留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cerium-modified copper/hexagonal mesoporous silica catalyst for efficient dimethyl oxalate hydrogenation to ethylene glycol under moderate reaction conditions

WU Di ZHANG Juan HUANG Zhi-jun CHEN Jian-gang

吴迪, 张娟, 黄志军, 陈建刚. 铈改性的铜/六方介孔二氧化硅催化剂在温和反应条件下高效地将草酸二甲酯氢化为乙二醇[J]. 燃料化学学报(中英文), 2023, 51(2): 186-196. doi: 10.1016/S1872-5813(22)60042-2
引用本文: 吴迪, 张娟, 黄志军, 陈建刚. 铈改性的铜/六方介孔二氧化硅催化剂在温和反应条件下高效地将草酸二甲酯氢化为乙二醇[J]. 燃料化学学报(中英文), 2023, 51(2): 186-196. doi: 10.1016/S1872-5813(22)60042-2
WU Di, ZHANG Juan, HUANG Zhi-jun, CHEN Jian-gang. Cerium-modified copper/hexagonal mesoporous silica catalyst for efficient dimethyl oxalate hydrogenation to ethylene glycol under moderate reaction conditions[J]. Journal of Fuel Chemistry and Technology, 2023, 51(2): 186-196. doi: 10.1016/S1872-5813(22)60042-2
Citation: WU Di, ZHANG Juan, HUANG Zhi-jun, CHEN Jian-gang. Cerium-modified copper/hexagonal mesoporous silica catalyst for efficient dimethyl oxalate hydrogenation to ethylene glycol under moderate reaction conditions[J]. Journal of Fuel Chemistry and Technology, 2023, 51(2): 186-196. doi: 10.1016/S1872-5813(22)60042-2

铈改性的铜/六方介孔二氧化硅催化剂在温和反应条件下高效地将草酸二甲酯氢化为乙二醇

doi: 10.1016/S1872-5813(22)60042-2
详细信息
  • 中图分类号: O643

Cerium-modified copper/hexagonal mesoporous silica catalyst for efficient dimethyl oxalate hydrogenation to ethylene glycol under moderate reaction conditions

Funds: The project was supported by the National Natural Science Foundation of China (22072175).
More Information
  • 摘要: 采用蒸氨法制备了一种高效的铈改性铜/六方介孔二氧化硅(xCe-Cu/HMS)催化剂,用于草酸二甲酯(DMO)气相化学选择性氢化成乙二醇(EG)。铈助剂可以显著提高催化剂的性能,在引入1.2%的铈后,催化剂的性能最好。在温和的条件下(200 ℃,2.0 MPa,H2/DMO = 100,LHSVDMO = 1.2 h−1),DMO转化率和EG选择性分别达到了99.6%和96.3%。表征结果显示,Ce修饰的Cu/HMS可以增强Cu与载体之间的相互作用,改善Cu的分散性,并保持适当的Cu+/(Cu++Cu0)的比例。本研究采用简单、低成本的路线,合成了具有优良催化性能的Ce改性的Cu-HMS催化剂,实现了在温和的条件下DMO向EG的高选择性转化。
  • FIG. 2094.  FIG. 2094.

    FIG. 2094.  FIG. 2094.

    Figure  1  Nitrogen adsorption and desorption isotherms and pore size distribution of the catalysts

    Figure  2  X-ray diffraction patterns of the (a) fresh catalysts and (b) used Cu/HMS and 1.2Ce-Cu/HMS catalysts

    Figure  3  TEM images with the corresponding Cu particles size distribution diagrams of Cu/HMS

    (a): fresh; (b): used and 1.2Ce-Cu/HMS; (c): fresh; (d): used

    Figure  4  H2-TPR profiles of the calcined catalysts

    Figure  5  FT-IR spectra of the calcined catalysts

    Figure  6  XPS spectra of the fresh catalysts

    Figure  7  Cu LMM XAES spectra of the reduced catalysts

    (a) Cu/HMS, (b) 0.8Ce-Cu/HMS, (c) 1.0Ce-Cu/HMS, (d) 1.2Ce-Cu/HMS, (e) 1.5Ce-Cu/HMS and (f) 2.0Ce-Cu/HMS

    Figure  8  Catalytic performance of the xCe-Cu/HMS catalysts in DMO hydrogenation reaction

    200 °C, 2.0 MPa and H2/DMO = 100

    Table  1  Structural properties and chemical compositions of synthesized catalysts

    Sample$S^{\rm{a}}_{{\rm{BET}}} $/(m2·g−1)$v_{\rm{p}}^{\rm{b}} $/(cm3·g−1)$D_{\rm{p}}^{\rm{c}} $/nm$D_{\rm{Cu}}^{\rm{d}} $/%$SA_{\rm{Cu}}^{\rm{e}} $/(m2·${\rm{g}}_{{\rm{cat}}}^{-1} $)$D_{\rm{vsCu}}^{\rm{f}} $/nmCe loadingg/%
    HMS 1117 0.98 2.68
    Cu/HMS 349 0.51 4.47 31.8 43.1 3.1
    0.8Ce-Cu/HMS 310 0.47 4.95 39.0 52.8 2.6 0.83
    1.0Ce-Cu/HMS 264 0.41 4.93 42.3 57.3 2.4 1.01
    1.2Ce-Cu/HMS 308 0.48 5.08 45.5 61.5 2.2 1.44
    1.5Ce-Cu/HMS 299 0.54 5.60 32.1 43.5 3.1 1.54
    2.0Ce-Cu/HMS 299 0.53 5.58 21.1 28.5 4.7 1.96
    a: BET specific surface area, b: Total pore volume obtained from N2 physisorption, c: Average pore size obtained from N2 physisorption, d: Cu dispersion determined by N2O titration, e: Cu surface area per gram of catalyst determined by N2O titration, f: Cu average volume-surface area diameter determined by N2O titration, g: Determined by ICP-AES
    下载: 导出CSV

    Table  2  Catalytic performance of several catalysts under different reaction conditions

    CatalystxDMO/%sEG/%p/MPat/℃H2/DMOLHSV/h−1Ref.
    CuZnZr-0.210092.03.02201500.3[2]
    Cu@CNTs-35099.487.42.52702000.2[34]
    15Ag/SiO210096.02.52801000.2[35]
    CuZnAl-LDH10094.72.52201600.3[36]
    10%Cu-Co/HMS100>95.03.02201501.2[37]
    Cu3Ni/HMS100>95.02.52001001.0[13]
    1.2Ce-Cu/HMS99.696.32.02001001.2this work
    下载: 导出CSV
  • [1] YUE H, ZHAO Y, MA X, BGONG J. Ethylene glycol: Properties, synthesis, and applications[J]. Chem Soc Rev,2021,41(11):4218.
    [2] ZHU Y, KONG X, ZHENG H, ZHU Y. Strong metal-oxide interactions induce bifunctional and structural effects for Cu catalysts[J]. Mol Catal,2018,458:73−82.
    [3] WANG Z, SUN J, XU Z, GUO C. CO direct esterification to dimethyl oxalate and dimethyl carbonate: The key functional motifs for catalytic selectivity[J]. Nanoscale,2020,12(39):20131−20140.
    [4] WANG X, CHEN M, CHEN X, LIN R, ZHU H, HUANG C, YANG W, TAN Y, WANG S, DU Z, DING Y. Constructing copper-zinc interface for selective hydrogenation of dimethyl oxalate[J]. J Catal,2020,383:254−263.
    [5] TUREK T, TRIMM D L. The catalytic hydrogenolysis of esters to alcohols[J]. Catal Rev,1994,36(4):645−683.
    [6] VANDERGRIFT C J G, ELBERSE P A, MULDER A, GEUS J W. Prepapation of silica-supported copper-catalysts by means of depositon precipitation[J]. Appl Catal,1990,59(2):275−289.
    [7] YUAN P, LIU Z, ZHANG W, SUN H, LIU S. Cu-Zn/Al2O3 catalyst for the hydrogenation of esters to alcohols[J]. Chin J Catal,2010,31(7):769−775.
    [8] CUI G, MENG X, ZHANG X, WANG W, XU S, YE Y, TANG K, WANG W, ZHU J, WEI M, EVANS D G, DUAN X. Low-temperature hydrogenation of dimethyl oxalate to ethylene glycol via ternary synergistic catalysis of Cu and acid-base sites[J]. Appl Catal B: Environ,2019,248:394−404.
    [9] AI P, TAN M, REUBROYCHAROEN P, WANG Y, FENG X, LIU G, YANG G, TSUBAKI N. Probing the promotional roles of cerium in the structure and performance of Cu/SiO2 catalysts for ethanol production[J]. Catal Sci Technol,2018,8(24):6441−6451.
    [10] SITTHISA S, SOOKNOI T, MA Y, BALBUENA P B, RESASCO D E. Kinetics and mechanism of hydrogenation of furfural on Cu/SiO2 catalysts[J]. J Catal,2011,277(1):1−13.
    [11] BRANDS D S, POELS E K, BLIEK A. Ester hydrogenolysis over promoted Cu/SiO2 catalysts[J]. Appl Catal A: Gen,1999,184(2):279−289.
    [12] HUANG Z, CUI F, XUE J, ZUO J, CHEN J, XIA C. Synthesis and structural characterization of silica dispersed copper nanomaterials with unusual thermal stability prepared by precipitation-gel method[J]. J Phys Chem C,2010,114(39):16104−16113.
    [13] YIN A, WEN C, GUO X, DAI W, FAN K. Influence of Ni species on the structural evolution of Cu/SiO2 catalyst for the chemoselective hydrogenation of dimethyl oxalate[J]. J Catal,2011,280(1):77−88.
    [14] SHENG H, ZHANG H, MA H, QIAN W, YING W. An effective Cu-Ag/HMS bimetallic catalyst for hydrogenation of methyl acetate to ethanol[J]. Catal Today,2020,358:122−128.
    [15] ZHENG X, LIN H, ZHENG J, DUAN X, YUAN Y. Lanthanum oxide-modified Cu/SiO2 as a high-performance catalyst for chemoselective hydrogenation of dimethyl oxalate to ethylene glycol[J]. ACS Catal,2013,3(12):2738−2749.
    [16] CHEN L, GUO P, QIAO M, YAN S, LI H, SHEN W, XU H, FAN K. Cu/SiO2 catalysts prepared by the ammonia-evaporation method: Texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol[J]. J Catal,2008,257(1):172−180.
    [17] DING J, POPA T, TANG J, GASEM K A M, FAN M, ZHONG Q. Highly selective and stable Cu/SiO2 catalysts prepared with a green method for hydrogenation of diethyl oxalate into ethylene glycol[J]. Appl Catal B: Environ,2017,209:530−542.
    [18] YIN A, GUO X, FAN K, DAI W. Ion-exchange temperature effect on Cu/HMS catalysts for the hydrogenation of dimethyl oxalate to ethylene glycol[J]. ChemCatChem,2010,2(2):206−213.
    [19] DONG X, MA X, XU H, GE Q. Comparative study of silica-supported copper catalysts prepared by different methods: Formation and transition of copper phyllosilicate[J]. Catal Sci Technol,2016,6(12):4154−4158.
    [20] CHEN C, LIN L, YE R, HUANG L, ZHU L, HUANG Y, QIN Y, YAO Y. Construction of Cu-Ce composite oxides by simultaneous ammonia evaporation method to enhance catalytic performance of Ce-Cu/SiO2 catalysts for dimethyl oxalate hydrogenation[J]. Fuel,2021,290:120083.
    [21] YE C, GUO C, ZHANG J. Highly active and stable CeO2-SiO2 supported Cu catalysts for the hydrogenation of methyl acetate to ethanol[J]. Fuel Process Technol,2016,143:219−224.
    [22] TANEV P T, PINNAVAIA T J. A neutral templating route to mesoporous molecular-sieves[J]. Science,1995,267(5199):865−867.
    [23] VINU A, SAWANT D P, ARIGA K, HOSSAIN K Z, HALLIGUDI S B, HARTMANN MNOMURA M. Direct synthesis of well-ordered and unusually reactive FeSBA-15 mesoporous molecular sieves[J]. Chem Mater,2005,17(21):5339−5345.
    [24] ZHAO Y, ZHANG Y, WANG Y, ZHANG J, XU Y, WANG S, MA X. Structure evolution of mesoporous silica supported copper catalyst for dimethyl oxalate hydrogenation[J]. Appl Catal A: Gen,2017,539:59−69.
    [25] ZHU S, GAO X, ZHU Y, FAN W, WANG J, LI Y. A highly efficient and robust Cu/SiO2 catalyst prepared by the ammonia evaporation hydrothermal method for glycerol hydrogenolysis to 1, 2-propanediol[J]. Catal Sci Technol,2015,5(2):1169−1180.
    [26] YIN A, GUO X, FAN K, DAI W. Influence of copper precursors on the structure evolution and catalytic performance of Cu/HMS catalysts in the hydrogenation of dimethyl oxalate to ethylene glycol[J]. Appl Catal A: Gen,2010,377(1/2):128−133.
    [27] DING J, WANG M, LIU H, GUO X, YU G, WANG Y. Effect of Cu content on Ce-doping CuO/ZrO2 catalysts for low-temperature hydrogenation of dimethyl oxalate to ethanol[J]. Asia-Pac J Chem Eng,2021,16(5):e2692.
    [28] BANCQUART S, VANHOVE C, POUILLOUX Y, BARRAULT J. Glycerol transesterification with methyl stearate over solid basic catalysts i. Relationship between activity and basicity[J]. Appl Catal A: Gen,2001,218(1-2):1−11.
    [29] TOUPANCE T, KERMAREC M, LAMBERT J F, LOUIS C. Conditions of formation of copper phyllosilicates in silica-supported copper catalysts prepared by selective adsorption[J]. J Phys Chem B,2002,106(9):2277−2286.
    [30] YUE H, ZHAO Y, ZHAO S, WANG B, MA X, GONG J. A copper-phyllosilicate core-sheath nanoreactor for carbon-oxygen hydrogenolysis reactions[J]. Nat Commun,2013,4:2339.
    [31] DI W, CHENG J, TIAN S, LI J, CHEN J, SUN Q. Synthesis and characterization of supported copper phyllosilicate catalysts for acetic ester hydrogenation to ethanol[J]. Appl Catal A: Gen,2016,510:244−259.
    [32] GERVASINI A, MANZOLI M, MARTRA G, PONTI A, RAVASIO N, SORDELLI L, ZACCHERIA F. Dependence of copper species on the nature of the support for dispersed CuO catalysts[J]. J Phys Chem B,2006,110(15):7851−7861.
    [33] RAIMONDI F, GEISSLER K, WAMBACH J, WOKAUN A. Hydrogen production by methanol reforming: Post-reaction characterisation of a Cu/ZnO/Al2O3 catalyst by XPS and TPD[J]. Appl Sur Sci,2002,189(1/2):59−71.
    [34] AI P, TAN M, ISHIKURO Y, HOSOI Y, YANG G, YONEYAMA Y, TSUBAKI N. Design of an autoreduced copper in carbon nanotube catalyst to realize the precisely selective hydrogenation of dimethyl oxalate[J]. ChemCatChem,2017,9(6):1067−1075.
    [35] YIN A, GUO X, DAI W, FAN K. High activity and selectivity of Ag/SiO2 catalyst for hydrogenation of dimethyl oxalate[J]. Chem Commun,2010,46(24):4348−4350.
    [36] ZHANG S, LIU Q, FAN G, LI F. Highly-dispersed copper-based catalysts from Cu-Zn-Al layered double hydroxide precursor for gas-phase hydrogenation of dimethyl oxalate to ethylene glycol[J]. Catal Lett,2012,142(9):1121−1127.
    [37] WEN C, CUI Y, YIN A, FAN K, DAI W. Remarkable improvement of catalytic performance for a new cobalt-decorated Cu/HMS catalyst in the hydrogenation of dimethyloxalate[J]. ChemCatChem,2013,5(1):138−141.
    [38] LI S, WANG Y, ZHANG J, WANG S, XU Y, ZHAO Y, MA X. Kinetics study of hydrogenation of dimethyl oxalate over Cu/SiO2 catalyst[J]. Ind Eng Chem Res,2015,54(4):1243−1250.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1768
  • HTML全文浏览量:  67
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-14
  • 修回日期:  2022-04-23
  • 录用日期:  2022-04-24
  • 网络出版日期:  2022-06-23
  • 刊出日期:  2023-01-18

目录

    /

    返回文章
    返回