WU Peng. A progress of structure design and acidity tunning of zeolites in catalytic syngas conversion[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60035-5

分子筛结构设计及酸性调控在合成气催化转化中的应用进展

doi: 10.1016/S1872-5813(22)60035-5
基金项目: 国家自然科学基金 (21872052, 21972044, 21773067),科技部重点研发计划2016YFA0202804.
详细信息
    通讯作者:

    Tel: 021-62232292 Fax: 021-62232292, E-mail: yjguan@chem.ecnu.edu.cn

    pwu@chem.ecnu.edu.cn

  • 中图分类号: O643.36;TQ519

A progress of structure design and acidity tunning of zeolites in catalytic syngas conversion

Funds: The project was supported by National Natural Science Foundation of China (21872052, 21972044, 21773067) and the Ministry of Science and Technology of the People’s Republic of China (2016YFA0202804).
  • 摘要: 合成气催化转化是生物质或煤炭资源化清洁利用的重要路径,由此可获得烯烃、芳烃等多种高附加值碳氢化合物。分子筛由于具有独特的亚纳米孔道,可控活性位以及择形性等优点,常被作为载体或直接作为活性组分用于催化合成气转化中C−C的形成/断裂等关键步骤。本文总结了以金属负载分子筛、氧化物-分子筛(OX-ZEO)双功能催化剂及核壳结构催化剂直接转化合成气制备碳氢化合物的研究进展。重点综述介绍分子筛结构和酸性对反应路径和机理以及产物分布的影响,并展望分子筛催化合成气转化的未来发展方向。
  • 图  1  合成气转化制低烯烃和芳烃等烃类的典型途径

    Figure  1  Typical routes for syngas conversion of lower olefins, aromatics and various hydrocarbons

    图  2  费托合成产物分布ASF模型[2]

    Figure  2  ASF model of Fischer–Tropsch synthesis[2]

    图  3  合成气通过Co/ASB直接合成异构烷烃的反应机理[19]

    Figure  3  Reaction mechanism of the direct synthesis of isoparaffins from syngas over Co/ASB[19]

    图  4  Co/Ymeso催化剂合成气转化催化性能[29]

    Figure  4  Catalytic performance of transformations of syngas over Co/Ymeso catalyst.

    (a) Fischer-Tropsch performance over the catalysts with conventional supports or Ymeso zeolites. (b–d) Detailed product distribution of Ymeso catalysts: (b) Co/Ymeso-Ce, (c) Co/Ymeso-La and (d) Co/Ymeso-K[29]

    图  5  合成气转化OX-ZEO双功能催化剂

    Figure  5  Syngas conversion with OX-ZEO bifunctional catalyst systems

    图  6  分子筛骨架结构

    Figure  6  The framework structures of (a) Y, (b) MFI, and (c) CHA zeolites

    图  7  拓扑结构对双循环传播的影响[65]

    Figure  7  Impact of topology on cycles propagation. (a, b) 8 MR zeolites are composed of large cavities with small window openings; (c, d) 1D 10 MR zeolites; (e, f) 3D 10 MR MFI zeolite; (g, h) 1D 12 MR zeolite[65]

    图  8  ZnAlOx/SAPO中SAPO分子筛的窗口尺寸对合成气转化反应的影响[66]

    Figure  8  Effect of window size of SAPO zeolites on the catalytic performances of bifunctional ZnAlOx/SAPO catalysts in syngas conversion[66]

    图  9  ZnAlOx/SAPO 催化合成气转化反应中,SAPO分子筛(8 MR)笼的大小对反应的影响[66]

    Figure  9  Effect of cage size of SAPO zeolites with 8 MR window on the catalytic performances of bifunctional ZnAlOx/SAPO catalysts in syngas conversion[66]

    图  10  MOR分子筛不同酸位对合成气、乙烯酮、甲醇转化反应的影响[54]

    Figure  10  Hydrocarbon distributions in the conversion of syngas, ketene and methanol over different sites of MOR zeolites at 648 K. (A-C) 8 MR acid sites; (D-F) 12 MR acid sites; (G-I) both the 8 MR and 12 MR acid sites; (A, D, G) syngas over ZnCrOx-MOR; (B, E, H); ketene conversion over MOR; (C, F, I) methanol conversion over MOR[54]

    图  11  ZnCrOx-ZSM-5催化合成气制芳烃。b/a取向长度比值对芳烃和${\rm{C}}_{6}^{\rm{+}} $脂肪烃类分布的影响[52]

    Figure  11  Syngas to aromatics over ZnCrOx-ZSM-5. Distributions of aromatics and ${\rm{C}}_{6}^{\rm{+}} $ aliphatics in C6+ hydrocarbons as a function of the length ratio of the b/a axes[52]

    图  12  酸性对双循环传播过程的影响[65]

    Figure  12  Impact of acidity on the cycle’s propagation. Dependence of selectivity of ${\rm{C}}_{3}^{{=}}$ (a) and aromatics (b) on the Si/Al ratios for ZSM-5 zeolites summarized from literatures. The reaction process in the zeolite with low (c) and high (d) B acid site (BAS) density[65]

    图  13  ZnCrOx-SAPO-18双功能催化剂催化合成气转化的催化性能与硅铝比的关系[45]

    Figure  13  Catalytic performance of syngas conversion over ZnCrOx-SAPO-18 bifunctional catalyst as a function of the Si/Al ratio. (a) CO conversion and selectivity and (b) ratio of C3/C2 and olefins to paraffins (O/P) [45]. Adapted with permission from ref 45. Copyright 2020, American Chemical Society.

    图  14  B酸位点密度对双功能Zn-ZrO2/SSZ-13催化剂催化行为的影响[35]

    Figure  14  Effect of density of B acid sites on catalytic behaviors of the bifunctional Zn–ZrO2/SSZ-13 catalyst[35]

    图  15  Co/Al2O3/H-beta核壳催化剂[88]

    Figure  15  The core/shell catalyst of Co/Al2O3/H-beta[88]

    图  16  Na-Zn-Fe5C2@ H-ZSM-5催化剂合成气制备芳烃的机理[94]

    Figure  16  Proposed scheme for direct production of aromatics from syngas on Na-Zn-Fe5C2@ H-ZSM-5 catalyst[94]

    表  1  FTS反应的代表性金属负载催化剂

    Table  1  Representative metal loaded catalysts of FTS reaction

    CatalystT(K)P(MPa)GHSV(mL g−1 h−1)H2/COCO
    conv. (%)
    CO2 sel. (%)Main product (%)Ref.
    mBulk Fe613215001973432a (0.57b)[8]
    Fe/α-Al2O3804053a (8.48b)
    Fe/CNF884252a (2.98b)
    Fe3O45931.530002974435a[9]
    Fe3O4@SiO2342330a
    Fe/PANI623190002794447a[11]
    Co/SiO25032240013760d (0.3c)[18]
    Co/Al2O33956d (0.5c)
    Co/H-Y3672d (3.2c)
    Co/H-meso-Y4079d (2.7c)
    Co/SiO2513122402200.07c[19]
    Co/Beta302.43c
    Co/ASB361.50c
    Ru/SiO25332240013225e (0.42c)[16]
    Ru/Al2O34022e (0.53c)
    Ru/TiO22026e (1.1c)
    Ru/H-Mordenite3152e (1.8c)
    Ru/H-Beta2458e (3.3c)
    Ru/H-MCM-222254e (4.1c)
    Ru/H-ZSM-52547e (2.7c)
    Co/H-meso-ZSM-5-0.5M5132240024270e (2.3b)[20]
    10%Fe/HZSM-5593240001815027 (60)[21]
    25%Fe/HZSM-5855031 (70)
    a: Selectivity of ${\rm{C} }_{ {\rm{2-4} } }^{\rm{=} } $; b: FTY; c: Molar ratio of isoparaffins to n-paraffins; d: Selectivity of C5-20; e: Selectivity of C5-11; f: Aromatics selectivity in ${\rm{C} }_{ {\rm{5} } }^{\rm{+} } $ hydrocarbons
    下载: 导出CSV

    表  2  合成气催化转化代表性OX-ZEO双功能催化剂

    Table  2  Representative OX-ZEO bifunctional catalysts of syngas catalytic conversion

    Zeolite
    topology
    ZeoliteOxideT
    (K)
    P
    (MPa)
    GHSV(mL g−1 h−1)H2/COCO
    conv. (%)
    CO2 sel. (%)Main product (%)Ref.
    ${\boldsymbol{ {\rm{C} } } }_{2-4}^{\rm{=} }$${\boldsymbol{ {\rm{C} } } }_{5}^{ {+} }$
    CHA
    (3D, 8 MR)
    SAPO-34ZnCrOx6733.548002.5174180[35]
    SAPO-34ZnO-ZrO2673136002743692[35]
    SAPO-34ZnAlOx6634120001733784[33]
    SAPO-34MnOx6732.548002.5743795[39]
    SAPO-34ZnCeZrO457315400266839[41]
    SAPO-34ZrCeZnOx6731390021345823[36]
    SAPO-34MnGaOx6732.5487521445882[42]
    SAPO-34ZnO673416002.53242775[38]
    SAPO-34Zr-In2O36732.5360012840742[43]
    SSZ-13Zn–ZrO26733300022942773[35]
    BAl-CHAZnAlOx623124002104383[44]
    AEI
    (3D, 8 MR)
    SAPO-18ZnCrOx673450002.5364182[45]
    AlPO-18ZnCrOx6634360012548879[46]
    AEL
    (1D 10 MR)
    SAPO-11Zn2Mn1Ox6334100012077a[47]
    TON
    (1D 10 MR)
    ZSM-22Zn2Mn1Ox6334100011964a[47]
    MTW
    (1D 12 MR)
    ZSM-12Zn2Mn1Ox6334100012170a[47]
    MFI
    (3D 10 MR)
    ZSM-5Zn2Mn1Ox6334100012367a[47]
    ZSM-5CeZrO265326001832.983b[48]
    ZSM-5Mo-ZrO26734300022276b[49]
    ZSM-5MnO623233322183b[50]
    ZSM-5ZnCrOx6234150011674b[51]
    ZSM-5ZnCrOx623415001184969b[52]
    ZSM-51Zn-3Cr6682400011172b[53]
    MEL
    (3D 10 MR)
    ZSM-11Zn2Mn1Ox6334100012364a[47]
    MOR
    (3D, 8 MR &12 MR)
    MORZnCrOx6332160012648915[54]
    MORZnAl2O46433150011044776[55]
    a: Selectivity of C5–11 b: Aromatics
    下载: 导出CSV
  • [1] LIU Z, NI Y, GAO M, WANG L, FANG X, LIU J, CHEN Z, WANG N, TIAN P, ZHU W, LIU Z. Simultaneously Achieving High Conversion and Selectivity in Syngas-to-Propane Reaction via a Dual-Bed Catalyst System[J]. ACS Catal,2022,3985−3994.
    [2] ZHOU W, CHENG K, KANG J, ZHOU C, SUBRAMANIAN V, ZHANG Q, WANG Y. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chem Soc Rev,2019,48(12):3193−3228. doi: 10.1039/C8CS00502H
    [3] ZHAI P, LI Y, WANG M, LIU J, CAO Z, ZHANG J, XU Y, LIU X, LI Y, ZHU Q, XIAO D, WEN X, MA D. Development of direct conversion of syngas to unsaturated hydrocarbons based on Fischer-Tropsch route[J]. Chem,2021,7(11):3027−3051. doi: 10.1016/j.chempr.2021.08.019
    [4] TUO J, LV J, FAN S, LI H, YANG N, CHENG S, GAO X, ZHAO T. One-pot synthesis of [Mn, H]ZSM-5 and the role of Mn in methanol-to-propylene reaction[J]. Fuel,2022,308:121995. doi: 10.1016/j.fuel.2021.121995
    [5] KANG J, HE S, ZHOU W, SHEN Z, LI Y, CHEN M, ZHANG Q, WANG Y. Single-pass transformation of syngas into ethanol with high selectivity by triple tandem catalysis[J]. Nat Commun, 2020, 11(1).
    [6] XIAO J, CHENG K, XIE X, WANG M, XING S, LIU Y, HARTMAN T, FU D, BOSSERS K, VAN HUIS M A, VAN BLAADEREN A, WANG Y, WECKHUYSEN B M. Tandem catalysis with double-shelled hollow spheres[J]. Nat Mater, 2022.
    [7] 韩小雪, 陈妍希, 赵俏, 陈佳佳, 黄守莹, 吕静, 马新宾. 碳限域铁基费托合成催化剂研究进展[J]. 化工进展,2021,40(4):1917−1927.

    HAN Xiao-xue, CHEN Yan-xi, ZHAO Qiao, CHEN Jia-jia, HUANG Shou-ying, LV Jing, MA Xin-bin. Advances in carbon-confined iron-based catalysts for Fischer-Tropsch synthesis[J]. Chem Ind Eng Prog,2021,40(4):1917−1927.
    [8] TORRES G H, BITTER J H, KHARE C B, RUITENBEEK M, DUGULAN A I, DE JONG K P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Sci,2012,335(6070):835−838. doi: 10.1126/science.1215614
    [9] YAN B, MA L, GAO X, ZHANG J, MA Q, ZHAO T. Amphiphobic surface fabrication of iron catalyst and effect on product distribution of Fischer-Tropsch synthesis[J]. Appl Catal A:Gen,2019,585:117184. doi: 10.1016/j.apcata.2019.117184
    [10] 于飞, 李正甲, 安芸蕾, 高鹏, 钟良枢, 孙予罕. 合成气催化转化直接制备低碳烯烃研究进展[J]. 燃料化学学报,2016,44(7):801−814. doi: 10.3969/j.issn.0253-2409.2016.07.005

    YU Fei, LI Zheng-jia, AN Yun-lei, GAO Peng, ZHONG Liang-shu, SUN Yu-han. Research progress in the direct conversion of syngas to lower olefins[J]. J Fuel Chem Technol,2016,44(7):801−814. doi: 10.3969/j.issn.0253-2409.2016.07.005
    [11] GU B, HE S, ZHOU W, KANG J, CHENG K, ZHANG Q, WANG Y. Polyaniline-supported iron catalyst for selective synthesis of lower olefins from syngas[J]. J Ener Chem,2017,26(4):608−15. doi: 10.1016/j.jechem.2017.04.009
    [12] CHEN Y, WEI J, DUYAR M S, ORDOMSKY V V, KHODAKOV A Y, LIU J. Carbon-based catalysts for Fischer-Tropsch synthesis[J]. Chem Soc Rev,2021,50(4):2337−2366. doi: 10.1039/D0CS00905A
    [13] GUO S, NIU C, MA Z, WANG J, HOU B, JIA L, LI D. A novel and facile strategy to decorate Al2O3 as an effective support for Co-based catalyst in Fischer-Tropsch synthesis[J]. Fuel,2021,289:119780. doi: 10.1016/j.fuel.2020.119780
    [14] PERON D V, BARRIOS A J, TASCHIN A, DUGULAN I, MARINI C, GORNI G, MOLDOVAN S, KONETI S, WOJCIESZAK R, THYBAUT J W, VIRGINIE M, KHODAKOV A Y. Active phases for high temperature Fischer-Tropsch synthesis in the silica supported iron catalysts promoted with antimony and tin[J]. Appl Catal B:Environ,2021,292:120141. doi: 10.1016/j.apcatb.2021.120141
    [15] JESKE K, KIZILKAYA A C, LOPEZ-LUQUE I, PFANDER N, BARTSCH M, CONCEOCION P, PRIETO G. Design of Cobalt Fischer-Tropsch Catalysts for the Combined Production of Liquid Fuels and Olefin Chemicals from Hydrogen-Rich Syngas[J]. ACS Catal,2021,11(8):4784−4798. doi: 10.1021/acscatal.0c05027
    [16] CHENG K, KANG J, HUANG S, YOU Z, ZHANG Q, DING J, HUA W, LOU Y, DENG W, WANG Y. Mesoporous Beta Zeolite-Supported Ruthenium Nanoparticles for Selective Conversion of Synthesis Gas to C5-C11 Isoparaffins[J]. ACS Catal,2012,2(3):441−449. doi: 10.1021/cs200670j
    [17] ZHANG Q, YU J, CORMA A. Applications of Zeolites to C1 Chemistry: Recent Advances, Challenges, and Opportunities[J]. Adv Mater,2020,32(44):2002927. doi: 10.1002/adma.202002927
    [18] PENG X, CHENG K, KANG J, GU B, YU X, ZHANG Q, WANG Y. Impact of Hydrogenolysis on the Selectivity of the Fischer-Tropsch Synthesis: Diesel Fuel Production over Mesoporous Zeolite-Y-Supported Cobalt Nanoparticles[J]. Angew Chem Int Ed,2015,54(15):4553−4556. doi: 10.1002/anie.201411708
    [19] LIN Q, YANG G, CHEN Q, FAN R, YONEYAMA Y, WAN H, TSUBAKI N. Design of a Hierarchical Meso/Macroporous Zeolite-Supported Cobalt Catalyst for the Enhanced Direct Synthesis of Isoparaffins from Syngas[J]. ChemCatChem,2015,7(4):682−689. doi: 10.1002/cctc.201402929
    [20] CHENG K, ZHANG L, KANG J, PENG X, ZHANG Q, WANG Y. Selective Transformation of Syngas into Gasoline-Range Hydrocarbons over Mesoporous H-ZSM-5-Supported Cobalt Nanoparticles[J]. Chem - Eur J,2015,21(5):1928−1937. doi: 10.1002/chem.201405277
    [21] XU Y, LIU J, MA G, WANG J, LIN J, WANG H, ZHANG C, DING M. Effect of iron loading on acidity and performance of Fe/HZSM-5 catalyst for direct synthesis of aromatics from syngas[J]. Fuel,2018,228:1−9. doi: 10.1016/j.fuel.2018.04.151
    [22] XU Y, WANG J, MA G, BAI J, DU Y, DING M. Direct synthesis of aromatics from syngas over Mo-modified Fe/HZSM-5 bifunctional catalyst[J]. Appl Catal A:Gen,2020,598:117589. doi: 10.1016/j.apcata.2020.117589
    [23] SUN J, LI X, TAGUCHI A, ABE T, NIU W, LU P, YONEYAMA Y, TSUBAKI N. Highly-Dispersed Metallic Ru Nanoparticles Sputtered on H-Beta Zeolite for Directly Converting Syngas to Middle Isoparaffins[J]. ACS Catal,2014,4(1):1−8. doi: 10.1021/cs4008842
    [24] WANG H, PINNAVAIA T J. MFI Zeolite with Small and Uniform Intracrystal Mesopores[J]. Angew Chem Int Ed,2006,45(45):7603−7606. doi: 10.1002/anie.200602595
    [25] ALMUTAIRI S M T, MEZARI B, PIDKO E A, MAGUSIN P C M M, HENSEN E J M. Influence of steaming on the acidity and the methanol conversion reaction of HZSM-5 zeolite[J]. J Catal,2013,307:194−203. doi: 10.1016/j.jcat.2013.07.021
    [26] WEN C, WANG C, CHEN L, ZHANG X, LIU Q, MA L. Effect of hierarchical ZSM-5 zeolite support on direct transformation from syngas to aromatics over the iron-based catalyst[J]. Fuel,2019,244:492−498. doi: 10.1016/j.fuel.2019.02.041
    [27] PENG X, CHENG K, KANG J, GU B, YU X, ZHANG Q, WANG Y. Impact of Hydrogenolysis on the Selectivity of the Fischer-Tropsch Synthesis: Diesel Fuel Production over Mesoporous Zeolite-Y-Supported Cobalt Nanoparticles[J]. Angew Chem Int Ed,2015,54(15):4553−4556. doi: 10.1002/anie.201411708
    [28] WU L, LI Z, HAN D, WU J, ZHANG D. A preliminary evaluation of ZSM-5/SBA-15 composite supported Co catalysts for Fischer-Tropsch synthesis[J]. Fuel Process Technol,2015,134:449−455. doi: 10.1016/j.fuproc.2015.02.025
    [29] LI J, HE Y, TAN L, ZHANG P, PENG X, ORUGANTI A, YANG G, ABE H, WANG Y, TSUBAKI N. Integrated tuneable synthesis of liquid fuels via Fischer-Tropsch technology[J]. Nat Catal,2018,1(10):787−93. doi: 10.1038/s41929-018-0144-z
    [30] 周伟, 成康, 张庆红, 王野. 合成气转化中的接力催化[J]. 科学通报.,2021,66(10):1157−1169.

    ZHOU Wei, CHENG Kang, ZHANG Qing-hong, WANG Ye. Relay catalysis in the conversion of syngas[J]. Sci China Press,2021,66(10):1157−1169.
    [31] JIAO F, LI J, PAN X, XIAO J, LI H, MA H, WEI M, PAN Y, ZHOU Z, MINGRUN, LI S M, LI J, ZHU Y, XIAO D, HE T, YANG J, QI F, FU Q, BAO X. Selective conversion of syngas tolight olefins[J]. Sci,2016,351(6277):1065−1068. doi: 10.1126/science.aaf1835
    [32] CHENG K, GU B, LIU X, KANG J, ZHANG Q, WANG Y. Direct and Highly Selective Conversion of Synthesis Gas into Lower Olefins: Design of a Bifunctional Catalyst Combining Methanol Synthesis and Carbon-Carbon Coupling[J]. Angew Chem,2016,128(15):4803−4806. doi: 10.1002/ange.201601208
    [33] NI Y, LIU Y, CHEN Z, YANG M, LIU H, HE Y, FU Y, ZHU W, LIU Z. Realizing and Recognizing Syngas-to-Olefins Reaction via a Dual-Bed Catalyst[J]. ACS Catal,2019,9(2):1026−1032. doi: 10.1021/acscatal.8b04794
    [34] LUO Y, WANG S, GUO S, YUAN K, WANG H, DONG M, QIN Z, FAN W, WANG J. Conversion of syngas into light olefins over bifunctional ZnCeZrO/SAPO-34 catalysts: regulation of the surface oxygen vacancy concentration and its relation to the catalytic performance[J]. Catal Sci Technol,2021,11(1):338−348. doi: 10.1039/D0CY01759K
    [35] LIU X, ZHOU W, YANG Y, CHENG K, KANG J, ZHANG L, ZHANG G, MIN X, ZHANG Q, WANG Y. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanoldimethyl ether intermediates[J]. Chem Sci,2018,9(20):4708−4718. doi: 10.1039/C8SC01597J
    [36] MENG F, LI X, ZHANG P, YANG L, YANG G, MA P, LI Z. Highly active ternary oxide ZrCeZnOx combined with SAPO-34 zeolite for direct conversion of syngas into light olefins[J]. Catal Today,2021,368:118−125. doi: 10.1016/j.cattod.2020.03.023
    [37] JIAO W, SU J, ZHOU H, LIU S, LIU C, ZHANG L, WANG Y, YANG W. Dual template synthesis of SAPO-18/34 zeolite intergrowths and their performances in direct conversion of syngas to olefins[J]. Micropor Mesopor Mater,2020,306:110444. doi: 10.1016/j.micromeso.2020.110444
    [38] LI N, JIAO F, PAN X, DING Y, FENG J, BAO X. Size Effects of ZnO Nanoparticles in Bifunctional Catalysts for Selective Syngas Conversion[J]. ACS Catal,2019,9(2):960−966. doi: 10.1021/acscatal.8b04105
    [39] ZHU Y, PAN X, JIAO F, LI J, YANG J, DING M, HAN Y, LIU Z, BAO X. Role of Manganese Oxide in Syngas Conversion to Light Olefins[J]. ACS Catal,2017,7(4):2800−2804. doi: 10.1021/acscatal.7b00221
    [40] CHRISTOPHE C, L'HOSPITAL V, CHECA R, LE VALANT A, AFANASIEV P, LORIDANT S. On the reaction mechanism of MnOx/SAPO-34 bifunctional catalysts for the conversion of syngas to light olefins[J]. Catal Sci Technol,2021,11(24):7844−7849. doi: 10.1039/D1CY01673C
    [41] WANG S, WANG P, SHI D, HE S, ZHANG L, YAN W, QIN Z, LI J, DONG M, WANG J, OLSBYE U, FAN W. Direct Conversion of Syngas into Light Olefins with Low CO2 Emission[J]. ACS Catal,2020,10(3):2046−2059. doi: 10.1021/acscatal.9b04629
    [42] ZHANG P, MENG F, LI X, YANG L, MA P, LI Z. Excellent selectivity for direct conversion of syngas to light olefins over a Mn-Ga oxide and SAPO-34 bifunctional catalyst[J]. Catal Sci Technol,2019,9(20):5577−5581. doi: 10.1039/C9CY01348B
    [43] SU J, WANG D, WANG Y, ZHOU H, LIU C, LIU S, WANG C, YANG W, XIE Z, HE M. Direct Conversion of Syngas into Light Olefins over Zirconium-Doped Indium(III) Oxide and SAPO-34 Bifunctional Catalysts: Design of Oxide Component and Construction of Reaction Network[J]. ChemCatChem,2018,10(7):1536−1541. doi: 10.1002/cctc.201702054
    [44] REN L, ZHANG J, WANG B, XU H, JIANG J, GUAN Y, WU P. Syngas to light olefins over ZnAlOx and high-silica CHA prepared by boron-assisted hydrothermal synthesis[J]. Fuel,2022,307:121916. doi: 10.1016/j.fuel.2021.121916
    [45] LI G, JIAO F, PAN X, LI N, MIAO D, LI L, BAO X. Role of SAPO-18 Acidity in Direct Syngas Conversion to Light Olefins[J]. ACS Catal,2020,10(21):12370−12375. doi: 10.1021/acscatal.0c03257
    [46] SU J, ZHOU H, LIU S, WANG C, JIAO W, WANG Y, LIU C, YE Y, ZHANG L, ZHAO Y, LIU H, WANG D, YANG W, XIE Z, HE M. Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrOx/AlPO-18 bifunctional catalysts[J]. Nat Commun,2019,10(1):1297. doi: 10.1038/s41467-019-09336-1
    [47] LI N, JIAO F, PAN X, CHEN Y, FENG J, LI G, BAO X. High-Quality Gasoline Directly from Syngas by Dual Metal Oxide-Zeolite (OX-ZEO) Catalysis[J]. Angew Chem Int Ed,2019,58(22):7400−7404. doi: 10.1002/anie.201902990
    [48] HUANG Z, WANG S, QIN F, HUANG L, YUE Y, HUAW, QIAO M, HE H, SHEN W, XU H. Ceria-Zirconia/Zeolite Bifunctional Catalyst for Highly Selective Conversion of Syngas into Aromatics[J]. ChemCatChem,2018,10(20):4519−4524. doi: 10.1002/cctc.201800911
    [49] ZHOU W, SHI S, WANG Y, ZHANG L, WANG Y, ZHANG G, MIN X, CHENG K, ZHANG Q, KANG J, WANG Y. Selective Conversion of Syngas to Aromatics over a Mo-ZrO2/H-ZSM-5 Bifunctional Catalyst[J]. ChemCatChem,2019,11(6):1681−1688. doi: 10.1002/cctc.201801937
    [50] GILANI S Z A, LU L, ARSLAN M T, ALI B, WANG Q, WEI F. Two-way desorption coupling to enhance the conversion of syngas into aromatics by MnO/H-ZSM-5[J]. Catal Sci Technol,2020,10(10):3366−3375. doi: 10.1039/D0CY00275E
    [51] YANG J, PAN X, JIAO F, LI J, BAO X. Direct conversion of syngas to aromatics[J]. Chem Commun,2017,53(81):11146−11149. doi: 10.1039/C7CC04768A
    [52] YANG J, GONG K, MIAO D, JIAO F, PAN X, MENG X, XIAO F, BAO X. Enhanced aromatic selectivity by the sheet-like ZSM-5 in syngas conversion[J]. J Energy Chem,2019,35:44−48. doi: 10.1016/j.jechem.2018.10.008
    [53] LIU C, LIU S, ZHOU H, SU J, JIAO W, ZHANG L, WANG Y, HE H, XIE Z. Selective conversion of syngas to aromatics over metal oxide/HZSM-5 catalyst by matching the activity between CO hydrogenation and aromatization[J]. Appl Catal A:Gen,2019,585:117206. doi: 10.1016/j.apcata.2019.117206
    [54] JIAO F, PAN X, GONG K, CHEN Y, LI G, BAO X. Shape-Selective Zeolites Promote Ethylene Formation from Syngas via a Ketene Intermediate[J]. Angew Chem Int Ed,2018,57(17):4692−4696. doi: 10.1002/anie.201801397
    [55] ZHOU W, KANG J, CHENG K, HE S, SHI J, ZHOU C, ZHANG Q, CHEN J, PENG L, CHEN M, WANG Y. Direct Conversion of Syngas into Methyl Acetate, Ethanol, and Ethylene by Relay Catalysis via the Intermediate Dimethyl Ether[J]. Angew Chem Int Ed,2018,57(37):12012−12016. doi: 10.1002/anie.201807113
    [56] LI S, SI X, PENG R, PAN H, XU H, JIANG J, MA Y, WU P. “Burr Puzzle”-Like Hierarchical Beta zeolite composed of crisscrossed nanorods[J]. Micropor Mesopor Mater,2022,335:111843. doi: 10.1016/j.micromeso.2022.111843
    [57] LI S, HAN L, ZHAO Z, XU H, JIANG J, WU P. Zeolites featuring 14 × 12-ring channels with unique adsorption properties[J]. Inorg Chem Front,2021,8(24):5277−5285. doi: 10.1039/D1QI01171E
    [58] LU K, HUANG J, REN L, LI C, GUAN Y, HU B, XU H, JIANG J, MA Y, WU P. High Ethylene Selectivity in Methanol-to-Olefin (MTO) Reaction over MOR-Zeolite Nanosheets[J]. Angew Chem Int Ed,2020,59(15):6258−6262. doi: 10.1002/anie.202000269
    [59] FAN S, TUO J, WANG D, RONG J, ZHANG J, MA Q, GAO X, YANG G, ZHAO T, TSUBAKI N. Facile Synthesis of Proton-Type ZSM-5 by Using Quasi-Solid-Phase (QSP) Method[J]. Chem - Eur J,2020,26(39):8532−8535. doi: 10.1002/chem.202002021
    [60] MENG X, XIAO F. Green Routes for Synthesis of Zeolites[J]. Chem Rev,2014,114(2):1521−1543. doi: 10.1021/cr4001513
    [61] TUO J, FAN S, YANG N, CHENG S, WANG D, ZHANG J, MA Q, GAO X, ZHAO T. Direct synthesis of [B, H]ZSM-5 by a solid-phase method: AlF siting and catalytic performance in the MTP reaction[J]. Catal Sci Technol, 2020.
    [62] FAN S, WANG D, LI H, TUO J, ZHANG X, GAO X, ZHAO T. Enhancing stability and coaromatization of n-hexane and methanol over [Zn, Cr]/HZSM-5[J]. Appl Catal A:Gen,2020,599:117602. doi: 10.1016/j.apcata.2020.117602
    [63] JING B, LI J. Evolution of Hydrocarbon Pool over SAPO-34 Catalyst during Methanol to Light Olefins[J]. ChemistrySelect,2019,4(25):7634−7638. doi: 10.1002/slct.201901268
    [64] GUO Y, SUN T, LIU X, KE Q, WEI X, GU Y, WANG S. Cost-effective synthesis of CHA zeolites with controllable morphology and size[J]. Chem Eng J,2019,358:331−339. doi: 10.1016/j.cej.2018.10.007
    [65] YARULINA I, CHOWDHURY A D, MEIRER F, WECKHUYSEN B M, GASCON J, SUB I C A C, INORGANIC C A C. Recent trends and fundamental insights in the methanol-to-hydrocarbons process[J]. Nat catal,2018,1(6):398−411. doi: 10.1038/s41929-018-0078-5
    [66] WANG M, KANG J, XIONG X, ZHANG F, CHENG K, ZHANG Q, WANG Y. Effect of zeolite topology on the hydrocarbon distribution over bifunctional ZnAlO/SAPO catalysts in syngas conversion[J]. Catal Today,2021,371:85−92. doi: 10.1016/j.cattod.2020.07.076
    [67] REN L, WANG B, LU K, PENG R, GUAN Y, JIANG J G, XU H, WU P. Selective conversion of methanol to propylene over highly dealuminated mordenite: Al location and crystal morphology effects[J]. Chin J Catal,2021,42(7):1147−1159. doi: 10.1016/S1872-2067(20)63726-3
    [68] WANG S, WANG P, QIN Z, CHEN Y, DONG M, LI J, ZHANG K, LIU P, WANG J, FAN W. Relation of Catalytic Performance to the Aluminum Siting of Acidic Zeolites in the Conversion of Methanol to Olefins, Viewed via a Comparison between ZSM-5 and ZSM-11[J]. ACS Catal,2018,8(6):5485−5505. doi: 10.1021/acscatal.8b01054
    [69] LI C, VIDAL-MOYA A, MIGUEL P J, DEDECEK J, BORONAT M, CORMA A. Selective Introduction of Acid Sites in Different Confined Positions in ZSM-5 and Its Catalytic Implications[J]. ACS Catal,2018,8(8):7688−7697. doi: 10.1021/acscatal.8b02112
    [70] CHOI M, NA K, KIM J, SAKAMOTO Y, TERASAKI O, RYOO R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts[J]. Nat,2009,461(7261):246−249. doi: 10.1038/nature08288
    [71] LIU Z, WU D, REN S, CHEN X, QIU M, WU X, YANG C, ZENG G, SUN Y. Solvent-Free Synthesis of c-Axis Oriented ZSM-5 Crystals with Enhanced Methanol to Gasoline Catalytic Activity[J]. ChemCatChem,2016,8(21):3317−3322. doi: 10.1002/cctc.201600896
    [72] LIU C, SU J, XIAO Y, ZHOU J, LIU S, ZHOU H, YE Y, LU Y, ZHANG Y, JIAO W, ZHANG L, WANG Y, WANG C, ZHENG X, XIE Z. Constructing directional component distribution in a bifunctional catalyst to boost the tandem reaction of syngas conversion[J]. Chem Catal,2021,1(4):896−907. doi: 10.1016/j.checat.2021.06.016
    [73] 徐华龙, 方越, 黄镇, 沈伟, 王金昊. 一种用于合成气制轻质芳烃的双功能催化剂及其制备方法: 中国, CN113289674A[P]. 2021-08-24

    XU Hua-long, FANG Yue, HUANG Zhen, SHEN Wei, WANG Jin-hao. A bifunctional catalyst for syngas to light aromatic hydrocarbons and its preparation method: CN, CN113289674A[P]. 2021-08-24.
    [74] 潘秀莲, 苗登云, 包信和, 丁一. 一种催化合成气直接转化制富含BTX的芳烃的催化剂及其应用: 中国, CN112295597B[P]. 2021-08-06

    PAN Xiu-lian, MIAO Deng-yun, BAO Xin-he, DING Yi. A catalyst for the direct conversion of syngas to BTX-rich aromatic hydrocarbons and its application: CN, CN112295597B[P]. 2021-08-06.
    [75] WANG H, GAO P, LI S, WANG T, YANG C, LI J, LIN T, ZHONG L, SUN Y. Bifunctional catalysts with versatile zeolites enable unprecedented para-xylene productivity for syngas conversion under mild conditions[J]. Chem Catal, 2022.
    [76] KHARE R, MILLAR D, BHAN A. A mechanistic basis for the effects of crystallite size on light olefin selectivity in methanol-to-hydrocarbons conversion on MFI[J]. J Catal,2015,321:23−31. doi: 10.1016/j.jcat.2014.10.016
    [77] FU T, MA Z, WANG Y, SHAO J, MA Q, ZHANG C, CUI L, LI Z. Si/Al ratio induced structure evolution during desilication-recrystallization of silicalite-1 to synthesize nano-ZSM-5 catalyst for MTH reaction[J]. Fuel Process Technol,2019,194:106122. doi: 10.1016/j.fuproc.2019.106122
    [78] LIN L, FAN M, SHEVELEVA A M, HAN X, TANG Z, CARTER J H, DA SILVA I, PARLETT C M A, TUNA F, MCINNES E J L, SASTRE G, RUDIC S, CAVAYE H, PARKER S F, CHENG Y, DAEMEN L L, RAMIREZ-CUESTA A J, ATTFIELD M P, LIU Y, TANG C C, HAN B, YANG S. Control of zeolite microenvironment for propene synthesis from methanol[J]. Nat Commun, 2021, 12(1).
    [79] VJUNOV A, FULTON J L, HUTHWELKER T, PIN S, MEI D, SCHENTER G K, GOVIND N, CAMAIONI D M, HU J Z, LERCHER J A. Quantitatively Probing the Al Distribution in Zeolites[J]. J Am Chem Soc,2014,136(23):8296−8306. doi: 10.1021/ja501361v
    [80] KIM S, PARK G, WOO M H, KWAK G, KIM S K. Control of Hierarchical Structure and Framework-Al Distribution of ZSM-5 via Adjusting Crystallization Temperature and Their Effects on Methanol Conversion[J]. ACS Catal,2019,9(4):2880−2892. doi: 10.1021/acscatal.8b04493
    [81] LI J, MA H, CHEN Y, XU Z, LI C, YING W. Conversion of methanol to propylene over hierarchical HZSM-5: the effect of Al spatial distribution[J]. Chem Commun,2018,54(47):6032−6035. doi: 10.1039/C8CC02042F
    [82] 庹杰. 固相法直接合成 [M, H]ZSM-5分子筛及其在MTP反应中的催化作用[D]. 银川: 宁夏大学, 2021

    TUO JIE. Direct synthesis of [M, H]ZSM-5 by solid-phase method and its catalytic role in the MTP reaction[D]. Ningxia University, 2021.
    [83] LUO P, GUAN Y, XU H, HE M, WU P. Postsynthesis of hierarchical core/shell ZSM-5 as an efficient catalyst in ketalation and acetalization reactions[J]. Front Chem Sci Eng,2020,14(2):258−266. doi: 10.1007/s11705-019-1878-0
    [84] WEN M, REN L, ZHANG J, JIANG J, XU H, GUAN Y, WU P. Designing SAPO-18 with energetically favorable tetrahedral Si ions for an MTO reaction[J]. Chem Commun,2021,57(46):5682−5685. doi: 10.1039/D1CC01140E
    [85] ZHANG J, REN L, MI Y, LUO P, XU H, GUAN Y, PENG H, SONG S, SONG W, WU H, HE M, WU P. K+ located in 6-membered rings of low-silica CHA enhancing the lifetime and propene selectivity in MTO[J]. Catal Sci Technol,2021,11(18):6234−6247. doi: 10.1039/D1CY00691F
    [86] WANG B, REN L, ZHANG J, PENG R, JIN S, GUAN Y, XU H, WU P. Ultrafast synthesis of high-silica Beta zeolite from dealuminated MOR by interzeolite transformation for methanol to propylene reactions[J]. Micropor Mesopor Mater,2021,314:110894. doi: 10.1016/j.micromeso.2021.110894
    [87] 焦峰, 丁一, 潘秀莲, 包信和. 一种催化剂及合成气直接转化制C-2和C-3烯烃的方法: 中国, CN112973781B[P]. 2022-04-22

    JIAO Feng, DING Yi, PAN Xiu-lian, BAO Xin-he. A catalyst and method for direct conversion of syngas to C-2 and C-3 olefins: CN, CN112973781B[P]. 2022-04-22.
    [88] BAO J, HE J, ZHANG Y, YONEYAMA Y, TSUBAKI N. A Core/Shell Catalyst Produces a Spatially Confined Effect and Shape Selectivity in a Consecutive Reaction[J]. Angew Chem Int Ed,2008,47(2):353−356. doi: 10.1002/anie.200703335
    [89] XING C, SHEN W, YANG G, YANG R, LU P, SUN J, YONEYAMA Y, TSUBAKI N. Completed encapsulation of cobalt particles in mesoporous H-ZSM-5 zeolite catalyst for direct synthesis of middle isoparaffin from syngas[J]. Catal Commun,2014,55:53−56. doi: 10.1016/j.catcom.2014.06.018
    [90] YANG G, XING C, HIROHAMA W, JIN Y, ZENG C, SUEHIRO Y, WANG T, YONEYAMA Y, TSUBAKI N. Tandem catalytic synthesis of light isoparaffin from syngas via Fischer-Tropsch synthesis by newly developed core-shell-like zeolite capsule catalysts[J]. Catal Today,2013,215:29−35. doi: 10.1016/j.cattod.2013.01.010
    [91] YANG G, HE J, YONEYAMA Y, TAN Y, HAN Y, TSUBAKI N. Preparation, characterization and reaction performance of H-ZSM-5/cobalt/silica capsule catalysts with different sizes for direct synthesis of isoparaffins[J]. Appl Catal A:Gen,2007,329:99−105. doi: 10.1016/j.apcata.2007.06.028
    [92] ZHANG P, TAN L, YANG G, TSUBAKI N. One-pass selective conversion of syngas to para -xylene[J]. Chem Sci,2017,8(12):7941−7946. doi: 10.1039/C7SC03427J
    [93] XU Y, MA G, BAI J, DU Y, QIN C, DING M. Yolk@Shell FeMn@Hollow HZSM-5 Nanoreactor for Directly Converting Syngas to Aromatics[J]. ACS Catal,2021,11(8):4476−4485. doi: 10.1021/acscatal.0c05658
    [94] ZHAO B, ZHAI P, WANG P, LI J, LI T, PENG M, ZHAO M, HU G, YANG Y, LI Y, ZHANG Q, FAN W, MA D. Direct Transformation of Syngas to Aromatics over Na-Zn-Fe5C2 and Hierarchical HZSM-5 Tandem Catalysts[J]. Chem,2017,3(2):323−333. doi: 10.1016/j.chempr.2017.06.017
    [95] SONG F, YONG X, WU X, ZHANG W, MA Q, ZHAO T, TAN M, GUO Z, ZHAO H, YANG G, TSUBAKI N, TAN Y. FeMn@HZSM-5 capsule catalyst for light olefins direct synthesis via Fischer-Tropsch synthesis: Studies on depressing the CO2 formation[J]. Appl Catal B:Environ,2022,300:120713. doi: 10.1016/j.apcatb.2021.120713
    [96] QIU T, WANG L, LV S, SUN B, ZHANG Y, LIU Z, YANG W, LI J. SAPO-34 zeolite encapsulated Fe3C nanoparticles as highly selective Fischer-Tropsch catalysts for the production of light olefins[J]. Fuel,2017,203:811−816. doi: 10.1016/j.fuel.2017.05.043
    [97] TAN L, WANG F, ZHANG P, SUZUKI Y, WU Y, CHEN J, YANG G, TSUBAKI N. Design of a core-shell catalyst: an effective strategy for suppressing side reactions in syngas for direct selective conversion to light olefins[J]. Chem Sci,2020,11(16):415−497.
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  4
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-30
  • 录用日期:  2022-05-19
  • 修回日期:  2022-05-12
  • 网络出版日期:  2022-06-09

目录

    /

    返回文章
    返回