留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向CH4-CO2重整反应的生物质炭基催化剂载体制备工艺的研究进展

陈庆明 刘大伟 吕随明 张维祥 赵青鹏 张宁 徐龙 马晓迅

陈庆明, 刘大伟, 吕随明, 张维祥, 赵青鹏, 张宁, 徐龙, 马晓迅. 面向CH4-CO2重整反应的生物质炭基催化剂载体制备工艺的研究进展[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60038-0
引用本文: 陈庆明, 刘大伟, 吕随明, 张维祥, 赵青鹏, 张宁, 徐龙, 马晓迅. 面向CH4-CO2重整反应的生物质炭基催化剂载体制备工艺的研究进展[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60038-0
CHEN Qing-ming, LIU Da-wei, LV Sui-ming, ZHANG Wei-xiang, ZHAO Qing-peng, ZHANG Ning, XU Long, MA Xiao-xun. Research progress on the preparation process of biochar-based catalysts support for dry reforming of methane[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60038-0
Citation: CHEN Qing-ming, LIU Da-wei, LV Sui-ming, ZHANG Wei-xiang, ZHAO Qing-peng, ZHANG Ning, XU Long, MA Xiao-xun. Research progress on the preparation process of biochar-based catalysts support for dry reforming of methane[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60038-0

面向CH4-CO2重整反应的生物质炭基催化剂载体制备工艺的研究进展

doi: 10.1016/S1872-5813(22)60038-0
基金项目: 国家自然科学基金(22008197),陕西省重点研发计划(2018ZDXMGY–167),陕西省教育厅服务地方专项计划项目(17JF029),陕西省教育厅专项科研计划(20JK0948),中国博士后科学基金资助项目(2021M702649),咸阳市科学技术研究计划(2021ZDYF–NY–0017)资助
详细信息
    通讯作者:

    E-mail: dwliu@nwu.edu.cn

    longxuxulong@163.com

  • 中图分类号: TQ426.65

Research progress on the preparation process of biochar-based catalysts support for dry reforming of methane

Funds: The project was supported by the National Natural Science Foundation of China (22008197), the Key R&D Program of Shaanxi Province (2018ZDXMGY–167), Shaanxi Provincial Education Department Serves Local Special Project (17JF029), Scientific Research Program Funded by Shaanxi Provincial Education Department (20JK0948), Project funded by China Postdoctoral Science Foundation (2021M702649), Scientific and Technological Research Program of Xianyang (2021ZDYF–NY–0017).
  • 摘要: CH4干重整(DRM)技术能够同时将CH4和CO2两种温室气体转化为合成气,以实现温室气体减排及资源化利用,因此,越来越受到研究者的青睐。生物质炭具有高比表面积、发达的孔隙结构、高的热稳定性、优异的耐酸碱性、丰富的碱/碱土金属和含氧官能团含量以及成本低廉等优点,其应用于DRM,可以适用于页岩气、油田伴生气、焦炉煤气和气化煤气等不同的重整体系,省去部分废气的脱硫等预处理过程,具有重要的工业应用前景。本文对用于DRM的生物质炭基催化剂载体的制备工艺进行了简要总结。简述了不同的炭化工艺及其对生物质炭产量和性质的影响;介绍了生物质炭的理化性质对重整反应的影响及影响理化性质的因素;分析了不同的活化方法对生物质炭基催化剂催化性能的影响;最后对影响催化剂稳定性的碳消耗进行了简要介绍。
  • 图  1  温室气体排放概况 (a) 和来源 (b) [4]

    Figure  1  Overview(a) and sources(b) of greenhouse gas emissions[4]

    图  2  不同炭化工艺的反应器[4043]

    Figure  2  Reactors for different carbonization processes[4043]

    图  3  不同炭化温度对生物质炭结构的影响[7274]

    Figure  3  Different carbonization temperature effect on the structure of biomass carbon[7274]

    图  4  各个阶段Co-Ca/AC催化剂涉及的反应机理[86]

    Figure  4  The reaction mechanism involved in Co-Ca/AC catalysts at various stages[86]

    图  5  生物质炭表面的含氧官能团[17,104]

    Figure  5  Oxygen-containing functional groups on the surface of biochar[17,104]

    图  6  生物质炭活化[108113]

    Figure  6  Biochar activation[108113]

    图  7  (a)LBC和(b)KOH-LBC的 SEM 图像[154]

    Figure  7  SEM images of (a) LBC and (b) KOH-LBC[154]

    图  8  两种掺N方法制备流程。Y-NC:原位掺杂;H-NC:后处理掺杂[167]

    Figure  8  The preparation process of two N doping methods. Y-NC: in-situ doping; H-NC: post-processing doping[167]

    表  1  甲烷干重整过程中涉及的反应

    Table  1  Reactions involved in the dry reforming of methane

    ReactionReaction equation$\Delta {H}_{298K}/kJ\cdot {mol}^{-1}$Number
    Main reaction
    Dry reforming of methane${{\rm{CH}}}_{4}+{{\rm{CO}}}_{2}\to 2{{\rm{H}}}_{2}+2{\rm{CO}}$+274.3(1)
    Side reaction
    Reverse water gas shift${{\rm{CO}}}_{2}+{{\rm{H}}}_{2}\leftrightarrow {{\rm{H}}}_{2}{\rm{O}}+{\rm{CO}}$–41(2)
    Decomposition of methane${{\rm{CH}}}_{4}\to 2{{\rm{H}}}_{2}+{\rm{C}}$+75(3)
    Disproportionation of CO$2{\rm{CO}}\leftrightarrow {{\rm{CO}}}_{2}+{\rm{C}}$–172.4(4)
    Hydrogenation of CO2${ {\rm{CO} } }_{2}+2{ {\rm{H} } }_{2}\to {2{\rm{H} } }_{2}{\rm{O} }+{\rm{C}}$–90(5)
    Hydrogenation of CO${\rm{CO}}+{{\rm{H}}}_{2}\to {\rm{C}}+{{\rm{H}}}_{2}{\rm{O}}$–131(6)
    下载: 导出CSV
  • [1] ROGELJ J, DEN ELZEN M, HöHNE N, FRANSEN T, FEKETE H, WINKLER H, SCHAEFFER R, SHA F, RIAHI K, MEINSHAUSEN M. Paris Agreement climate proposals need a boost to keep warming well below 2 ℃[J]. Nature,2016,534(7609):631−639. doi: 10.1038/nature18307
    [2] COOPER S A, RAMAN K K, YIN J. Halo effect or fallen angel effect? Firm value consequences of greenhouse gas emissions and reputation for corporate social responsibility[J]. J Account Public Policy,2018,37(3):226−240. doi: 10.1016/j.jaccpubpol.2018.04.003
    [3] ZOU C, XIONG B, XUE H, ZHENG D, GE Z, WANG Y, JIANG L, PAN S, WU S. The role of new energy in carbon neutral[J]. Pet Explor Dev,2021,48(2):480−491. doi: 10.1016/S1876-3804(21)60039-3
    [4] Inventory of U. S. Greenhouse gas emissions and sinks: 1990–2019[J]. Fed Regist. 2021, 86(028).
    [5] KHOLOD N, EVANS M, PILCHER R C, ROSHCHANKA V, RUIZ F, COTé M, COLLINGS R. Global methane emissions from coal mining to continue growing even with declining coal production[J]. J Cleaner Prod,2020,256:120489. doi: 10.1016/j.jclepro.2020.120489
    [6] LIU T Q, LI S H, GUO L G, CAO C G, LI C F, ZHAI Z B, ZHOU J Y, MEI Y M, KE H J. Advantages of nitrogen fertilizer deep placement in greenhouse gas emissions and net ecosystem economic benefits from no-tillage paddy fields[J]. J Cleaner Prod,2020,263:121322. doi: 10.1016/j.jclepro.2020.121322
    [7] LIU W, XIAO H, MA H, LI Y, ADYEL T M, ZHAI J. Reduction of methane emissions from manganese-rich constructed wetlands: Role of manganese-dependent anaerobic methane oxidation[J]. Chem Eng J,2020,387:123402. doi: 10.1016/j.cej.2019.123402
    [8] SHEN J, LIU Z D, WANG Z Z, YANG H W, YAO R S. CH4-rich gas in coke oven gas partial oxidation for producing syngas with coke or semi-coke support[J]. Int J Green Energy,2008,5(5):413−421. doi: 10.1080/15435070802414389
    [9] ALAM M S, WIJAYANTA A T, NAKASO K, FUKAI J. Syngas production from coal gasification with CO2 rich gas mixtures[C]. Abstracts of the 7th International Symposium on Coal Combustion (ISCC). Harbin, 2012: 726–729.
    [10] ZHANG G, LIU J, XU Y, SUN Y. A review of CH4-CO2 reforming to synthesis gas over Ni-based catalysts in recent years (2010–2017)[J]. Int J Hydrog Energy,2018,43(32):15030−15054. doi: 10.1016/j.ijhydene.2018.06.091
    [11] SAN-JOSé-ALONSO D, JUAN-JUAN J, ILLáN-GóMEZ M J, ROMáN-MARTíNEZ M C. Ni, Co and bimetallic Ni–Co catalysts for the dry reforming of methane[J]. Appl Catal A-Gen,2009,371(1):54−59.
    [12] RAFIEE A, PANAHI M, KHALILPOUR K R. CO2 utilization through integration of post-combustion carbon capture process with Fischer-Tropsch gas-to-liquid (GTL) processes[J]. J CO2 Util,2017,18:98−106. doi: 10.1016/j.jcou.2017.01.016
    [13] ARORA S, PRASAD R. An overview on dry reforming of methane: strategies to reduce carbonaceous deactivation of catalysts[J]. RSC Adv,2016,6(110):108668−108688. doi: 10.1039/C6RA20450C
    [14] LI L, CHEN J, WANG S, TAN Y, MENG B, ZOU G, WANG F, SONG Z, MA C. Utilization of biochar for a process of methane dry reforming coupled with steam gasification under microwave heating[J]. J Cleaner Prod,2019,237:117838. doi: 10.1016/j.jclepro.2019.117838
    [15] PAKHARE D, SPIVEY J. A review of dry (CO2) reforming of methane over noble metal catalysts[J]. Chem Soc Rev,2014,43(22):7813−7837. doi: 10.1039/C3CS60395D
    [16] LI L, CHEN J, ZHANG Q, YANG Z, SUN Y, ZOU G. Methane dry reforming over activated carbon supported Ni-catalysts prepared by solid phase synthesis[J]. J Cleaner Prod,2020,274:122256. doi: 10.1016/j.jclepro.2020.122256
    [17] LV P, LIU D, TIAN B, MA X, FAN M, XU L. Preparation of biomass-derived porous carbon supported Ni nanoparticles for CO2 reforming of CH4[J]. New J Chem,2020,44(29):12503−12513. doi: 10.1039/D0NJ00818D
    [18] ZHANG G, HAO L, JIA Y, DU Y, ZHANG Y. CO2 reforming of CH4 over efficient bimetallic Co–Zr/AC catalyst for H2 production[J]. Int J Hydrog Energy,2015,40(37):12868−12879. doi: 10.1016/j.ijhydene.2015.07.011
    [19] ZHANG L, WU W, SIQU N, DEKYI T, ZHANG Y. Thermochemical catalytic-reforming conversion of municipal solid waste to hydrogen-rich synthesis gas via carbon supported catalysts[J]. Chem Eng J,2019,361:1617−1629. doi: 10.1016/j.cej.2018.12.115
    [20] ZHANG G, DONG Y, FENG M, ZHANG Y, ZHAO W, CAO H. CO2 reforming of CH4 in coke oven gas to syngas over coal char catalyst[J]. Chem Eng J,2010,156(3):519−523. doi: 10.1016/j.cej.2009.04.005
    [21] FIDALGO B, DOMíNGUEZ A, PIS J J, MENéNDEZ J A. Microwave-assisted dry reforming of methane[J]. Int J Hydrog Energy,2008,33(16):4337−4344. doi: 10.1016/j.ijhydene.2008.05.056
    [22] GUO F, ZHANG Y, ZHANG G, ZHAO H. Syngas production by carbon dioxide reforming of methane over different semi-cokes[J]. J Power Sources,2013,231:82−90. doi: 10.1016/j.jpowsour.2013.01.003
    [23] HE T, SUN Z, WU J, XU Z, ZHANG D, HAN D. Catalytic performance of coal char for the methane reforming process[J]. Chem Eng Technol,2015,38(1):68−74. doi: 10.1002/ceat.201400124
    [24] TAN Y, WANG S, LI L, MENG B, CHEN J, YANG Z, YAN K, QIN X. Application of microwave heating for methane dry reforming catalyzed by activated carbon[J]. Chem Eng Process,2019,145:107662. doi: 10.1016/j.cep.2019.107662
    [25] XU L, LIU Y, LI Y, LIN Z, MA X, ZHANG Y, ARGYLE M D, FAN M. Catalytic CH4 reforming with CO2 over activated carbon based catalysts[J]. Appl Catal A-Gen,2014,469:387−397. doi: 10.1016/j.apcata.2013.10.022
    [26] JEYARAJ M, PRAPHAKAR R A, RAJENDRAN C, PONNAMMA D, SADASIVUNI K K, MUNUSAMY M A, RAJAN M. Surface functionalization of natural lignin isolated from Aloe barbadensis Miller biomass by atom transfer radical polymerization for enhanced anticancer efficacy[J]. RSC Adv,2016,6(56):51310−51319. doi: 10.1039/C6RA01866A
    [27] LI H, DONG X, DA SILVA E B, DE OLIVEIRA L M, CHEN Y, MA L Q. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications[J]. Chemosphere,2017,178:466−478. doi: 10.1016/j.chemosphere.2017.03.072
    [28] 李庆林, 宋涛, 杨勇. 生物质炭基材料在有机催化转化中的应用[J]. 化工进展,2021,40(04):1966−1982.

    LI Qing-lin, SONG Tao, YANG Yong. Biomass-derived carbon materials for organic transformations[J]. Chem Ind Eng Prog,2021,40(04):1966−1982.
    [29] QIAN K, KUMAR A, ZHANG H, BELLMER D, HUHNKE R. Recent advances in utilization of biochar[J]. Renew Sust Energ Rev,2015,42:1055−1064. doi: 10.1016/j.rser.2014.10.074
    [30] SUN Y, ZHANG G, XU Y, ZHANG Y, LV Y, ZHANG R. Comparative study on dry reforming of methane over Co-M (M = Ce, Fe, Zr) catalysts supported on N-doped activated carbon[J]. Fuel Process Technol,2019,192:1−12. doi: 10.1016/j.fuproc.2019.04.017
    [31] LIEW R K, NAM W L, CHONG M Y, PHANG X Y, SU M H, YEK P N Y, MA N L, CHENG C K, CHONG C T, LAM S S. Oil palm waste: An abundant and promising feedstock for microwave pyrolysis conversion into good quality biochar with potential multi-applications[J]. Process Saf Environ Prot,2018,115:57−69. doi: 10.1016/j.psep.2017.10.005
    [32] ROY P, DIAS G. Prospects for pyrolysis technologies in the bioenergy sector: A review[J]. Renew Sust Energ Rev,2017,77:59−69. doi: 10.1016/j.rser.2017.03.136
    [33] KUMAR A, SAINI K, BHASKAR T. Hydochar and biochar: Production, physicochemical properties and techno-economic analysis[J]. Bioresour Technol,2020,310:123442. doi: 10.1016/j.biortech.2020.123442
    [34] ARAVIND S, KUMAR P S, KUMAR N S, SIDDARTH N. Conversion of green algal biomass into bioenergy by pyrolysis. A review[J]. Environ Chem Lett,2020,18(3):829−849. doi: 10.1007/s10311-020-00990-2
    [35] LIEW R K, CHONG M Y, OSAZUWA O U, NAM W L, PHANG X Y, SU M H, CHENG C K, CHONG C T, LAM S S. Production of activated carbon as catalyst support by microwave pyrolysis of palm kernel shell: a comparative study of chemical versus physical activation[J]. Res Chem Intermed,2018,44(6):3849−3865. doi: 10.1007/s11164-018-3388-y
    [36] HUANG W, XIAO S, ZHONG H, YAN M, YANG X. Activation of persulfates by carbonaceous materials: A review[J]. Chem Eng J,2021,418:129297. doi: 10.1016/j.cej.2021.129297
    [37] LI R, SHAHBAZI A, WANG L, ZHANG B, CHUNG C-C, DAYTON D, YAN Q. Nanostructured molybdenum carbide on biochar for CO2 reforming of CH4[J]. Fuel,2018,225:403−410. doi: 10.1016/j.fuel.2018.03.179
    [38] BALAHMAR N, MITCHELL A C, MOKAYA R. Generalized mechanochemical synthesis of biomass-derived sustainable carbons for high performance CO2 storage[J]. Adv Energy Mater,2015,5(22):1500867. doi: 10.1002/aenm.201500867
    [39] TAN X, LIU Y, ZENG G, WANG X, HU X, GU Y, YANG Z. Application of biochar for the removal of pollutants from aqueous solutions[J]. Chemosphere,2015,125:70−85. doi: 10.1016/j.chemosphere.2014.12.058
    [40] PATRA B R, NANDA S, DALAI A K, MEDA V. Slow pyrolysis of agro-food wastes and physicochemical characterization of biofuel products[J]. Chemosphere,2021,285:131431. doi: 10.1016/j.chemosphere.2021.131431
    [41] BRIDGWATER A V. Review of fast pyrolysis of biomass and product upgrading[J]. Biomass Bioenergy,2012,38:68−94. doi: 10.1016/j.biombioe.2011.01.048
    [42] FERREIRA S D, LAZZAROTTO I P, JUNGES J, MANERA C, GODINHO M, OSóRIO E. Steam gasification of biochar derived from elephant grass pyrolysis in a screw reactor[J]. Energy Conv Manag,2017,153:163−174. doi: 10.1016/j.enconman.2017.10.006
    [43] CHI N T L, ANTO S, AHAMED T S, KUMAR S S, SHANMUGAM S, SAMUEL M S, MATHIMANI T, BRINDHADEVI K, PUGAZHENDHI A. A review on biochar production techniques and biochar based catalyst for biofuel production from algae[J]. Fuel,2021,287:119411. doi: 10.1016/j.fuel.2020.119411
    [44] RUTHERFORD D W, WERSHAW R L, ROSTAD C E, KELLY C N. Effect of formation conditions on biochars: Compositional and structural properties of cellulose, lignin, and pine biochars[J]. Biomass Bioenergy,2012,46:693−701. doi: 10.1016/j.biombioe.2012.06.026
    [45] CHEN Z, CHEN B, CHIOU C T. Fast and slow rates of naphthalene sorption to biochars produced at different temperatures[J]. Environ Sci Technol,2012,46(20):11104−11111. doi: 10.1021/es302345e
    [46] FERRARA F, ORSINI A, PLAISANT A, PETTINAU A. Pyrolysis of coal, biomass and their blends: Performance assessment by thermogravimetric analysis[J]. Bioresour Technol,2014,171:433−441. doi: 10.1016/j.biortech.2014.08.104
    [47] KAN T, STREZOV V, EVANS T J. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters[J]. Renew Sust Energ Rev,2016,57:1126−1140. doi: 10.1016/j.rser.2015.12.185
    [48] LIRA C S, BERRUTI F M, PALMISANO P, BERRUTI F, BRIENS C, PéCORA A A B. Fast pyrolysis of Amazon tucumã (Astrocaryum aculeatum) seeds in a bubbling fluidized bed reactor[J]. J Anal Appl Pyrolysis,2013,99:23−31. doi: 10.1016/j.jaap.2012.11.005
    [49] SHAH A, DARR M J, DALLUGE D, MEDIC D, WEBSTER K, BROWN R C. Physicochemical properties of bio-oil and biochar produced by fast pyrolysis of stored single-pass corn stover and cobs[J]. Bioresour Technol,2012,125:348−352. doi: 10.1016/j.biortech.2012.09.061
    [50] YAMAN S. Pyrolysis of biomass to produce fuels and chemical feedstocks[J]. Energy Conv Manag,2004,45(5):651−671. doi: 10.1016/S0196-8904(03)00177-8
    [51] PATRA B R, MUKHERJEE A, NANDA S, DALAI A K. Biochar production, activation and adsorptive applications: a review[J]. Environ Chem Lett,2021,19(3):2237−2259. doi: 10.1007/s10311-020-01165-9
    [52] MOHAN D, SARSWAT A, OK Y S, PITTMAN C U. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – A critical review[J]. Bioresour Technol,2014,160:191−202. doi: 10.1016/j.biortech.2014.01.120
    [53] DEAL C, BREWER C E, BROWN R C, OKURE M A E, AMODING A. Comparison of kiln-derived and gasifier-derived biochars as soil amendments in the humid tropics[J]. Biomass Bioenergy,2012,37:161−168. doi: 10.1016/j.biombioe.2011.12.017
    [54] CHEN X, LIN Q, HE R, ZHAO X, LI G. Hydrochar production from watermelon peel by hydrothermal carbonization[J]. Bioresour Technol,2017,241:236−243. doi: 10.1016/j.biortech.2017.04.012
    [55] KAMBO H S, DUTTA A. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications[J]. Renew Sust Energ Rev,2015,45:359−378. doi: 10.1016/j.rser.2015.01.050
    [56] WIEDNER K, RUMPEL C, STEINER C, POZZI A, MAAS R, GLASER B. Chemical evaluation of chars produced by thermochemical conversion (gasification, pyrolysis and hydrothermal carbonization) of agro-industrial biomass on a commercial scale[J]. Biomass Bioenergy,2013,59:264−278. doi: 10.1016/j.biombioe.2013.08.026
    [57] BAGREEV A, BANDOSZ T J, LOCKE D C. Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage sludge-derived fertilizer[J]. Carbon,2001,39(13):1971−1979. doi: 10.1016/S0008-6223(01)00026-4
    [58] ABDULLAH B, ABD GHANI N A, VO D-V N. Recent advances in dry reforming of methane over Ni-based catalysts[J]. J Cleaner Prod,2017,162:170−185. doi: 10.1016/j.jclepro.2017.05.176
    [59] RODRíGUEZ-REINOSO F. The role of carbon materials in heterogeneous catalysis[J]. Carbon,1998,36(3):159−175. doi: 10.1016/S0008-6223(97)00173-5
    [60] COLANTONI A, EVIC N, LORD R, RETSCHITZEGGER S, PROTO A R, GALLUCCI F, MONARCA D. Characterization of biochars produced from pyrolysis of pelletized agricultural residues[J]. Renew Sust Energ Rev,2016,64:187−194. doi: 10.1016/j.rser.2016.06.003
    [61] SHEN Z, ZHANG Y, MCMILLAN O, JIN F, AL-TABBAA A. Characteristics and mechanisms of nickel adsorption on biochars produced from wheat straw pellets and rice husk[J]. Environ Sci Pollut Res,2017,24(14):12809−12819. doi: 10.1007/s11356-017-8847-2
    [62] TOLOUE FARROKH N, SUOPAJäRVI H, MATTILA O, UMEKI K, PHOUNGLAMCHEIK A, ROMAR H, SULASALMI P, FABRITIUS T. Slow pyrolysis of by-product lignin from wood-based ethanol production– A detailed analysis of the produced chars[J]. Energy,2018,164:112−123. doi: 10.1016/j.energy.2018.08.161
    [63] WANG D, JIANG P, ZHANG H, YUAN W. Biochar production and applications in agro and forestry systems: A review[J]. Sci Total Environ,2020,723:137775. doi: 10.1016/j.scitotenv.2020.137775
    [64] YANG Z, KUMAR A, HUHNKE R L, BUSER M, CAPAREDA S. Pyrolysis of eastern redcedar: Distribution and characteristics of fast and slow pyrolysis products[J]. Fuel,2016,166:157−165. doi: 10.1016/j.fuel.2015.10.101
    [65] HALIM S A, SWITHENBANK J. Characterisation of Malaysian wood pellets and rubberwood using slow pyrolysis and microwave technology[J]. J Anal Appl Pyrolysis,2016,122:64−75. doi: 10.1016/j.jaap.2016.10.021
    [66] KUMAR M, SUN Y, RATHOUR R, PANDEY A, THAKUR I S, TSANG D C W. Algae as potential feedstock for the production of biofuels and value-added products: Opportunities and challenges[J]. Sci Total Environ,2020,716:137116. doi: 10.1016/j.scitotenv.2020.137116
    [67] XU S, UZOEJINWA B B, WANG S, HU Y, QIAN L, LIU L, LI B, HE Z, WANG Q, ABOMOHRA A E-F, LI C, ZHANG B. Study on co-pyrolysis synergistic mechanism of seaweed and rice husk by investigation of the characteristics of char/coke[J]. Renew Energy,2019,132:527−542. doi: 10.1016/j.renene.2018.08.025
    [68] HU Z, ZHENG Y, YAN F, XIAO B, LIU S. Bio-oil production through pyrolysis of blue-green algae blooms (BGAB): Product distribution and bio-oil characterization[J]. Energy,2013,52:119−125. doi: 10.1016/j.energy.2013.01.059
    [69] IRIARTE-VELASCO U, SIERRA I, ZUDAIRE L, AYASTUY J L. Preparation of a porous biochar from the acid activation of pork bones[J]. Food Bioprod Process,2016,98:341−353. doi: 10.1016/j.fbp.2016.03.003
    [70] ZHANG P, LI Y, CAO Y, HAN L. Characteristics of tetracycline adsorption by cow manure biochar prepared at different pyrolysis temperatures[J]. Bioresour Technol,2019,285:121348. doi: 10.1016/j.biortech.2019.121348
    [71] LIU Y, YAO S, WANG Y, LU H, BRAR S K, YANG S. Bio- and hydrochars from rice straw and pig manure: Inter-comparison[J]. Bioresour Technol,2017,235:332−337. doi: 10.1016/j.biortech.2017.03.103
    [72] KIM H, JEONG N J, HAN S O. Synthesis of a catalytic support from natural cellulose fibers, and its performance in a CO2 reforming of CH4[J]. Appl Catal B-Environ, 2012, 113114: 116–125.
    [73] TOMCZYK A, SOKOŁOWSKA Z, BOGUTA P. Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects[J]. Rev Environ Sci Bio-Technol,2020,19(1):191−215. doi: 10.1007/s11157-020-09523-3
    [74] WEBER K, QUICKER P. Properties of biochar[J]. Fuel,2018,217:240−261. doi: 10.1016/j.fuel.2017.12.054
    [75] ZHAO B, O'CONNOR D, ZHANG J, PENG T, SHEN Z, TSANG D C W, HOU D. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar[J]. J Cleaner Prod,2018,174:977−987. doi: 10.1016/j.jclepro.2017.11.013
    [76] KUMAR U, MAROUFI S, RAJARAO R, MAYYAS M, MANSURI I, JOSHI R K, SAHAJWALLA V. Cleaner production of iron by using waste macadamia biomass as a carbon resource[J]. J Cleaner Prod,2017,158:218−224. doi: 10.1016/j.jclepro.2017.04.115
    [77] BURHENNE L, DAMIANI M, AICHER T. Effect of feedstock water content and pyrolysis temperature on the structure and reactivity of spruce wood char produced in fixed bed pyrolysis[J]. Fuel,2013,107:836−847. doi: 10.1016/j.fuel.2013.01.033
    [78] FU P, HU S, XIANG J, SUN L, LI P, ZHANG J, ZHENG C. Pyrolysis of Maize Stalk on the Characterization of Chars Formed under Different Devolatilization Conditions[J]. Energy Fuels,2009,23(9):4605−4611. doi: 10.1021/ef900268y
    [79] LI L, YAN K, CHEN J, FENG T, WANG F, WANG J, SONG Z, MA C. Fe-rich biomass derived char for microwave-assisted methane reforming with carbon dioxide[J]. Sci Total Environ,2019,657:1357−1367. doi: 10.1016/j.scitotenv.2018.12.097
    [80] ZHANG Z, OU Z, QIN C, RAN J, WU C. Roles of alkali/alkaline earth metals in steam reforming of biomass tar for hydrogen production over perovskite supported Ni catalysts[J]. Fuel,2019,257:116032. doi: 10.1016/j.fuel.2019.116032
    [81] LI L, YANG Z, CHEN J, QIN X, JIANG X, WANG F, SONG Z, MA C. Performance of bio-char and energy analysis on CH4 combined reforming by CO2 and H2O into syngas production with assistance of microwave[J]. Fuel,2018,215:655−664. doi: 10.1016/j.fuel.2017.11.107
    [82] HORIUCHI T, HIDAKA H, FUKUI T, KUBO Y, HORIO M, SUZUKI K, MORI T. Effect of added basic metal oxides on CO2 adsorption on alumina at elevated temperatures[J]. Appl Catal A-Gen,1998,167(2):195−202. doi: 10.1016/S0926-860X(97)00318-9
    [83] DIAS J A C, ASSAF J M. Influence of calcium content in Ni/CaO/γ-Al2O3 catalysts for CO2-reforming of methane[J]. Catal Today,2003,85(1):59−68. doi: 10.1016/S0920-5861(03)00194-9
    [84] CHANG J-S, PARK S-E, CHON H. Catalytic activity and coke resistance in the carbon dioxide reforming of methane to synthesis gas over zeolite-supported Ni catalysts[J]. Appl Catal A-Gen,1996,145(1):111−124.
    [85] XU L, WANG F, CHEN M, FAN X, YANG H, NIE D, QI L. Alkaline-promoted Co-Ni bimetal ordered mesoporous catalysts with enhanced coke-resistant performance toward CO2 reforming of CH4[J]. J CO2 Util,2017,18:1−14. doi: 10.1016/j.jcou.2017.01.003
    [86] ZHANG G, ZHAO P, XU Y, QU J. Characterization of Ca-promoted Co/AC catalyst for CO2-CH4 reforming to syngas production[J]. J CO2 Util,2017,18:326−334. doi: 10.1016/j.jcou.2017.02.013
    [87] SAN JOSé-ALONSO D, ILLáN-GóMEZ M J, ROMáN-MARTíNEZ M C. K and Sr promoted Co alumina supported catalysts for the CO2 reforming of methane[J]. Catal Today,2011,176(1):187−190. doi: 10.1016/j.cattod.2010.11.093
    [88] WYSOCKA I, MIELEWCZYK-GRYŃ A, ŁAPIŃSKI M, CIEŚLIK B, ROGALA A. Effect of small quantities of potassium promoter and steam on the catalytic properties of nickel catalysts in dry/combined methane reforming[J]. Int J Hydrog Energy,2021,46(5):3847−3864. doi: 10.1016/j.ijhydene.2020.10.189
    [89] HU S, JIANG L, WANG Y, SU S, SUN L, XU B, HE L, XIANG J. Effects of inherent alkali and alkaline earth metallic species on biomass pyrolysis at different temperatures[J]. Bioresour Technol,2015,192:23−30. doi: 10.1016/j.biortech.2015.05.042
    [90] YAO D, HU Q, WANG D, YANG H, WU C, WANG X, CHEN H. Hydrogen production from biomass gasification using biochar as a catalyst/support[J]. Bioresour Technol,2016,216:159−164. doi: 10.1016/j.biortech.2016.05.011
    [91] CAZORLA-AMOROS D, LINARES-SOLANO A, SALINAS-MARTINEZ DE LECEA C, YAMASHITA H, KYOTANI T, TOMITA A, NOMURA M. XAFS and thermogravimetry study of the sintering of calcium supported on carbon[J]. Energy Fuels,1993,7(1):139−145. doi: 10.1021/ef00037a022
    [92] QAMBRANI N A, RAHMAN M M, WON S, SHIM S, RA C. Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review[J]. Renew Sust Energ Rev,2017,79:255−273. doi: 10.1016/j.rser.2017.05.057
    [93] DISSANAYAKE P D, YOU S, IGALAVITHANA A D, XIA Y, BHATNAGAR A, GUPTA S, KUA H W, KIM S, KWON J-H, TSANG D C W, OK Y S. Biochar-based adsorbents for carbon dioxide capture: A critical review[J]. Renew Sust Energ Rev,2020,119:109582. doi: 10.1016/j.rser.2019.109582
    [94] XIAO X, CHEN B, CHEN Z, ZHU L, SCHNOOR J L. Insight into multiple and multilevel structures of biochars and their potential environmental applications: A critical review[J]. Environ Sci Technol,2018,52(9):5027−5047. doi: 10.1021/acs.est.7b06487
    [95] AJENG A A, ABDULLAH R, JUNIA A, LAU B F, LING T C, ISMAIL S. Evaluation of palm kernel shell biochar for the adsorption of Bacillus cereus[J]. Phys Scr,2021,96(10):105004. doi: 10.1088/1402-4896/ac0f3b
    [96] FU H, MA S, XU S, DUAN R, CHENG G, ZHAO P. Hierarchically porous magnetic biochar as an efficient amendment for cadmium in water and soil: Performance and mechanism[J]. Chemosphere,2021,281:130990. doi: 10.1016/j.chemosphere.2021.130990
    [97] DURáN-JIMéNEZ G, KOSTAS E T, STEVENS L A, MEREDITH W, ERANS M, HERNáNDEZ-MONTOYA V, BUTTRESS A, UGUNA C N, BINNER E. Green and simple approach for low-cost bioproducts preparation and CO2 capture[J]. Chemosphere,2021,279:130512. doi: 10.1016/j.chemosphere.2021.130512
    [98] WANG D, ROOT R A, CHOROVER J. Biochar-templated surface precipitation and inner-sphere complexation effectively removes arsenic from acid mine drainage[J]. Environ Sci Pollut Res, 2021.
    [99] MEIIRKHANULY Z, KOZIEL J A, BIAŁOWIEC A, BANIK C, BROWN R C. The-proof-of-concept of biochar floating cover influence on water pH[J]. Water, 2019, 11(9).
    [100] LI X, SU Z, LIANG P, ZHANG J. Construction of fungus waste-derived porous carbon as electrode materials for electrochemical supercapacitor[J]. Biomass Convers Biorefinery, 2021.
    [101] LIU Y, LONAPPAN L, BRAR S K, YANG S. Impact of biochar amendment in agricultural soils on the sorption, desorption, and degradation of pesticides: A review[J]. Sci Total Environ,2018,645:60−70. doi: 10.1016/j.scitotenv.2018.07.099
    [102] ZHANG G, QU J, SU A, ZHANG Y, XU Y. Towards understanding the carbon catalyzed CO2 reforming of methane to syngas[J]. J Ind Eng Chem,2015,21:311−317. doi: 10.1016/j.jiec.2014.02.038
    [103] WANG S-G, CAO D-B, LI Y-W, WANG J, JIAO H. Reactivity of surface OH in CH4 reforming reactions on Ni(111): A density functional theory calculation[J]. Surf Sci,2009,603(16):2600−2606. doi: 10.1016/j.susc.2009.06.009
    [104] LEE J, KIM K-H, KWON E E. Biochar as a catalyst[J]. Renew Sust Energ Rev,2017,77:70−79. doi: 10.1016/j.rser.2017.04.002
    [105] SONG Y, TAHMASEBI A, YU J. Co-pyrolysis of pine sawdust and lignite in a thermogravimetric analyzer and a fixed-bed reactor[J]. Bioresour Technol,2014,174:204−211. doi: 10.1016/j.biortech.2014.10.027
    [106] FIDEL R B, LAIRD D A, THOMPSON M L, LAWRINENKO M. Characterization and quantification of biochar alkalinity[J]. Chemosphere,2017,167:367−373. doi: 10.1016/j.chemosphere.2016.09.151
    [107] GUO F, LEI S, ZHANG Y, ZHAO H. Activity enhancement of semicokes by ammonia activated at high temperatures and high pressures for carbon dioxide re-forming of methane[J]. Energy Fuels,2014,28(10):6511−6519. doi: 10.1021/ef501750f
    [108] LIU Y, PASKEVICIUS M, WANG H, FUSHIMI C, PARKINSON G, LI C-Z. Difference in tar reforming activities between biochar catalysts activated in H2O and CO2[J]. Fuel,2020,271:117636. doi: 10.1016/j.fuel.2020.117636
    [109] CAO L, YU I K M, TSANG D C W, ZHANG S, OK Y S, KWON E E, SONG H, POON C S. Phosphoric acid-activated wood biochar for catalytic conversion of starch-rich food waste into glucose and 5-hydroxymethylfurfural[J]. Bioresour Technol,2018,267:242−248. doi: 10.1016/j.biortech.2018.07.048
    [110] KALINKE C, OLIVEIRA P R, OLIVEIRA G A, MANGRICH A S, MARCOLINO-JUNIOR L H, BERGAMINI M F. Activated biochar: Preparation, characterization and electroanalytical application in an alternative strategy of nickel determination[J]. Anal Chim Acta,2017,983:103−111. doi: 10.1016/j.aca.2017.06.025
    [111] WANG Y, LIU R. H2O2 treatment enhanced the heavy metals removal by manure biochar in aqueous solutions[J]. Sci Total Environ, 2018, 628629: 1139–1148.
    [112] Lü F, LU X, LI S, ZHANG H, SHAO L, HE P. Dozens-fold improvement of biochar redox properties by KOH activation[J]. Chem Eng J,2022,429:132203. doi: 10.1016/j.cej.2021.132203
    [113] CHEN Z, JING Y, WANG Y, MENG X, ZHANG C, CHEN Z, ZHOU J, QIU R, ZHANG X. Enhanced removal of aqueous Cd(II) by a biochar derived from salt-sealing pyrolysis coupled with NaOH treatment[J]. Appl Surf Sci,2020,511:145619. doi: 10.1016/j.apsusc.2020.145619
    [114] DI STASI C, GRECO G, CANEVESI R L S, IZQUIERDO M T, FIERRO V, CELZARD A, GONZáLEZ B, MANYà J J. Influence of activation conditions on textural properties and performance of activated biochars for pyrolysis vapors upgrading[J]. Fuel,2021,289:119759. doi: 10.1016/j.fuel.2020.119759
    [115] TAN X-F, LIU S-B, LIU Y-G, GU Y-L, ZENG G-M, HU X-J, WANG X, LIU S-H, JIANG L-H. Biochar as potential sustainable precursors for activated carbon production: Multiple applications in environmental protection and energy storage[J]. Bioresour Technol,2017,227:359−372. doi: 10.1016/j.biortech.2016.12.083
    [116] LIU W-J, JIANG H, YU H-Q. Development of biochar-based functional materials: Toward a sustainable platform carbon material[J]. Chem Rev,2015,115(22):12251−12285. doi: 10.1021/acs.chemrev.5b00195
    [117] ANTO S, SUDHAKAR M P, SHAN AHAMED T, SAMUEL M S, MATHIMANI T, BRINDHADEVI K, PUGAZHENDHI A. Activation strategies for biochar to use as an efficient catalyst in various applications[J]. Fuel,2021,285:119205. doi: 10.1016/j.fuel.2020.119205
    [118] LIMA I M, BOATENG A A, KLASSON K T. Physicochemical and adsorptive properties of fast-pyrolysis bio-chars and their steam activated counterparts[J]. J Chem Technol Biotechnol,2010,85(11):1515−1521.
    [119] HASS A, LIMA I M. Effect of feed source and pyrolysis conditions on properties and metal sorption by sugarcane biochar[J]. Environ Technol Innov,2018,10:16−26. doi: 10.1016/j.eti.2018.01.007
    [120] 陈健, 李庭琛, 颜涌捷, 任铮伟, 张素平. 生物质裂解残炭制备活性炭[J]. 华东理工大学学报(自然科学版),2005,(06):821−824. doi: 10.3969/j.issn.1006-3080.2005.06.030

    CHEN Jian, LI Ting-chen, YAN Yong-jie, REN Zheng-wei, ZHANG Su-ping. Preparation of activated carbon from the residual carbon obtained by fast pyrolysis of biomass[J]. J East Chin Univ Sci Technol,2005,(06):821−824. doi: 10.3969/j.issn.1006-3080.2005.06.030
    [121] LIMA I M, BOYKIN D L, THOMAS KLASSON K, UCHIMIYA M. Influence of post-treatment strategies on the properties of activated chars from broiler manure[J]. Chemosphere,2014,95:96−104. doi: 10.1016/j.chemosphere.2013.08.027
    [122] ZHANG Y-N, YE Z-F, YANG K, DONG S-L. Antenna-predominant and male-biased CSP19 of Sesamia inferens is able to bind the female sex pheromones and host plant volatiles[J]. Gene,2014,536(2):279−286. doi: 10.1016/j.gene.2013.12.011
    [123] ZHANG Y-J, XING Z-J, DUAN Z-K, MENG L, WANG Y. Effects of steam activation on the pore structure and surface chemistry of activated carbon derived from bamboo waste[J]. Appl Surf Sci,2014,315:279−286. doi: 10.1016/j.apsusc.2014.07.126
    [124] PALLARéS J, GONZáLEZ-CENCERRADO A, ARAUZO I. Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam[J]. Biomass Bioenergy,2018,115:64−73. doi: 10.1016/j.biombioe.2018.04.015
    [125] MOLINA-SABIO M, GONZALEZ M T, RODRIGUEZ-REINOSO F, SEPúLVEDA-ESCRIBANO A. Effect of steam and carbon dioxide activation in the micropore size distribution of activated carbon[J]. Carbon,1996,34(4):505−509. doi: 10.1016/0008-6223(96)00006-1
    [126] CHA J S, PARK S H, JUNG S-C, RYU C, JEON J-K, SHIN M-C, PARK Y-K. Production and utilization of biochar: A review[J]. J Ind Eng Chem,2016,40:1−15. doi: 10.1016/j.jiec.2016.06.002
    [127] SHAO J, ZHANG J, ZHANG X, FENG Y, ZHANG H, ZHANG S, CHEN H. Enhance SO2 adsorption performance of biochar modified by CO2 activation and amine impregnation[J]. Fuel,2018,224:138−146. doi: 10.1016/j.fuel.2018.03.064
    [128] GUO S, PENG J, LI W, YANG K, ZHANG L, ZHANG S, XIA H. Effects of CO2 activation on porous structures of coconut shell-based activated carbons[J]. Appl Surf Sci,2009,255(20):8443−8449. doi: 10.1016/j.apsusc.2009.05.150
    [129] WANG J, NIE P, DING B, DONG S, HAO X, DOU H, ZHANG X. Biomass derived carbon for energy storage devices[J]. J Mater Chem A,2017,5(6):2411−2428. doi: 10.1039/C6TA08742F
    [130] WAN MAHARI W A, ZAINUDDIN N F, WAN NIK W M, CHONG C T, LAM S S. Pyrolysis recovery of waste shipping oil using microwave heating[J]. Energies, 2016, 9(10).
    [131] LAM S S, LIEW R K, CHENG C K, CHASE H A. Catalytic microwave pyrolysis of waste engine oil using metallic pyrolysis char[J]. Appl Catal B-Environ, 2015, 176177: 601–617.
    [132] HUNT J, FERRARI A, LITA A, CROSSWHITE M, ASHLEY B, STIEGMAN A E. Microwave-specific enhancement of the carbon–carbon dioxide (boudouard) reaction[J]. J Phys Chem C,2013,117(51):26871−26880. doi: 10.1021/jp4076965
    [133] YEK P N Y, PENG W, WONG C C, LIEW R K, HO Y L, WAN MAHARI W A, AZWAR E, YUAN T Q, TABATABAEI M, AGHBASHLO M, SONNE C, LAM S S. Engineered biochar via microwave CO2 and steam pyrolysis to treat carcinogenic Congo red dye[J]. J Hazard Mater,2020,395:122636. doi: 10.1016/j.jhazmat.2020.122636
    [134] RAJAPAKSHA A U, CHEN S S, TSANG D C W, ZHANG M, VITHANAGE M, MANDAL S, GAO B, BOLAN N S, OK Y S. Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification[J]. Chemosphere,2016,148:276−291. doi: 10.1016/j.chemosphere.2016.01.043
    [135] SAYĞıLı H, SAYĞıLı G A. Optimized preparation for bimodal porous carbon from lentil processing waste by microwave-assisted K2CO3 activation: Spectroscopic characterization and dye decolorization activity[J]. J Cleaner Prod,2019,226:968−976. doi: 10.1016/j.jclepro.2019.04.121
    [136] QANYTAH, SYAMSU K, FAHMA F, PARI D G. Characterization of ball-milled bamboo-based activated carbon treated with KMnO4 and KOH as activating agents[J]. Bioresources,2020,15(4):8303−8322. doi: 10.15376/biores.15.4.8303-8322
    [137] WANG D, GENG Z, ZHANG C, ZHOU X, LIU X. Effects of thermal activation conditions on the microstructure regulation of corncob-derived activated carbon for hydrogen storage[J]. J Energy Chem,2014,23(5):601−608. doi: 10.1016/S2095-4956(14)60190-X
    [138] WANG L, SUN F, HAO F, QU Z, GAO J, LIU M, WANG K, ZHAO G, QIN Y. A green trace K2CO3 induced catalytic activation strategy for developing coal-converted activated carbon as advanced candidate for CO2 adsorption and supercapacitors[J]. Chem Eng J,2020,383:123205. doi: 10.1016/j.cej.2019.123205
    [139] GUO Y, TAN C, SUN J, LI W, ZHANG J, ZHAO C. Porous activated carbons derived from waste sugarcane bagasse for CO2 adsorption[J]. Chem Eng J,2020,381:122736. doi: 10.1016/j.cej.2019.122736
    [140] HUANG H, TANG J, GAO K, HE R, ZHAO H, WERNER D. Characterization of KOH modified biochars from different pyrolysis temperatures and enhanced adsorption of antibiotics[J]. RSC Adv,2017,7(24):14640−14648. doi: 10.1039/C6RA27881G
    [141] MACHADO L M M, LüTKE S F, PERONDI D, GODINHO M, OLIVEIRA M L S, COLLAZZO G C, DOTTO G L. Treatment of effluents containing 2-chlorophenol by adsorption onto chemically and physically activated biochars[J]. J Environ Chem Eng,2020,8(6):104473. doi: 10.1016/j.jece.2020.104473
    [142] YANG R, LIU G, XU X, LI M, ZHANG J, HAO X. Surface texture, chemistry and adsorption properties of acid blue 9 of hemp (Cannabis sativa L. ) bast-based activated carbon fibers prepared by phosphoric acid activation[J]. Biomass Bioenergy,2011,35(1):437−445. doi: 10.1016/j.biombioe.2010.08.061
    [143] SHAMSUDDIN M S, YUSOFF N R N, SULAIMAN M A. Synthesis and characterization of activated carbon produced from kenaf core fiber using H3PO4 activation[J]. Procedia Chemistry,2016,19:558−565. doi: 10.1016/j.proche.2016.03.053
    [144] 裴玉同, 罗勇, 吴向阳, 李建龙, 宋家龙. 改性活性炭吸附脱除噻吩类硫化物[J]. 石油化工,2010,39(12):1380−1385.

    PEI Yu-tong, LUO Yong, WU Xiang-yang, LI Jian-long, SONG Jia-long. Adsorption removal of thiophenic sulfur compounds on modified activated carbon[J]. Petrochem Technol,2010,39(12):1380−1385.
    [145] 安青, 陈德珍, 钦佩, 岳霞. 生物炭活化技术及生物炭催化剂的研究进展[J]. 中国环境科学: 1–19.

    AN Qing, CHEN De-zhen, QIN Pei, YUE Xia. Research progress of biochar activation technology and biochar catalyst[J]. Chin Environ Sci: 1–19.
    [146] HUFF M D, LEE J W. Biochar-surface oxygenation with hydrogen peroxide[J]. J Environ Manag,2016,165:17−21. doi: 10.1016/j.jenvman.2015.08.046
    [147] XUE Y, GAO B, YAO Y, INYANG M, ZHANG M, ZIMMERMAN A R, RO K S. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests[J]. Chem Eng J, 2012, 200202: 673–680.
    [148] ZUO X, LIU Z, CHEN M. Effect of H2O2 concentrations on copper removal using the modified hydrothermal biochar[J]. Bioresour Technol,2016,207:262−267. doi: 10.1016/j.biortech.2016.02.032
    [149] DENG J, LI M, WANG Y. Biomass-derived carbon: synthesis and applications in energy storage and conversion[J]. Green Chem,2016,18(18):4824−4854. doi: 10.1039/C6GC01172A
    [150] SHEN Y, FU Y. KOH-activated rice husk char via CO2 pyrolysis for phenol adsorption[J]. Mater Today Energy,2018,9:397−405. doi: 10.1016/j.mtener.2018.07.005
    [151] WANG J, KASKEL S. KOH activation of carbon-based materials for energy storage[J]. J Mater Chem,2012,22(45):23710−23725. doi: 10.1039/c2jm34066f
    [152] SHAN R, HAN J, GU J, YUAN H, LUO B, CHEN Y. A review of recent developments in catalytic applications of biochar-based materials[J]. Resour Conserv Recycl,2020,162:105036. doi: 10.1016/j.resconrec.2020.105036
    [153] ROMANOS J, BECKNER M, RASH T, FIRLEJ L, KUCHTA B, YU P, SUPPES G, WEXLER C, PFEIFER P. Nanospace engineering of KOH activated carbon[J]. Nanotechnology, 2012, 23(1).
    [154] MA Y, QI Y, LU T, YANG L, WU L, CUI S, DING Y, ZHANG Z. Highly efficient removal of imidacloprid using potassium hydroxide activated magnetic microporous loofah sponge biochar[J]. Sci Total Environ,2021,765:144253. doi: 10.1016/j.scitotenv.2020.144253
    [155] ISMAIL I S, SINGH G, SMITH P, KIM S, YANG J-H, JOSEPH S, YUSUP S, SINGH M, BANSAL V, TALAPANENI S N, VINU A. Oxygen functionalized porous activated biocarbons with high surface area derived from grape marc for enhanced capture of CO2 at elevated-pressure[J]. Carbon,2020,160:113−124. doi: 10.1016/j.carbon.2020.01.008
    [156] HSU D, LU C, PANG T, WANG Y, WANG G. Adsorption of ammonium nitrogen from aqueous solution on chemically activated biochar prepared from sorghum distillers grain[J]. Appl Sci, 2019, 9(23).
    [157] ZHU L, ZHAO N, TONG L, LV Y. Structural and adsorption characteristics of potassium carbonate activated biochar[J]. RSC Adv,2018,8(37):21012−21019. doi: 10.1039/C8RA03335H
    [158] 王同洲, 王鸿. 多孔碳材料的研究进展[J]. 中国科学:化学,2019,49(05):729−740. doi: 10.1360/N032018-00217

    WANG Tong-zhou, WANG Hong. Research progress on porous carbon materials[J]. Sci Sin Chim,2019,49(05):729−740. doi: 10.1360/N032018-00217
    [159] 高立, 应芝, 黄亚军, 俞潇远, 刘芯妤, 何长春, 张成. 生物炭基催化剂电催化分解水制氢[J]. 功能材料,2021,52(02):2009−2017.

    GAO Li, YING Zhi, HUANG Ya-jun, YU Xiao-yuan, LIU Xin-yu, HE Chang-chun, ZHANG Cheng. Biochar-based electrocatalysts for hydrogen production by electrolysis of water[J]. J Funct Mater,2021,52(02):2009−2017.
    [160] CHEN B, YANG Z, MA G, KONG D, XIONG W, WANG J, ZHU Y, XIA Y. Heteroatom-doped porous carbons with enhanced carbon dioxide uptake and excellent methylene blue adsorption capacities[J]. Microporous Mesoporous Mat,2018,257:1−8. doi: 10.1016/j.micromeso.2017.08.026
    [161] WANG X, GONG X, PENG L, YANG Z, LIU Y. Tubular nitrogen-doped carbon materials derived from green foxtail as a metal-free electrocatalyst in microbial fuel cells for efficient electron generation[J]. Bioelectrochemistry,2019,127:104−112. doi: 10.1016/j.bioelechem.2019.01.009
    [162] DING D, YANG S, QIAN X, CHEN L, CAI T. Nitrogen-doping positively whilst sulfur-doping negatively affect the catalytic activity of biochar for the degradation of organic contaminant[J]. Appl Catal B-Environ,2020,263:118348. doi: 10.1016/j.apcatb.2019.118348
    [163] SUN X, ZHANG W, TANG D, QIAO Z-A, LIU Y, LIANG D, ZHU J, ZHAO Z. Co-entrapped, N-doped mesoporous carbons prepared from melamine formaldehyde resins with CoCl2 as template for hydrogen evolution[J]. J Colloid Interface Sci,2018,516:416−422. doi: 10.1016/j.jcis.2018.01.091
    [164] YE S, ZENG G, TAN X, WU H, LIANG J, SONG B, TANG N, ZHANG P, YANG Y, CHEN Q, LI X. Nitrogen-doped biochar fiber with graphitization from Boehmeria nivea for promoted peroxymonosulfate activation and non-radical degradation pathways with enhancing electron transfer[J]. Appl Catal B-Environ,2020,269:118850. doi: 10.1016/j.apcatb.2020.118850
    [165] WANG H, MAIYALAGAN T, WANG X. Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications[J]. ACS Catal,2012,2(5):781−794. doi: 10.1021/cs200652y
    [166] XU X, ZHENG Y, GAO B, CAO X. N-doped biochar synthesized by a facile ball-milling method for enhanced sorption of CO2 and reactive red[J]. Chem Eng J,2019,368:564−572. doi: 10.1016/j.cej.2019.02.165
    [167] ZHANG X, ZHANG G, QIN X, LIU J, LI G, XU Y, LV Y. Catalytic performance of CH4-CO2 reforming over metal free nitrogen-doped biomass carbon catalysts: Effect of different preparation methods[J]. Int J Hydrog Energy,2021,46(62):31586−31597. doi: 10.1016/j.ijhydene.2021.07.043
    [168] SUN Y, ZHANG G, XU Y, ZHANG R. Catalytic performance of dioxide reforming of methane over Co/AC-N catalysts: Effect of nitrogen doping content and calcination temperature[J]. Int J Hydrog Energy,2019,44(31):16424−16435. doi: 10.1016/j.ijhydene.2019.04.250
    [169] BEAR J C, MCGETTRICK J D, PARKIN I P, DUNNILL C W, HASELL T. Porous carbons from inverse vulcanised polymers[J]. Microporous Mesoporous Mat,2016,232:189−195. doi: 10.1016/j.micromeso.2016.06.021
    [170] GUO Y, ZENG Z, LIU Y, HUANG Z, CUI Y, YANG J. One-pot synthesis of sulfur doped activated carbon as a superior metal-free catalyst for the adsorption and catalytic oxidation of aqueous organics[J]. J Mater Chem A,2018,6(9):4055−4067. doi: 10.1039/C7TA09814F
    [171] GAO J, WANG X, ZHANG Y, LIU J, LU Q, LIU M. Boron-doped ordered mesoporous carbons for the application of supercapacitors[J]. Electrochim Acta,2016,207:266−274. doi: 10.1016/j.electacta.2016.05.013
    [172] YANG W, YANG W, KONG L, SONG A, QIN X, SHAO G. Phosphorus-doped 3D hierarchical porous carbon for high-performance supercapacitors: A balanced strategy for pore structure and chemical composition[J]. Carbon,2018,127:557−567. doi: 10.1016/j.carbon.2017.11.050
    [173] AI W, LUO Z, JIANG J, ZHU J, DU Z, FAN Z, XIE L, ZHANG H, HUANG W, YU T. Nitrogen and sulfur codoped graphene: multifunctional electrode materials for high-performance Li-ion batteries and oxygen reduction reaction[J]. Adv Mater,2014,26(35):6186−6192. doi: 10.1002/adma.201401427
    [174] LI Z, YANG W, XU X, TANG Y, ZENG Z, YANG F, ZHANG L, NING G, XU C, LI Y. Interconnected nitrogen and sulfur dual-doped porous carbon as efficient electrocatalyst for triiodide reduction in dye-sensitized solar cells[J]. J Power Sources,2016,327:289−296. doi: 10.1016/j.jpowsour.2016.07.067
    [175] LI L, JIANG X, WANG H, WANG J, SONG Z, ZHAO X, MA C. Methane dry and mixed reforming on the mixture of bio-char and nickel-based catalyst with microwave assistance[J]. J Anal Appl Pyrolysis,2017,125:318−327. doi: 10.1016/j.jaap.2017.03.009
    [176] LI L, WANG H, JIANG X, SONG Z, ZHAO X, MA C. Microwave-enhanced methane combined reforming by CO2 and H2O into syngas production on biomass-derived char[J]. Fuel,2016,185:692−700. doi: 10.1016/j.fuel.2016.07.098
    [177] FENG X D, FENG J, LI W Y. CO2 reforming of CH4 over a highly active and stable Ni-Mg-Al catalyst[J]. Int J Hydrog Energy,2017,42(5):3036−3042. doi: 10.1016/j.ijhydene.2016.09.205
    [178] SONG W, ZHAO C, LERCHER J A. Importance of Size and Distribution of Ni Nanoparticles for the Hydrodeoxygenation of Microalgae Oil[J]. Chem – Eur J,2013,19(30):9833−9842. doi: 10.1002/chem.201301005
    [179] ABDULRASHEED A, JALIL A A, GAMBO Y, IBRAHIM M, HAMBALI H U, SHAHUL HAMID M Y. A review on catalyst development for dry reforming of methane to syngas: Recent advances[J]. Renew Sust Energ Rev,2019,108:175−193. doi: 10.1016/j.rser.2019.03.054
    [180] ZUO Z, LIU S, WANG Z, LIU C, HUANG W, HUANG J, LIU P. Dry Reforming of Methane on Single-Site Ni/MgO Catalysts: Importance of Site Confinement[J]. ACS Catal,2018,8(10):9821−9835. doi: 10.1021/acscatal.8b02277
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  2
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-25
  • 录用日期:  2022-05-26
  • 修回日期:  2022-05-25
  • 网络出版日期:  2022-06-23

目录

    /

    返回文章
    返回