留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Post-functionalization of graphitic carbon nitride for highly efficient photocatalytic hydrogen evolution

YANG Yi-long LI Shan-ying MAO Yan-li DANG Li-yun JIAO Zhuo-fan XU Kai-dong

杨亦龙, 李山鹰, 毛艳丽, 党丽赟, 焦卓凡, 徐开东. 基于后功能化工艺修饰类石墨相氮化碳及其光催化产氢性能研究[J]. 燃料化学学报(中英文), 2023, 51(2): 205-214. doi: 10.1016/S1872-5813(22)60036-7
引用本文: 杨亦龙, 李山鹰, 毛艳丽, 党丽赟, 焦卓凡, 徐开东. 基于后功能化工艺修饰类石墨相氮化碳及其光催化产氢性能研究[J]. 燃料化学学报(中英文), 2023, 51(2): 205-214. doi: 10.1016/S1872-5813(22)60036-7
YANG Yi-long, LI Shan-ying, MAO Yan-li, DANG Li-yun, JIAO Zhuo-fan, XU Kai-dong. Post-functionalization of graphitic carbon nitride for highly efficient photocatalytic hydrogen evolution[J]. Journal of Fuel Chemistry and Technology, 2023, 51(2): 205-214. doi: 10.1016/S1872-5813(22)60036-7
Citation: YANG Yi-long, LI Shan-ying, MAO Yan-li, DANG Li-yun, JIAO Zhuo-fan, XU Kai-dong. Post-functionalization of graphitic carbon nitride for highly efficient photocatalytic hydrogen evolution[J]. Journal of Fuel Chemistry and Technology, 2023, 51(2): 205-214. doi: 10.1016/S1872-5813(22)60036-7

基于后功能化工艺修饰类石墨相氮化碳及其光催化产氢性能研究

doi: 10.1016/S1872-5813(22)60036-7
详细信息
  • 中图分类号: O644

Post-functionalization of graphitic carbon nitride for highly efficient photocatalytic hydrogen evolution

Funds: The project was supported by Natural Science Youth Foundation of Henan Province (202300410032), Key Scientific Research Projects of Colleges and Universities of Henan Provincial Department of Education (21A150010), Foundation for University Key Teacher by the Henan University of Urban Construction (YCJQNGGJS202109).
More Information
  • 摘要: 本研究设计了一种后功能化工艺方法修饰类石墨相氮化炭材料。通过此工艺成功得到了硼掺杂的介孔氮化炭材料,该材料比表面积高达125 m2/g,这为提升光催化分解水性能奠定了基础。利用X射线衍射、X射线光电子能谱,荧光光谱和紫外-可见光谱对材料进行了全面的表征。基于X射线光电子能谱分析,发现通过后功能化处理硼原子成功掺杂进入氮化炭的晶格中;通过吸收光谱分析得知,硼掺杂的介孔氮化炭材料增强了在可见光区的光吸收;通过荧光光谱分析得知,相比原始氮化炭材料,硼掺杂后的介孔氮化炭材料有着更低的荧光强度,意味着光生电子和空穴的分离得到了提升。对材料进行光催化分解水测试,后功能化处理得到的硼掺杂介孔氮化炭材料的产氢速率是原始氮化炭材料的10.2倍。此结论对后续利用后功能化工艺修饰材料提升材料性能具有一定的借鉴意义。
  • FIG. 2096.  FIG. 2096.

    FIG. 2096.  FIG. 2096.

    Figure  1  (a) XRD patterns of g-C3N4 and BPCN samples; (b) SEM and (c) TEM image of BPCN-70 nanosheet, inset in (b): the element mapping of C, N, B and O for BPCN-70, respectively; (d) Nitrogen adsorption-desorption isotherms, inset: pore size distributions of g-C3N4 and BPCN-70

    Figure  2  (a) UV-Visible diffuse reflectance spectra of g-C3N4, BCN-70 and BPCN-70 samples; inset: transformed Kubelka-Munk function versus the energy spectra of g-C3N4, BCN-70 and BPCN-70 samples; (b) FT-IR spectra of g-C3N4, BCN-70 and BPCN-70 samples; (c) TG spectra of BPCN-70

    Figure  3  ((a), (b), (c) and (d)) XPS spectra of survey, B 1s, C 1s and N 1s, respectively, for BPCN-70 sample

    Figure  4  (a) Photocatalytic H2-generation activity over the typical samples with 1% Pt as cocatalyst; (b) cyclic running kinetics curves of H2 production over BPCN-70; (c) photocatalytic H2-generation activity over the typical samples with no cocatalyst

    Figure  5  (a) transient photocurrent density versus time; (b) photoluminescence spectra; (c) EIS Nyquist plots; (d) time-resolved transient PL spectra of typical samples

    Figure  6  (a) XRD patterns of BPCN-70; (b) FT-IR spectra of BPCN-70 before and after hydrogen evolution reaction

    Table  1  Summary of recent result in boron doped g-C3N4 for solar water splitting

    SampleH2-evolution rate/(μmol·h−1·g−1)ConditionRef.
    118801% Pt, 300 W Xe lamp with a 400 nm cutoff filter[33]
    238801% Pt, A Xe lamp (350 nm < λ < 780 nm)[34]
    314391% Pt, 300 W Xe lamp[35]
    4704.53% Pt, 300 W Xe lamp with 420 nm cutoff filter[36]
    52783% Pt, 300 W Xe lamp with 420 nm cutoff filter[27]
    642801% Pt, 300 W Xe lamp with 420 nm cutoff filterthis work
    下载: 导出CSV
  • [1] GIELEN D, BOSHELL F, SAYGIN D. Climate and energy challenges for materials science[J]. Nat Mater,2016,15:117−120. doi: 10.1038/nmat4545
    [2] FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,238:37−38. doi: 10.1038/238037a0
    [3] CHEN F, MA T, ZHANG T, ZHANG Y, HUANG H. Atomic-level charge separation strategies in semiconductor-based photocatalysts[J]. Adv Mater,2021,23(10):2005256.
    [4] YANG Y, WANG S, LI Y, WANG J, WANG L. Strategies for efficient solar water splitting using carbon nitride[J]. Chem Asian J,2017,12:1421−1434. doi: 10.1002/asia.201700540
    [5] WANG X, MAEDA K, THOMAS A, TAKANABE K, XIN G, CARLSSON J M, DOMEN K, ANTONIETTI M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nat Mater,2009,8:76−80. doi: 10.1038/nmat2317
    [6] XING Y, WANG X, HAO S, ZHANG X, WANG X, MA W, ZHAO G, XU X. Recent advances in the improvement of g-C3N4 based photocatalytic materials[J]. Chin Chem Lett,2021,32(1):13−20. doi: 10.1016/j.cclet.2020.11.011
    [7] HAN C, SU P, TAN B, MA X, LV H, HUANG C, WANG P, TONG Z, LI G, HUANG Y, LIU Z. Defective ultra-thin two-dimensional g-C3N4 photocatalyst for enhanced photocatalytic H2 evolution activity[J]. J Colloid Interfaces Sci,2021,581:159−166. doi: 10.1016/j.jcis.2020.07.119
    [8] LI J, LIU X, CHE H, LIU C, LI C. Facile construction of O-doped crystalline/non-crystalline g-C3N4 embedded nano-homojunction for efficiently photocatalytic H2 evolution[J]. Carbon,2021,172:602−612. doi: 10.1016/j.carbon.2020.10.051
    [9] ZHU B, CHENG B, FAN J, HO W, YU J. g-C3N4-based 2D/2D composite heterojunction photocatalyst[J]. Small,2021,2:2100086. doi: 10.1002/sstr.202100086
    [10] YU X, NG S-F, PUTRI L K, TAN L-L, MOHAMED A R, ONG W-J. Point-defect engineering: Leveraging imperfections in graphitic carbon nitride (g-C3N4) photocatalysts toward artificial photosynthesis[J]. Small,2021,17:2006851. doi: 10.1002/smll.202006851
    [11] ZHANG H, FENG L, LI C, WANG L. Preparation of graphitic carbon nitride with nitrogen-defects and its photocatalytic performance in the degradation of organic pollutants under visible light[J]. J Fuel Chem Technol,2018,46(7):871−878. doi: 10.1016/S1872-5813(18)30036-7
    [12] YUAN J, YI X, TANG Y, LIU C, LUO S. Efficient photocatalytic hydrogen evolution and CO2 reduction: enhanced light absorption, charge separation, and hydrophilicity by tailoring terminal and linker units in g-C3N4[J]. ACS Appl Mater Interfaces,2020,12:17,19607−19615.
    [13] CAMUSSI I, MANNUCCI B, SPELTINI A, PROFUMO A, MILANESE C, MALAVASI L, QUADRELLI P. g-C3N4-singlet oxygen made easy for organic synthesis: scope and limitations[J]. ACS Sustainable Chem Eng,2019,7:9,8176−8182.
    [14] TRUONG H B, BAE S, CHO J, HUR J. Advances in application of g-C3N4-based materials for treatment of polluted water and wastewater via activation of oxidants and photoelectrocatalysis: A comprehensive review[J]. Chemosphere,2022,286:131737. doi: 10.1016/j.chemosphere.2021.131737
    [15] PATNAIK S, SAHOO D P, PARIDA K. Recent advances in anion doped g-C3N4 photocatalysts: A review[J]. Carbon,2021,172:682−711. doi: 10.1016/j.carbon.2020.10.073
    [16] WANG H, ZHANG X, XIE J, ZHANG J, MA P, PAN B, XIE Y. Structural distortion in graphitic-C3N4 realizing an efficient photoreactivity[J]. Nanoscale,2015,7:5152−5156. doi: 10.1039/C4NR07645A
    [17] SHEVLIN S A, GUO Z X. Anionic dopants for improved optical absorption and enhanced photocatalytic hydrogen production in graphitic carbon nitride[J]. Chem Mater,2016,28:7250−7256. doi: 10.1021/acs.chemmater.6b02002
    [18] YE H, WANG Z, YU F, ZHANG S, KONG K, GONG X, HUA J, TIAN H. Fluorinated conjugated poly(benzotriazole)/g-C3N4 heterojunctions for significantly enhancing photocatalytic H2 evolution[J]. Appl Catal B: Environ,2020,267:118577. doi: 10.1016/j.apcatb.2019.118577
    [19] IQBAL W, YANG B, ZHAO X, RAUF M, MOHAMED I M A, ZHANG J, MAO Y. Facile one-pot synthesis of mesoporous g-C3N4 nanosheets with simultaneous iodine doping and N-vacancies for efficient visible-light-driven H2 evolution performance[J]. Catal Sci Technol,2020,10:549−559. doi: 10.1039/C9CY02111F
    [20] WANG Y, ZHAO S, ZHANG Y, FANG J, ZHOU Y, YUAN S, ZHANG C, CHEN W. One-pot synthesis of K-doped g-C3N4 nanosheets with enhanced photocatalytic hydrogen production under visible-light irradiation[J]. Appl Surf Sci,2018,440:258−265. doi: 10.1016/j.apsusc.2018.01.091
    [21] SHI Y K, HU X J, CHEN L, LU Y, ZHU B L, ZHANG S M, HUANG W P. Boron modified TiO2 nanotubes supported Rh-nanoparticle catalysts for highly efficient hydroformylation of styrene[J]. New J Chem,2017,41:6120−6126. doi: 10.1039/C7NJ01050H
    [22] CHEN F, WU C, ZHENG G, QU L, HAN Q. Few-layer carbon nitride photocatalysts for solar fuels and chemicals: Current status and prospects[J]. Chin J Catal,2022,43:1216−1229. doi: 10.1016/S1872-2067(21)63985-2
    [23] ZHANG J, ZHANG G, CHEN X, LIN S, MÇHLMANN L, DOŁEGA G, LIPNER G, ANTONIETTI M, BLECHERT S, WANG X. Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light[J]. Angew Chem Int Ed,2012,51:3183−3187. doi: 10.1002/anie.201106656
    [24] SING K S W, EVERETT D H, HAUL R A W, MOSCOU L, PIEROTTI R A, ROUQUEROL J, SIEMIENIEWSKA T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure Appl Chem,1985,57:603−619. doi: 10.1351/pac198557040603
    [25] YU H, SHI R, ZHAO Y, BIAN T, ZHAO Y, ZHOU C, WATERHOUSE G I N, WU L Z, TUNG C-H, ZHANG T. Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution[J]. Adv Mater,2017,29:1605148. doi: 10.1002/adma.201605148
    [26] WANG Y, WANG X, ANTONIETTI M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry[J]. Angew Chem Int Ed,2012,51:68−69. doi: 10.1002/anie.201101182
    [27] LIN Z, WANG X. Nanostructure engineering and doping of conjugated carbon nitride semiconductors for hydrogen photosynthesis[J]. Angew Chem Int Ed,2013,52:1735−1738. doi: 10.1002/anie.201209017
    [28] WU X, CHEN F, WANG X, YU H. In situ one-step hydrothermal synthesis of oxygen-containing groups-modified g-C3N4 for the improved photocatalytic H2-evolution performance[J]. Appl Surf Sci,2018,427:645−653. doi: 10.1016/j.apsusc.2017.08.050
    [29] LAU V W-H, MESCH M B, DUPPEL V, BLUM V, SENKER J, LOTSCH B V. Low-molecular-weight carbon nitrides for solar hydrogen evolution[J]. J Am Chem Soc,2015,137:1064−1072. doi: 10.1021/ja511802c
    [30] WANG Y, LI H R, YAO J, WANG X C, Antonietti M. Synthesis of boron doped polymeric carbon nitride solids and their use as metal-free catalysts for aliphatic C–H bond oxidation[J]. Chem Sci,2011,2:446−450. doi: 10.1039/C0SC00475H
    [31] MIRAND C, MANSILLA H, Y´ANEZ J, OBREGON S, COLONA G. Improved photocatalytic activity of g-C3N4/TiO2 composites prepared by a simple impregnation method[J]. J Photochem Photobiol A,2013,253:16−21. doi: 10.1016/j.jphotochem.2012.12.014
    [32] CHAI B, PENG T, MAO J, LI K, ZAN L. Graphitic carbon nitride (gC3N4)-Pt-TiO2 nanocomposite as an efficient photocatalyst for hydrogen production under visible light irradiation[J]. Phys Chem Chem Phys,2012,14:16745−16752. doi: 10.1039/c2cp42484c
    [33] THAWEESAK S, WANG S, LYU M, XIAO M, PEERAKIATKHAJOHN P, WANG L. Boron-doped graphitic carbon nitride nanosheets for enhanced visible light photocatalytic water splitting[J]. Dalton Trans,2017,46:10714−10720. doi: 10.1039/C7DT00933J
    [34] WANG X, LIU B, XIAO X, WANG S, HUANG W. Boron dopant simultaneously achieving nanostructure control and electronic structure tuning of graphitic carbon nitride with enhanced photocatalytic activity[J]. J Mater Chem C,2021,9:14876−14884. doi: 10.1039/D1TC04142H
    [35] CHEN P, XING P, CHEN Z, LIN H, HE Y. Rapid and energy-efficient preparation of boron doped g-C3N4 with excellent performance in photocatalytic H2-evolution[J]. Inter J Hydrogen Energy,2018,43:19984−19989. doi: 10.1016/j.ijhydene.2018.09.078
    [36] LUO Y, WANG J, YU S, CAO Y, MA K, PU Y, ZOU W, TANG C. Nonmetal element doped g-C3N4 with enhanced H2 evolution under visible light irradiation[J]. J Mater Res,2018,33:1268−1278. doi: 10.1557/jmr.2017.472
    [37] MARTHA S, NASHIM A, PARIDA K M. Facile synthesis of highly active g-C3N4 for efficient hydrogen production under visible light[J]. J Mater Chem A,2013,1:7816−7824. doi: 10.1039/c3ta10851a
    [38] ONG W J, TAN L L, CHAI S P, YONG S T, MOHAMED A R. Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane[J]. Nano Energy,2015,13:757−770. doi: 10.1016/j.nanoen.2015.03.014
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  208
  • HTML全文浏览量:  88
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-06
  • 修回日期:  2022-05-06
  • 录用日期:  2022-05-06
  • 网络出版日期:  2022-06-14
  • 刊出日期:  2023-01-18

目录

    /

    返回文章
    返回