留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甲酸辅助Cu-ZnO-Al2O3催化剂制备及其CO2加氢制甲醇性能研究

姜秀云 杨文兵 宋昊 马清祥 高新华 李鹏 赵天生

姜秀云, 杨文兵, 宋昊, 马清祥, 高新华, 李鹏, 赵天生. 甲酸辅助Cu-ZnO-Al2O3催化剂制备及其CO2加氢制甲醇性能研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60041-0
引用本文: 姜秀云, 杨文兵, 宋昊, 马清祥, 高新华, 李鹏, 赵天生. 甲酸辅助Cu-ZnO-Al2O3催化剂制备及其CO2加氢制甲醇性能研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60041-0
JIANG Xiu-yun, YANG Wen-bing, SONG Hao, MA Qing-xiang, GAO Xin-hua, Li Peng, ZHAO Tian-sheng. Formic acid assisted synthesis of Cu-ZnO-Al2O3 catalyst and its performance in CO2 hydrogenation to methanol[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60041-0
Citation: JIANG Xiu-yun, YANG Wen-bing, SONG Hao, MA Qing-xiang, GAO Xin-hua, Li Peng, ZHAO Tian-sheng. Formic acid assisted synthesis of Cu-ZnO-Al2O3 catalyst and its performance in CO2 hydrogenation to methanol[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60041-0

甲酸辅助Cu-ZnO-Al2O3催化剂制备及其CO2加氢制甲醇性能研究

doi: 10.1016/S1872-5813(22)60041-0
基金项目: 国家自然科学基金项目(21766027) ;宁夏自然科学基金(2022AAC03040, 2021AAC03108);宁夏大学研究生创新项目(GIP2020053)资助
详细信息
    通讯作者:

    Tel:0951-2062393,E-mail:maqx@nxu.edu.cn

    zhaots@nxu.edu.cn

  • 中图分类号: O643O643.36

Formic acid assisted synthesis of Cu-ZnO-Al2O3 catalyst and its performance in CO2 hydrogenation to methanol

Funds: Financial support: the National Natural Science Foundation of China (21766027); Natural Science Foundation of Ningxia (2022AAC03040, 2021AAC03108); Graduate Innovation Project of Ningxia University (GIP2020053).
  • 摘要: 采用共沉淀法制备Cu/Zn/Al前驱体,经甲酸处理后N2气氛焙烧得到Cu-ZnO-Al2O3催化剂(CZA)用于CO2加氢制甲醇反应。使用XRD、BET、TG-DSC、SEM、H2-TPR、N2O滴定、XPS-AES、CO2-TPD表征技术对催化剂的物相组成、结构性质以及Cu物种的比表面积、分散度以及价态分布进行分析和讨论。结果表明,甲酸处理调节了催化剂中Cu+与Cu0的比例,同时增加催化剂的中强碱性,并提高甲醇选择性。在W/F(H2/CO2:70/23) = 10 g∙h/mol、t = 200 ℃、p = 3 MPa反应条件,使用HCOOH/Cu = 0.8(摩尔比)甲酸处理获得的催化剂,CO2转化率6.7%,甲醇选择性达76.3%。
  • 图  1  反应前后xf-CZA催化剂的XRD谱图

    Figure  1  XRD patterns of xf-CZA catalysts

    (a): Before reaction; (b): After reaction

    图  2  前驱体样品的热分析曲线图

    Figure  2  Thermal analysis curve of precursor samples

    (a): TG; (b): DSC

    图  3  xf-CZA催化剂的N2吸附-脱附等温线和孔径分布图

    Figure  3  N2 adsorption-desorption isotherms and pore diameter distribution of xf-CZA catalysts

    (a): N2 adsorption-desorption isotherm; (b): Pore diameter distribution

    图  4  xf-CZA催化剂的SEM图像

    Figure  4  SEM images of xf-CZA catalysts

    (a): 0f-CZA; (b): 0.4f-CZA; (c): 0.8f-CZA; (d): 1.2f-CZA; (e): 2.4f-CZA

    图  5  xf-CZA催化剂的H2-TPR曲线

    Figure  5  H2-TPR profiles of xf-CZA catalysts

    图  6  xf-CZA催化剂的XPS谱图

    Figure  6  XPS patterns of xf-CZA catalysts

    (a): Cu 2p XPS of fresh xf-CZA; (b): Cu 2p XPS of spent xf-CZA; (c): Auger Cu LMM of fresh xf-CZA; (d): Auger Cu LMM of spent xf-CZA

    图  7  xf-CZA催化剂的CO2-TPD曲线

    Figure  7  CO2-TPD profiles of the xf-CZA catalysts

    图  8  xf-CZA催化剂的催化性能随反应时间的变化

    Figure  8  Relationship between the catalytic performance of xf-CZA catalyst and reaction time

    Reaction conditions: H2/CO2/Ar = 70/23/7; W/F = 10 g·h/mol; p = 3.0 MPa; t = 200 ℃; TOS = 48 h

    表  1  催化剂样品的织构性质参数

    Table  1  Texture property parameters of catalysts

    CatalystSBET/(m2/g)DCu/% aSCu/(cm3/g) a
    0f-CZA66.98.557.7
    0.4f-CZA59.36.745.5
    0.8f-CZA47.15.839.4
    1.2f-CZA38.54.933.6
    2.4f-CZA13.12.516.8
    a: Calculated by N2O titration; DCu: Dispersion of Cu; SCu: Specific surface area of Cu particle
    下载: 导出CSV

    表  2  催化剂表面Cu组分分析

    Table  2  Copper component analysis on catalyst surface

    Fresh catalystKinetic energy /eVSpent catalystAuger parameter /eVCu0/(Cu+ + Cu0)
    Cu+Cu0Cu0/(Cu+ + Cu0)Cu+Cu0
    0f-CZA 916.9 919.1 0.20 0f-CZA 916.9 918.9 0.41
    0.4f-CZA 916.9 919.0 0.31 0.4f-CZA 916.6 918.3 0.59
    0.8f-CZA 916.7 918.6 0.40 0.8f-CZA 916.6 918.5 0.63
    1.2f-CZA 916.8 918.8 0.44 1.2f-CZA 916.6 918.7 0.67
    2.4f-CZA 916.7 918.6 0.62 2.4f-CZA 916.9 918.9 0.65
    下载: 导出CSV

    表  3  xf-CZA催化剂活性评价

    Table  3  Activity evaluation of xf-CZA catalyst

    Catalyst${ {x} }_{ {\text{CO} }_{\text{2} } }/\text{%}$${ {s} }_{ {\text{CH} }_{\text{3} }\text{OH} }/\text{%}$${ {s} }_{\text{CO} }/\text{%}$${ {w} }_{ {\text{CH} }_{\text{3} }\text{OH} }/\text{%}$
    0f-CZA 7.6 60.2 39.8 4.5
    0.4f-CZA 7.2 64.8 35.2 4.7
    0.8f-CZA 6.7 76.3 23.7 5.1
    1.2f-CZA 6.1 77.9 22.1 4.7
    2.4f-CZA 2.8 80.2 19.8 2.2
    Reaction conditions: H2/CO2/Ar = 70/23/7; W/F = 10 g·h/mol;
    p = 3.0 MPa; t = 200 ℃; TOS = 48 h
    下载: 导出CSV
  • [1] WOODARD D L, DAVIS S J, RANDERSON J T. Economic carbon cycle feedbacks may offset additional warming from natural feedbacks[J]. Proc Natl Acad Sci U S A,2019,116(3):759−764. doi: 10.1073/pnas.1805187115
    [2] 高新华, 卢鹏飞, 陈国辉, 郭新雨, 梁洁, 马清祥, 张建利, 范素兵, 赵天生. K-Fe3O4/Ni-AlMCM-41 串联催化 CO2 加氢制高碳烃[J]. 燃料化学学报,2021,49(10):504−512.

    GAO Xin-hua, LU Peng-fei, CHEN Guo-hui, GUO Xin-yu, LIANG Jie, MA Qing-xiang, ZHANG Jian-li, FAN Su-bing, ZHAO Tian-sheng. Performance of K-Fe3O4/Ni-AlMCM-41 tandem catalyst for CO2 hydrogenation to long-chain hydrocarbons[J]. J Fuel Chem Technol,2021,49(10):504−512.
    [3] HU J T, YU L, DENG J, WANG Y, DENG D H. Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol[J]. Nat Catal,2021,4(3):242−250. doi: 10.1038/s41929-021-00584-3
    [4] POROSOFF M D, YAN B H, CHEN J G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities[J]. Energ Environ Sci,2016,9(1):62−73. doi: 10.1039/C5EE02657A
    [5] SEHESTED J. Industrial and scientific directions of methanol catalyst development[J]. J Catal,2019,371:368−375. doi: 10.1016/j.jcat.2019.02.002
    [6] OLAH G A. Beyond oil and gas: the methanol economy[J]. Angew Chem Int Edit,2005,44(18):2636−2639. doi: 10.1002/anie.200462121
    [7] JIANG X, NIE X W, GUO X W, SONG C S, CHEN J G. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis[J]. Chem Rev,2020,120(15):7984−8034. doi: 10.1021/acs.chemrev.9b00723
    [8] HU J T, YU L, DENG J, WANG Y, CHENG K, MA C, ZHANG Q H, WEN W, YU S S, PAN Y, YANG J Z, MA H, QI F, WANG Y JK, ZHENG Y P, CHEN M S, HUANG R, ZHANG S H, ZHAO Z C, MAO J, MENG X Y, JI Q Q, HOU G J, HAN X W, BAO X H, WANG Y, DENG D H. Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol[J]. Nature Catalysis,2021,4(3):242−250. doi: 10.1038/s41929-021-00584-3
    [9] HAN Z, TANG C Z, WANG J J, LI L D, LI C. Atomically dispersed Ptn+ species as highly active sites in Pt/In2O3 catalysts for methanol synthesis from CO2 hydrogenation[J]. Journal of Catalysis,2020,394:236−244.
    [10] LI M J, TSANG E. Bimetallic catalysts for green methanol production via CO2 and renewable hydrogen: a mini-review and prospects[J]. Catal Sci Technol,2018,8(14):3450−3464. doi: 10.1039/C8CY00304A
    [11] YANG Y X, EVANS J, RODRIGUEZ J A, WHITE M G, LIU P. Fundamental studies of methanol synthesis from CO2 hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(0001̄)[J]. Phys Chem Chem Phys,2010,12(33):9909−9917. doi: 10.1039/c001484b
    [12] WU J G, SAITO M, TAKEUCHI M, WATANABE T. The stability of Cu/ZnO-based catalysts in methanol synthesis from a CO2-rich feed and from a CO-rich feed[J]. Appl Catal A:Gen,2001,218(1-2):235−240. doi: 10.1016/S0926-860X(01)00650-0
    [13] LIANG B L, MA J G, SU X, YANG C Y, DUAN H M, ZHOU H W, DENG S L, LI L, HUANG Y Q. Investigation on deactivation of Cu-ZnO-Al2O3 catalyst for CO2 hydrogenation to methanol[J]. Ind Eng Chem Res,2019,58(21):9030−9037. doi: 10.1021/acs.iecr.9b01546
    [14] ZHANG F, ZHANG Y L, LIU Y, GASEM K A M, CHEN J Y, CHIANG F K, WANG Y G, FAN M H. Synthesis of Cu-ZnO-Al2O3/Mg catalysts on methanol production by different precipitation methods[J]. Mol Catal,2017,441:190−198. doi: 10.1016/j.mcat.2017.08.015
    [15] 林敏, 纳薇, 叶海船, 霍海辉, 高文桂. 不同助剂对CuO-ZnO/SBA-15催化CO2加氢制甲醇性能影响的研究[J]. 燃料化学学报,2019,47(10):1214−1224. doi: 10.3969/j.issn.0253-2409.2019.10.008

    LIN Min, NA Wei, YE Hai-chuan, HUO Hai-hui, GAO Wen-gui. Effect of additive on CuO-ZnO/SBA-15 catalytic performance of CO2 hydrogenation to methanol[J]. J Fuel Chem Technol,2019,47(10):1214−1224. doi: 10.3969/j.issn.0253-2409.2019.10.008
    [16] CAI W J, CHEN Q, WANG F, LI Z C, YU H, ZHANG S Z, CUI L, LI C M, Comparison of the promoted CuZnMxOy (M: Ga, Fe) catalysts for CO2 hydrogenation to methanol[J]. Catal Lett, 2019, 149(9): 2508–2518.
    [17] ARENA F, MEZZATESTA G, ZAFARANA G, TRUNFIO G, FRUSTERI F, SPADARO L. How oxide carriers control the catalytic functionality of the Cu-ZnO system in the hydrogenation of CO2 to methanol[J]. Catal Today,2013,210:39−46. doi: 10.1016/j.cattod.2013.02.016
    [18] CHEN K, YU J, LIU B, SI C C, BAN H Y, CAI W J, LI C M, LI Z, FUJIMOTO K. Simple strategy synthesizing stable CuZnO/SiO2 methanol synthesis catalyst[J]. Journal of Catalysis,2019,372:163−173. doi: 10.1016/j.jcat.2019.02.035
    [19] LO I C, WU H W. Methanol formation from carbon dioxide hydrogenation using Cu-ZnO-Al2O3 catalyst[J]. J. Taiwan Inst Chem E,2019,98:124−131. doi: 10.1016/j.jtice.2018.06.020
    [20] WANG Z Q, XU Z N, PENG S Y, ZHANG M J, LU G, CHEN Q S, CHEN Y M, GUO G C. High-performance and long-lived Cu/SiO2 nanocatalyst for CO2 hydrogenation[J]. ACS Catal,2015,5(7):4255−4259. doi: 10.1021/acscatal.5b00682
    [21] DONG X S, LI F, ZHAO N, XIAO F K, WANG J W, TAN Y S. CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared by precipitation-reduction method[J]. Appl Catal B: Environ,2016,191:8−17. doi: 10.1016/j.apcatb.2016.03.014
    [22] SHI L, SHEN W Z, YANG G H, FAN X J, FAN X J, JIN Y Z, ZENG C Y, MATSUDA K J, TSUBAKI N. Formic acid directly assisted solid-state synthesis of metallic catalysts without further reduction: as-prepared Cu/ZnO catalysts for low-temperature methanol synthesis[J]. J Catal,2013,302:83−90. doi: 10.1016/j.jcat.2013.02.025
    [23] WITOON T, PERMSIRIVANICH T, CHAREONPANICH M. Chitosan-assisted combustion synthesis of CuO-ZnO nanocomposites: effect of pH and chitosan concentration[J]. Ceram Int,2013,39(3):3371−3375. doi: 10.1016/j.ceramint.2012.08.018
    [24] LI L, MAO D S, YU J, GUO X M. Highly selective hydrogenation of CO2 to methanol over CuO-ZnO-ZrO2 catalysts prepared by a surfactant-assisted co-precipitation method[J]. J. Power Sources,2015,279:394−404. doi: 10.1016/j.jpowsour.2014.12.142
    [25] 刘琰, 高志华, 郝树宏, 李帅帅, 黄伟. Cu-ZnO-Al2O3类水滑石制备过程pH值对其催化C2+醇合成的影响[J]. 石油学报(石油加工),2018,34(04):716−722.

    LIU Yan, GAO Zhi-hua, HAO Shu-hong, LI Shuai-shuai, HUANG Wei. Effect of pH value on the catalytic performance of Cu-ZnO-Al2O3-LDHs catalysts in the synthesis of C2+ alcohol[J]. Acta Petro Sin (Petro Proce Sec),2018,34(04):716−722.
    [26] 高鹏, 李枫, 赵宁, 王慧, 魏伟, 孙予罕. 以类水滑石为前驱体的Cu-ZnO-Al2O3/(Zr)/(Y)催化剂制备及其催化CO2加氢合成甲醇的性能[J]. 物理化学学报,2014,30(06):1155−1162. doi: 10.3866/PKU.WHXB201401252

    GAO Peng, LI Feng, ZHAO Ning, WANG Hui, WEI Wei, SUN Yu-han. Preparation of Cu-ZnO-Al2O3/(Zr)/(Y) catalyst form hydrotalcite-like precursors and their catalytic performance for the hydrogenation of CO2 to methanol[J]. Acta Phys-Chim Sin,2014,30(06):1155−1162. doi: 10.3866/PKU.WHXB201401252
    [27] 肖硕, 高鹏, 杨海艳, 夏林, 张建明, 陈志文, 王慧. 层状Cu-ZnO-Al2O3催化剂的制备及其催化CO2加氢合成甲醇的性能[J]. 上海大学学报(自然科学版),2016,22(02):218−230.

    Xiao Shuo, Gao Peng, Yang Hai-yan, Xia Lin, Zhang Jian-ming, Chen Zhi-wen, Wang Hui. Preparation of layered Cu-ZnO-Al2O3 catalyst and its catalytic performance for CO2 hydrogenation to methanol[J]. J Shanghai U (Nat Sci Ed),2016,22(02):218−230.
    [28] SHI L, SUN D, WANG Y X, TAN Y S, LI J, YAN S R, FANG R G, TSUBAKI N. Formic acid assisted synthesis of highly efficient Cu/ZnO catalysts effect of HCOOH/Cu molar ratios[J]. Catal Sci Technol,2016,6:4777−4785. doi: 10.1039/C5CY02010G
    [29] LU P, CHIZEMA L G, HONDO E, TONG M L, XING C, LU C X, MEI Y F, YANG R Q. CO2 hydrogenation to methanol via In-situ reduced Cu/ZnO catalyst prepared by formic acid assisted grinding[J]. Chem Select,2019,4(19):5667−5677.
    [30] 陈茂重, 王斓懿, 于学华, 赵震. 不同水热条件下MnO2的制备及其催化炭烟颗粒燃烧性能[J]. 工业催化.,2018,26(10):56−63.

    CHEN Mao-zhong, WANG Lan-yi, Yu Xue-hua, ZHAO Zhen. Preparation of MnO2 under different hydrothermal conditions and its catalytic performance for soot combustion[J]. Ind Catal,2018,26(10):56−63.
    [31] 张一凡, 杨文兵, 马清祥, 高新华, 张建利, 李鹏, 赵天生, 李蓉. 氮化碳对Cu-ZnO-Al2O3催化CO2加氢合成甲醇的影响[J]. 石油学报(石油加工).,2021,37(03):508−517.

    ZHANG Yi-fan, YANG Wen-bing, MA Qing-xiang, GAO Xin-hua, ZHANG Jian-li, LI Peng, ZHAO Tian-sheng, LI Rong. Effect of carbon nitride addition on Cu-ZnO-Al2O3 catalytic performance for CO2 hydrogenation to methanol[J]. Acta Petro Sin (Petro Proce Sec),2021,37(03):508−517.
    [32] LIU R W, QIN Z Z, JI H B, SU T M. Synthesis of dimethyl ether from CO2 and H2 using a Cu-Fe-Zr/HZSM-5 catalyst system[J]. Ind Eng Chem Res,2013,52(47):16648−16655. doi: 10.1021/ie401763g
    [33] CLAUSEN B S, STEFFENSEN G, FABIUS B, VILLADSEN J, FEIDENHANS R, TOPSØE H. In situ cell for combined XRD and on-line catalysis tests: studies of Cu-based water gas shift and methanol catalysts[J]. J Catal,1991,132(2):524−535. doi: 10.1016/0021-9517(91)90168-4
    [34] LI S Z, GUO L M, ISHIHARA T. Hydrogenation of CO2 to methanol over Cu/AlCeO2 catalyst[J]. Catalysis Today,2020,339:352−361. doi: 10.1016/j.cattod.2019.01.015
    [35] HOU X, XU C, LIU Y. Improved methanol synthesis from CO2 hydrogenation over CuZnAlZr catalysts with precursor pre-activation by formaldehyde[J]. J Catal,2019,379:147−153. doi: 10.1016/j.jcat.2019.09.025
    [36] 张磊, 雷俊腾, 田园, 胡鑫, 白金, 刘丹, 杨义, 潘立卫. 前驱体和沉淀剂浓度对 CuO/ZnO/CeO2-ZrO2 甲醇水蒸气重整制氢催化剂性能的影响[J]. 燃料化学学报,2015,43(11):1366−1374. doi: 10.3969/j.issn.0253-2409.2015.11.012

    ZHANG Lei, LEI Jun-teng, TIAN Yuan, HU Xin, BAI Jin, LIU Dan, YANG Yi, PAN Li-wei. Effect of precursor and precipitant concentration on the performance of CuO/ZnO/CeO2-ZrO2 catalyst for methanol steam reforming[J]. J Fuel Chem Technol,2015,43(11):1366−1374. doi: 10.3969/j.issn.0253-2409.2015.11.012
    [37] LI J C, WANG L G, HUI X, ZHANG C J, CAO Y, XU S, HE P, LI H Q. Effective hydrogenation of carbonates to produce methanol over a ternary Cu-ZnO-Al2O3 catalyst[J]. RSC Adv,2020,10(22):13083−13094. doi: 10.1039/D0RA00347F
    [38] YU J F, YANG M, ZHANG J X, ZIMINA A, PRUESSMANN T, ZHENG L, GRUNWALDT J D, SUN J. Stabilizing Cu+ in Cu/SiO2 catalysts with a shattuckite-like structure boosts CO2 hydrogenation into methanol[J]. ACS Catal,2020,10(24):14694−14706. doi: 10.1021/acscatal.0c04371
    [39] 杨淑倩, 贺建平, 张娜, 隋晓伟, 张磊, 杨占旭. 稀土掺杂改性对Cu/ZnAl水滑石衍生催化剂甲醇水蒸气重整制氢性能的影响[J]. 燃料化学学报,2018,46(2):179−188. doi: 10.3969/j.issn.0253-2409.2018.02.007

    YANG Shu-qian, HE Jian-ping, ZHANG Na, SUI Xiao Wei, ZHANG Lei, YANG Zhan-xu. Effect of rare-earth element modification on the performance of Cu/ZnAl catalysts derived from hydrotalcite precursor in methanol steam reforming[J]. J Fuel Chem Technol,2018,46(2):179−188. doi: 10.3969/j.issn.0253-2409.2018.02.007
    [40] DASIREDDY V D B C, LIKOZAR B. The role of copper oxidation state in Cu-ZnO-Al2O3 catalysts in CO2 hydrogenation and methanol productivity[J]. Renew Energ,2019,140:452−460. doi: 10.1016/j.renene.2019.03.073
    [41] GAO P, LI F, ZHAO N, XIAO F K, WEI W, ZHONG L S, SUN Y H. Influence of modifier (Mn, La, Ce, Zr and Y) on the performance of Cu-ZnO-Al2O3 catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. Appl Catal A: Gen,2013,468:442−452. doi: 10.1016/j.apcata.2013.09.026
    [42] PRINTTTO F, GHIOTTI G, DURAND R, TICHIT D. Investigation of acid base properties of catalysts obtained from layered double hydroxides[J]. J Phys Chem B,2000,104(47):11117−11126. doi: 10.1021/jp002715u
    [43] LEON M, DIAZ E, BENNICI S, VEGA A, AUROUX A. Adsorption of CO2 on hydrotalcite-derived mixed oxides: sorption mechanisms and consequences for adsorption irreversibility[J]. Industrial & Engineering Chemistry Research Ind Eng Chem Res,2010,49(8):3663−3671.
    [44] YANG H Y, GAO P, ZHANG C, ZHONG L S, LI X P, WANG S, WANG H, WEI W, SUN Y H. Core-shell structured Cu@m-SiO2 and Cu/ZnO@m-SiO2 catalysts for methanol synthesis from CO2 hydrogenation[J]. Catal Commun,2016,84:56−60. doi: 10.1016/j.catcom.2016.06.010
    [45] WITOON T, NUMPILAI T, PHONGAMWONG T, DONPHAI W, BOONYUEN C, WARAKULWIT C, CHAREONPANICH M, LIMTRAKUL J. Enhanced activity, selectivity and stability of a CuO-ZnO-ZrO2 catalyst by adding graphene oxide for CO2 hydrogenation to methanol[J]. Chem Eng J.,2018,334:1781−1791. doi: 10.1016/j.cej.2017.11.117
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  8
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-02
  • 录用日期:  2022-06-10
  • 修回日期:  2022-05-20
  • 网络出版日期:  2022-06-23

目录

    /

    返回文章
    返回