留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甘油经由烯烃醚化和醇脱水制叔丁基甘油醚的非均相热力学对比

贾广信 张叶 吕捷 谢亚宁 田锴 柳来栓 吕宝亮

贾广信, 张叶, 吕捷, 谢亚宁, 田锴, 柳来栓, 吕宝亮. 甘油经由烯烃醚化和醇脱水制叔丁基甘油醚的非均相热力学对比[J]. 燃料化学学报(中英文), 2022, 50(8): 1093-1104. doi: 10.1016/S1872-5813(22)60037-9
引用本文: 贾广信, 张叶, 吕捷, 谢亚宁, 田锴, 柳来栓, 吕宝亮. 甘油经由烯烃醚化和醇脱水制叔丁基甘油醚的非均相热力学对比[J]. 燃料化学学报(中英文), 2022, 50(8): 1093-1104. doi: 10.1016/S1872-5813(22)60037-9
JIA Guang-xin, ZHANG Ye, LÜ Jie, XIE Ya-ning, TIAN Kai, LIU Lai-shuan, LÜ Bao-liang. Heterogeneous thermodynamic comparison of the tert-butyl glycerol ether synthesis from glycerol via olefin etherification or alcohol dehydration[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 1093-1104. doi: 10.1016/S1872-5813(22)60037-9
Citation: JIA Guang-xin, ZHANG Ye, LÜ Jie, XIE Ya-ning, TIAN Kai, LIU Lai-shuan, LÜ Bao-liang. Heterogeneous thermodynamic comparison of the tert-butyl glycerol ether synthesis from glycerol via olefin etherification or alcohol dehydration[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 1093-1104. doi: 10.1016/S1872-5813(22)60037-9

甘油经由烯烃醚化和醇脱水制叔丁基甘油醚的非均相热力学对比

doi: 10.1016/S1872-5813(22)60037-9
基金项目: 山西省自然科学基金面上项目(201901D111177)和煤转化国家重点实验室开放基金(J20-21-604)资助
详细信息
    作者简介:

    张叶:3275184726@qq.com

    通讯作者:

    E-mail: jiaguangxin@nuc.edu.cn

    3275184726@qq.com

  • 中图分类号: O062.4

Heterogeneous thermodynamic comparison of the tert-butyl glycerol ether synthesis from glycerol via olefin etherification or alcohol dehydration

Funds: The project was supported by the Natural Science Foundation of Shanxi Province of China (201901D111177) and the Foundation of State Key Laboratory of Coal Conversion (J20-21-604).
  • 摘要: 基于吉布斯自由能最小化原则,采用遗传算法对甘油与异丁烯醚化、甘油与叔丁醇脱水制叔丁基甘油醚过程进行了非均相热力学对比研究。在100 mol甘油 + 600 mol异丁烯、100 mol 甘油 + 600 mol叔丁醇的进料条件,40−300 ℃、0.1−0.7 MPa范围内,考察了温度和压力对两种体系的平衡转化率、产物选择性及气液相平衡组成的影响。计算结果表明,甘油和异丁烯醚化过程,低温有利于三叔丁基甘油醚生成,高温有利于二叔丁基甘油醚和单叔丁基甘油醚的生成;提升压力促进了三叔丁基甘油醚的生成,而抑制了二叔丁基甘油醚和单叔丁基甘油醚的产生。甘油和叔丁醇脱水过程中甘油的平衡转化率接近100%,其产物中三叔丁基甘油醚的选择性超过90%,二叔丁基甘油醚选择性小于10%,单叔丁基甘油醚得到有效转化。热力学计算表明,提升压力使得非均相温度区间向右移动,可以利用压力来调节液相中的产物组成。
  • FIG. 1779.  FIG. 1779.

    FIG. 1779.  FIG. 1779.

    图  1  甘油经由烯烃醚化和醇脱水的合成路线示意图

    Figure  1  Schematic diagram of the synthetic routes of glycerol via olefin-etherification and alcohol-dehydration

    (a): Etherification of glycerol and isobutene; (b): Dehydration of glycerol and tert-butanol Note: M1 and M2 in the figure are two isomers of MBGE; D1 and D2 are two isomers of DBGE Since the isomers have little difference in thermodynamic calculation, M1 and D1 are selected to represent MBGE and DBGE respectively for calculation

    图  2  甘油经由烯烃醚化或醇脱水过程中原料的平衡转化率对比(0.1 MPa)

    Figure  2  Comparison of equilibrium conversions in the olefin etherification and the alcohol dehydration (0.1 MPa)

    图  3  甘油经由烯烃醚化和醇脱水过程中产物选择性对比(0.1 MPa)

    Figure  3  Comparison of product selectivities in the olefin etherification and the alcohol dehydration(0.1 MPa)

    (a): Etherification of glycerol and isobutene; (b): Dehydration of glycerol and tert-butanol

    图  4  甘油经由烯烃醚化和醇脱水过程中气相和液相平衡组成对比(0.1 MPa)

    Figure  4  Comparison of equilibrium compositions in the olefin etherification and the alcohol dehydration (0.1 MPa)

    (a): Etherification of glycerol and isobutene; (b): Dehydration of glycerol and tert-butanol

    图  5  压力对烯烃醚化和醇脱水过程中平衡转化率的影响

    Figure  5  Effects of pressure on equilibrium conversion in the olefin etherification and the alcohol dehydration

    (a): Etherification of glycerol and isobutene; (b): Dehydration of glycerol and tert-butanol

    图  6  甘油经由烯烃醚化或醇脱水过程中产物选择性对比(0.7 MPa)

    Figure  6  Comparison of product selectivity in the olefin etherification and the alcohol dehydration (0.7 MPa)

    (a): Etherification of glycerol and isobutene; (b): Dehydration of glycerol and tert-butanol

    图  7  甘油经由烯烃醚化或醇脱水过程中气相和液相平衡组成对比(0.7 MPa)

    Figure  7  Comparison of equilibrium compositions in gas phase and liquid phase for the process of glycerol etherification through olefin or dehydration of glycerol and alcohol (0.7 MPa)

    (a): Etherification of glycerol and isobutene; (b): Dehydration of glycerol and tert-butanol

    表  1  理想气体物性参数

    Table  1  Ideal gas properties of pure components

    Component$\Delta H_{{\rm{f}},298}^{\text{θ}} $/(J·mol−1$S_{{\rm{m}},298}^{\text{θ}} $/(J·mol−1·K−1Cp,g = A + BT + CT2 + DT3(298−1000K)
    ABC·10−4D·10−8
    Glycerol−57400401.14014.3520.3967−2.3385.34
    MBGE−668780526.4476.4520.8054−4.8180.108
    DBGE−763560645.992−1.4481.2140−7.2980.163
    TBGE−732982759.774−9.3481.6227−9.7780.218
    下载: 导出CSV

    表  2  纯组分正常沸点下的液体比热容

    Table  2  Evaporation enthalpy and liquid specific heat capacity parameters of pure components at normal boiling point

    ComponentCp,l = A + BT + CT 2 (J ·mol−1·K−1)
    ABC·10−3
    Glycerol173.186−0.25281.475
    MBGE239.850−0.56131.457
    DBGE360.464−1.43552.583
    TBGE173.186−0.25281.475
    下载: 导出CSV

    表  3  相关组分的临界参数和偏心因子

    Table  3  Critical constants and eccentricity factors of related components

    ComponentTc/Kpc/PaVc/m3· mol−1Tb/KZcw
    Glycerol728.52766966500.0002545564.050.2814161.72998
    MTGE684.60634765500.0004665562.670.2849261.24966
    DTGE757.96121236400.0006785581.400.2286420.88986
    TTGE744.93314304600.0008905599.730.2056680.60398
    下载: 导出CSV
  • [1] RAGAUSKAS A J, WILLIAMS C K, DAVISON B H, BRITOVSEK G, CAIRNEY J, ECKERT C A, FREDERICK W J, HALLETT J P, LEAK D J, LEAK D J, LIOTTA C L, MIELENZ J R, MURPHY R TEMPLER R, TSCHAPLINSKI T. The path forward for biofuels and biomaterials[J]. Science,2016,311(5760):484−489.
    [2] SAMOIL O V, RAMAZMNOV D N, NEKHAEV A I, MAXIMOV A L, BAGDASAROV L N. Heterogeneous catalytic conversion of glycerol to oxygenated fuel additives[J]. Fuel,2016,172:310−319. doi: 10.1016/j.fuel.2016.01.024
    [3] ESTEVEZ R, AGUADO-DEBLAS L, LUNA D, BAUTISTA F M. An overview of the production of oxygenated fuel additives by glycerol etherification, either with isobutene or tert-butyl alcohol, over heterogeneous catalysts[J]. Energies,2019,12(12):2364. doi: 10.3390/en12122364
    [4] MA C J, MENKE J H, DASENBROCK J. Evaluation of energy losses in low voltage distribution grids with high penetration of distributed generation[J]. Appl Energy,2019,256:113907. doi: 10.1016/j.apenergy.2019.113907
    [5] DENIAU A L, MOSSET P, PBOT D L, LEGRAND A B. Which alkylglycerols from shark liver oil have anti-tumour activities[J]. Biochimie,2009,93(1):1−3.
    [6] CAKMAK A, OZCAN H. Analysis of combustion and emissions characteristics of a DI diesel engine fuelled with diesel/biodiesel/glycerol tert-butyl ethers mixture by altering compression ratio and injection timing[J]. Fuel,2022,315:123200. doi: 10.1016/j.fuel.2022.123200
    [7] ANDREEVA I V, ZAITSAU D H, QIAN S, TUROVTZEV V V, PIMERZIN A A, BARA J E, VEREVKIN S P. Glycerol valorisation towards biofuel additivities: Thermodynamic studies of glycerol ethers[J]. Chem Eng Sci,2021,247:117032.
    [8] ZHANG Z, HUANG Z, LIU F, SONG Y, MAO Q Y, FAN X M, BAI M H, HONG B, LAI Y Q. Glycerol tris (2-cyanoethyl) ether as an electrolyte additive to enhance the cycling stability of lithium cobalt oxide cathode at 4.5 V[J]. Chem Electr Chem,2021,8(23):4589−4596.
    [9] SHOAR F H, NAJAFI B, MOSAVI A. Effects of triethylene glycol mono methyl ether (TGME) as a novel oxygenated additive on emission and performance of a dual-fuel diesel engine fueled with natural gas-diesel/biodiesel[J]. Energy Rep,2021,7:1172−1189. doi: 10.1016/j.egyr.2021.01.088
    [10] LIU J J, YANG B L, YI C H. Kinetic study of glycerol etherification with isobutene[J]. Ind Eng Chem Res,2013,52(10):3742−3751. doi: 10.1021/ie400050v
    [11] LIU J J, YANG B L. Liquid-liquid-solid mass transfer and phase behavior of heterogeneous etherification of glycerol with isobutene[J]. AIChE J,2018,64(7):2526−2535. doi: 10.1002/aic.16080
    [12] GOLIKOVA A, SAMAROV A, TOIKKA A. Chemical equilibrium for the reacting system acetic acid-ethanol-ethyl acetate-water at 303.15 K, 313.15 K and 323.15 K[J]. J Solution Chem,2017,46(2):374−387. doi: 10.1007/s10953-017-0583-1
    [13] 李飞飞, 贾广信, 李婷. 甘油和乙醇制复合甘油醚的热力学数据估算与反应分析[J]. 石油化工,2016,45(3):311−318. doi: 10.3969/j.issn.1000-8144.2016.03.010

    LI Fei-fei, JIA Guang-xin, LI Ting. Estimation of thermodynamic data and reaction analysis of compound glyceryl ether from glycerol and ethanol[J]. Petrochem,2016,45(3):311−318. doi: 10.3969/j.issn.1000-8144.2016.03.010
    [14] JIA G X, HE B B, LIU L S, LI Y, LIU L S, ZHAO J T, LV B L. Thermodynamic equilibrium analysis on the dehydration of glycerol with monohydric alcohols to alkyl glyceryl ethers[J]. AIChE J,2022,68:17610.
    [15] 金可新, 赵传均, 马佩生. 化工热力学[M]. 天津: 天津大学出版社, 1990, 39−104.

    JIN Ke-xin, ZHAO Chuan-jun, MA Pai-sheng. Chemical Thermodynamics[M]. Tianjin: Tianjin University Press, 1990, 39−104.
    [16] LEE B L, KESLER M G. A generalized thermodynamic correlation based on the three-parameter corresponding states[J]. AIChE J,1975,21(3):510−527. doi: 10.1002/aic.690210313
    [17] CONSTANTINOU L, GANI R. New group contribution method for estimating properties of pure compounds[J]. AIChE J,1994,40:1697−1710. doi: 10.1002/aic.690401011
    [18] WATSON K M. Thermodynamics of the liquid state[J]. Ind Eng Chem,2002,35(4):398−406.
    [19] RUZICKA V, DOMALSKI E S. Estimation of the heat capacities of organic liquids as a function of temperature using group additivity. I. Hydrocarbon compounds[J]. J Phys Chem Ref Data,1993,22(3):597−618. doi: 10.1063/1.555923
    [20] CHEN D H, DINIVAHI M V, JENG C Y. New acentric factor correlation based on the antoine equation[J]. Ind Eng Chem Res,1993,32:241−244. doi: 10.1021/ie00013a034
    [21] WANG J, KABADI V N. Generalized method for prediction of saturated liquid volumes using van der waals volumes[J]. AIChE J,1996,42:595−598. doi: 10.1002/aic.690420228
    [22] JOBACK G, REID R C. Estimation of pure-component properties from group-contributions[J]. Chem Eng Commun,1987,57:233−243. doi: 10.1080/00986448708960487
    [23] ZHAO W Q, YANG B L, YI C H, LEI Z O, XU J. Etherification of glycerol with isobutylene to produce oxygenate additive using sulfonated peanut shell catalyst[J]. Ind Eng Chem Res,2010,49(24):12399−12404. doi: 10.1021/ie101461g
    [24] ZHOU J X, WANG Y, GUO X W, MAO J B, ZHANG S G. Etherification of glycerol with isobutene on sulfonated graphene: reaction and separation[J]. Green Chem,2014,16(11):4669−4679. doi: 10.1039/C4GC01044B
    [25] FRUSTERI F, FRUSTERI L, CANNILLA C, CANNILLA C, BONURA G. Catalytic etherification of glycerol to produce biofuels over novel spherical silica supported hyflon® catalysts[J]. Bioresour Technol,2012,118:350−358. doi: 10.1016/j.biortech.2012.04.103
    [26] XIAO L, MAO J B, ZHOU J X, GUO X W, ZHANG S G. Enhanced performance of HY zeolites by acid wash for glycerol etherification with isobutene[J]. Appl Cata A: Gen,2011,393(1/2):88−95. doi: 10.1016/j.apcata.2010.11.029
    [27] LIU J J, JIANG Y Y, ZHANG P, YANG B L. Enhance glycerol conversion through co-etherification with isobutene and tert-butanol[J]. Fuel Process Technol,2021,218:106838. doi: 10.1016/j.fuproc.2021.106838
    [28] SIMONE N, CARVALHO W A, MANDELLI D, RYOO R. Nanostructured MFI-type zeolites as catalysts in glycerol etherification with tert-butyl alcohol[J]. J Mole Catal A: Chem,2016,422:115−121. doi: 10.1016/j.molcata.2016.02.005
    [29] ESTEVEZ R, LOPEZ M I, JIMENEZ-SANCHIDRIAN C, LUNA D, BOMERO-SALGUERO F J. Etherification of glycerol with tert-butyl alcohol over sulfonated hybrid silicas[J]. Appl Catal A: Gen,2016,526:155−163. doi: 10.1016/j.apcata.2016.08.019
    [30] 迟宗华, 曹晶晶, 尹隽, 云志. 无溶剂体系非均相催化合成叔丁基甘油醚[J]. 南京工业大学学报: 自然科学版,2012,34(6):92−96.

    (CHI Zun-hua, CHAO Jin-jin, JIN Xie, YUN Zhi. Heterogeneous catalytic synthesis of tert-butyl glyceryl ether in solvent-free system[J]. J Nanjing Univ Technol: Nat Sci Ed,2012,34(6):92−96.
    [31] LIU X P, SHI S B, YANG S, GU L Y, GAO L J, ZHANG J XIAO G M. Production of biofuel additives from glycerol etherification using zirconia supported phosphotungstic acid[J]. Catal Lett,2022,152:2293−2301.
    [32] DA SILVA M J, CHAVES D M, JULIO A A, RODRIGUES F A, BRUZIQUESI C G O. Sn (II)-exchanged Keggin silicotungstic acid-catalyzed etherification of glycerol and ethylene glycol with alkyl alcohols[J]. Ind Eng Chem Res,2020,59(21):9858−9868. doi: 10.1021/acs.iecr.0c00229
    [33] JIA G X, MA W L, HE B B, SUN Y F, LIU L S. Comparative study on catalytic dehydration of glycerol with alcohols[J]. J Brazil Chem Soc,2019,30:851−858.
    [34] JIA G X, ZHANG Y, LIU L S, LI Y, LV B L. Gas-phase catalytic dehydration of glycerol with methanol to methyl glyceryl ethers over phosphotungstic acid supported on alumina[J]. ACS Omega,2021,44(6):29370−29379.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  292
  • HTML全文浏览量:  50
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-30
  • 修回日期:  2022-05-30
  • 录用日期:  2022-05-31
  • 网络出版日期:  2022-05-30
  • 刊出日期:  2022-08-26

目录

    /

    返回文章
    返回