Effect of highly dispersed Co3O4 on catalytic combustion of ventilation air methane of LaCoO3
-
摘要: 钙钛矿因具有良好的热稳定性而广泛应用于低浓度甲烷催化燃烧,但同时存在低温催化活性低这一问题。本文采用溶胶凝胶法,通过调变镧钴比例合成了一种纳米新型钙钛矿类催化剂。利用ICP、XRD、BET、H2-TPR、O2-TPD和XPS等技术对催化剂进行了表征,并通过CH4氧化活性测试评价了催化剂的催化性能。当La/Co=0.9时,在空速30000 mL/(gcat • h)条件下,甲烷的起燃温度为382 ℃,稳定运行72 h后,甲烷转化率保持在95%以上,说明高分散性的Co3O4纳米颗粒有利于CH4的低温活化,且催化剂中镧钴钙钛矿体相可提供大量的晶格氧,促进高温条件下CH4的催化燃烧速率和催化剂的高温稳定性。通过调变镧钴比例,可有效调变催化剂中Co3O4纳米颗粒的分散状态,进而实现催化剂低温活性和高温稳定性的有效统一,为今后开发低成本、高活性、高稳定性的甲烷催化燃烧催化剂提供参考。Abstract: Perovskite is widely used in catalytic combustion of methane at low concentration because of it’s good thermal stability, but it also suffers from the major problem of low catalytic activity at low temperatures. In this paper, a new nano-type perovskite catalyst was effectively synthesized by a sol-gel method by modulating the ratio of lanthanum to cobalt. The catalysts were characterized by ICP, XRD, BET, H2-TPR, O2-TPD, and XPS techniques, and their catalytic performance were evaluated by CH4 oxidation activity test. When La/Co=0.9, the catalyst exhibited good methane catalytic combustion activity and high-temperature stability. At space velocity of 30000 mL/(gcat • h), the light-off temperature of methane is 382 ℃, and the methane conversion rate is still maintained above 95% after 72 h of stable operation, indicating that the highly dispersed Co3O4 nanoparticles were beneficial to the low-temperature activation of CH4, and the lanthanum-cobalt-perovskite bulk phase in the catalyst could provide a large amount of lattice oxygen, which promotes the catalytic combustion rate of CH4 and the high-temperature stability of the catalyst under high-temperature conditions. By modulating the lanthanum-cobalt ratio, the dispersion state of Co3O4 nanoparticles in the catalyst can be effectively modulated, and then the effective unification of low-temperature activity and high-temperature stability of the catalyst can be achieved, which guides the future development of low-cost, high-activity and high-stability catalysts for methane catalytic combustion.
-
Key words:
- catalytic combustion of methane /
- lacoo3 /
- co3o4 /
- high dispersion /
- lattice oxygen
-
表 1 镧钴系列催化剂的物性参数
Table 1 Physical properties of LaxCoO3 samples
Sample La/Co molar ratioa SBET(m2 •g−1)b V(cm3 •g−1)b dCo3O4-XRD (nm)c LaCoO3 0.917 4.436 0.034 27.76 La0.95CoO3 0.906 4.311 0.121 27.59 La0.9CoO3 0.879 5.504 0.037 28.78 La0.8CoO3 0.781 5.466 0.066 21.05 Co3O4 / 4.276 0.055 79.68 a. La/Co molar ratio determined by ICP;
b. SBET and V represent the specific surface area and pore volume of LaxCoO3 samples;
c. dCo3O4 is calculated by Scherrer's formula.表 2 镧钴系列催化剂的Co 2p3/2谱图拟合数据
Table 2 Co 2p3/2 spectrum fitting data of LaxCoO3 samples
Sample Co3 + Co2 + Co3 + /Co2 + Binding energy
(eV)Area percentage
(%)Binding energy
(eV)Area percentage
(%)LaCoO3 779.53 61 781.29 39 1.56 La0.95CoO3 779.76 60.16 781.47 39.84 1.51 La0.9CoO3 779.67 47.78 781.08 52.22 0.92 La0.8CoO3 779.61 43.71 780.99 56.29 0.78 Co3O4 779.52 45.06 781.02 54.94 0.82 表 3 镧钴系列催化剂的O 1s谱图拟合数据
Table 3 O 1s fitting data of LaxCoO3 samples
Sample Olatt Osurf Osurf/ Olatt Binding energy
(eV)Area percentage
(%)Binding energy
(eV)Area percentage
(%)LaCoO3 528.59 36.92 530.98 63.08 1.71 La0.95CoO3 528.9 39.3 531.27 60.7 1.54 La0.9CoO3 528.85 48.1 531.3 51.9 1.08 La0.8CoO3 528.84 48.49 531.25 51.51 1.06 Co3O4 529.81 47.53 531.15 52.47 1.10 表 4 镧钴系列催化剂的H2-TPR拟合数据
Table 4 H2-TPR fitting data of LaxCoO3 samples
Sample Peak 1
Co3 + →Co2 + (Co3O4)Peak 2
Co2 + →Co0(Co3O4)
Co3 + →Co2 + (LaCoO3)Peak 3
Co2 + →Co0(LaCoO3)Co3O4/LaCoO3b Tred a
(℃)Area percentage a
(%)Tred
(℃)Area percentage
(%)Tred
(℃)Area percentage
(%)LaCoO3 359.26 13.39 401.57 21.24 588.94 65.37 0.0149 La0.95CoO3 353.94 14.19 406.89 24.26 599.33 61.55 0.0623 La0.9CoO3 352 32.17 406.5 7.2 593.58 60.63 0.0747 La0.8CoO3 359.26 23.15 409.37 11.91 594.26 64.94 0.0199 Co3O4 350.56 22.52 447.7 77.48 / / / a. Tred refers to the temperature corresponding to the maximum value of the reduction peak, and area percentage refers to the percentage of the reduction peak area to the total reduction peak area;
b. According to the stoichiometric number, the relative content of Co3O4 and LaCoO3 is calculated by the reduction peak area in H2-TPR, that is, Co3O4/LaCoO3 = Speak 1/(0.5 × Speak 3).表 5 甲烷催化燃烧代表性催化剂性能对比
Table 5 Performance comparison of representative catalysts for methane catalytic combustion
Number Catalyst Preparation
methodMethane initial
concentration
(vol%)GHSV
(mL• gcat−1• h−1)T10
(℃)T50
(℃)T90
(℃)Stability test References Temperature-
timeConversion 1 La0.9CoO3 sol-gel method 1 30000 382 449 530 640 ℃-72h 96% This work 2 Pd/Al2O3 impregnation 1 12000 298 346 401 370 ℃-20h 68% [36] 3 BaMnAl11O19−d coprecipitation 0.5 18000 545 640 / / / [37] 4 Co3O4 coprecipitation 1 18000 285 373 455 360 ℃-30h 80% [38] 5 LaCoO3 template method 3 30000 370 485 578 650 ℃-70h 82% [11] 6 LaMnO3 template method 3 30000 405 480 570 650 ℃-70h 98% [11] 7 MnOx/LaMnO3 acid etching method 2.5 30000 351 441 519 / / [39] 8 La0.8Sr0.2CoO3 acid etching method 1 44000 385 491 595 600 ℃-24h 90% [40] -
[1] ZHANG B, CHEN G Q. Methane emissions in China 2007[J]. Renew Energ,2014,30:886−902. doi: 10.1016/j.rser.2013.11.033 [2] PFEFFERLE L D, PFEFFERLE W C. Catalysis in Combustion[J]. Catal Rev,1987,29(2-3):219−267. doi: 10.1080/01614948708078071 [3] ANIL B, JACQUELINE M G, OLIVIA L, MICHAEL B. Low-Temperature Activity and PdO-PdOx Transition in Methane Combustion by a PdO-PdOx/γ-Al2O3 Catalyst[J]. Catalysts,2018,8(7):266−284. doi: 10.3390/catal8070266 [4] CASTELLAZZI P, GROPPI G, FORZATTI P, ALEXANDRE. Role of Pd loading and dispersion on redox behaviour and CH4 combustion activity of Al2O3 supported catalysts[J]. Catal Today,2010,155(1−2):18−26. doi: 10.1016/j.cattod.2009.02.029 [5] WANG J H, CHEN H, HU Z C, YAO M F, LI Y D. A Review on the Pd-Based Three-Way Catalyst[J]. Catal Rev,2015,57(1):79−144. doi: 10.1080/01614940.2014.977059 [6] TIAN M, WANG X, LIU X, WANG A, ZHANG T. Fe-substituted Ba-hexaaluminates oxygen carrier for carbon dioxide capture by chemical looping combustion of methane[J]. AIChE J,2016,62(3):792−801. doi: 10.1002/aic.15135 [7] ZHENG J, YU J, JIE C, XIAO T, M O JONES, HAO Z, EDWARDS PP. Catalytic combustion of methane over mixed oxides derived from Co-Mg/Al ternary hydrotalcites[J]. Fuel Process Technol,2010,91(1):97−102. doi: 10.1016/j.fuproc.2009.08.023 [8] CHEN Z, WANG S, LIU W, GAO X, GAO D, WANG M, WANG S. Morphology-dependent performance of Co3O4 via facile and controllable synthesis for methane combustion[J]. Appl Catal A-Gen,2016,525:94−102. doi: 10.1016/j.apcata.2016.07.009 [9] IABLOKOV V, BARBOSA R, POLLEFEYT G, VAN D. I, CHENAKIN S, KRUSE N. Catalytic CO Oxidation over Well-Defined Cobalt Oxide Nanoparticles: Size-Reactivity Correlation[J]. ACS Catal,2015,5(10):5714−5718. doi: 10.1021/acscatal.5b01452 [10] PAREDES J R, DÍAZ E, DÍEZ F V, ORDONEZ S. Combustion of Methane in Lean Mixtures over Bulk Transition-Metal Oxides: Evaluation of the Activity and Self-Deactivation[J]. Energy Fuels,2008,23(1):86−93. [11] GUO G, LIAN K, WANG L, GU, F, HAN D, WANG Z. High specific surface area LaMO3 (M = Co, Mn) hollow spheres: synthesis, characterization and catalytic properties in methane combustion[J]. RSC Adv,2014,4(102):699−707. [12] GAO Z, WANG R. Catalytic activity for methane combustion of the perovskite-type La1−xSrxCoO3−δ oxide prepared by the urea decomposition method[J]. Appl Catal B,2010,98(3−4):147−53. doi: 10.1016/j.apcatb.2010.05.023 [13] LI B, YANG Q, PENG Y, CHEN J, DENG L, WANG D, HONG X, LI J. Enhanced low-temperature activity of LaMnO3 for toluene oxidation: The effect of treatment with an acidic KMnO4[J]. Chem Eng J,2019,366:92−99. doi: 10.1016/j.cej.2019.01.139 [14] SI W, WANG Y, SHEN Z, HU F, LIN J. A Facile Method for in Situ Preparation of the MnO2/LaMnO3 Catalyst for the Removal of Toluene[J]. Environ Sci Technol,2016,50(8):4572−4578. doi: 10.1021/acs.est.5b06255 [15] NIE L, WANG J, TAN Q. In-situ preparation of macro/mesoporous NiO/LaNiO3 pervoskite composite with enhanced methane combustion performance[J]. Catal Commun,2017,97:1−4. doi: 10.1016/j.catcom.2017.04.010 [16] JYA B, HL A, BO H A, LJ A, YONG X A, DL A. Acidic H2O2 treatment of LaCoO3 towards highly dispersed Co3O4 nanoparticles with excellent catalytic performance for C3H8 combustion[J]. Catal Commun,2020,135. [17] LUO Y J, WANG K C, ZUO J C, QIAN Q R, XU Y X, LIU X P, XUE H, CHEN Q H. Selective corrosion of LaCoO3 by NaOH: structural evolution and enhanced activity for benzene oxidation[J]. Catal Sci Technol,2017,7(2):496−501. doi: 10.1039/C6CY02489K [18] WANG S, XUE G, LIANG J, MENG, J. Effect of tourmaline additive on the crystal growth and activity of LaCoO3 for catalytic combustion of methane[J]. J Rare Earths,2014,32(9):855−859. doi: 10.1016/S1002-0721(14)60153-8 [19] WANG S, XU X, ZHU J, TANG, D, ZHAO, Z. Effect of preparation method on physicochemical properties and catalytic performances of LaCoO3 perovskite for CO oxidation[J]. J Rare Earths,2019,37(9):970−977. doi: 10.1016/j.jre.2018.11.011 [20] ZHENG YIFAN, LIU YAN, ZHOU HUAN, HUANG WANZHEN, PU ZHIYING. Complete combustion of methane over Co3O4 catalysts: Influence of pH values[J]. J Alloys Compd,2018,734:112−120. doi: 10.1016/j.jallcom.2017.11.008 [21] FAYE J, BAYLET A, TRENTESAUX M, ROYER S, DUMEIGNIL F, DUPREZ D, VALANGE S, TATIBOUËT JM. Influence of lanthanum stoichiometry in La1−xFeO3−δ perovskites on their structure and catalytic performance in CH4 total oxidation[J]. Appl Catal B,2012,126:134−143. doi: 10.1016/j.apcatb.2012.07.001 [22] ZHANG G, LI C, LIU J, ZHOU LEI, LIU RUIHUA, HAN XIAO, HUANG HUI, HU HAILIANG, LIU YANG, KANG ZHENHUI. One-step conversion from metal–organic frameworks to Co3O4@N-doped carbon nanocomposites towards highly efficient oxygen reduction catalysts[J]. J Mater A,2014,2(22):8184−8189. [23] CHEN H, WEI G, LIANG X, LIU P, XI Y, ZHU J. Facile surface improvement of LaCoO3 perovskite with high activity and water resistance towards toluene oxidation: Ca substitution and citric acid etching[J]. Catal Sci Technol,2020,10(17):5829−5839. doi: 10.1039/D0CY01150A [24] PU Z, ZHOU H, ZHENG Y, HUANG W, LI X. Enhanced methane combustion over Co3O4 catalysts prepared by a facile precipitation method: Effect of aging time[J]. Appl Surf Sci,2017,410:14−21. doi: 10.1016/j.apsusc.2017.02.186 [25] ZHENG Y, FENG X, LIN D, WU E, LUO Y, YOU Y, HUANG B, QIAN Q, CHEN Q. Insights into the Low-temperature Synthesis of LaCoO3 Derived from Co(CH3COO)2 via Electrospinning for Catalytic Propane Oxidation[J]. Chinese J Chem,2019,38(2):144−150. [26] FENG Z, DU C, CHEN Y, LANG Y, SHAN B. Improved durability of Co3O4 particles supported on SmMn2O5 for methane combustion[J]. Catal Sci Technol,2018,8(15):3785−3794. doi: 10.1039/C8CY00897C [27] 刘敬伟. Pd/Co3O4/载体催化剂的制备及甲烷催化燃烧性能研究 [D]. 上海: 上海大学, 2017.LIU Jing-wei. The Research on the Synthesis and Catalytic Properties of Pd/Co3O4/supporting for Methane Combustion [D]. Shanghai: Shanghai University, 2017. [28] YANG Q, WANG D, WANG C, LI X, LI K, YUE P, LI J. Facile surface improvement method for LaCoO3 for toluene oxidation[J]. Catal Sci Technol,2018,8(12):3166−3173. doi: 10.1039/C8CY00765A [29] 王婷. Co3O4催化剂的制备及低浓度甲烷催化燃烧的性能研究 [D]. 太原: 太原理工大学, 2017.WANG Ting. Preparation and Prperties of Co3O4 Catalyst for Low Concentration Methane Catalytic [D]. Taiyuan: Taiyuan University of Technology, 2017. [30] ROYER S, ALAMDARI H, DUPREZ D, KALIAGUINE S. Oxygen storage capacity of La1−xA′xBO3 perovskites (with A′=Sr, Ce; B=Co, Mn) relation with catalytic activity in the CH4 oxidation reaction[J]. Appl Catal B,2005,58(3−4):273−288. doi: 10.1016/j.apcatb.2004.12.010 [31] WANG Y, REN J, WANG Y, ZHANG F, LU G. Nanocasted Synthesis of Mesoporous LaCoO3 Perovskite with Extremely High Surface Area[J]. J Phys Chem C,2008,112:15293−15298. doi: 10.1021/jp8048394 [32] WU Y, NI X, BEAURAIN A, DUJARDIN C, GRANGER P. Stoichiometric and non-stoichiometric perovskite-based catalysts: Consequences on surface properties and on catalytic performances in the decomposition of N2O from nitric acid plants[J]. Appl Catal B,2012,125:149−157. doi: 10.1016/j.apcatb.2012.05.033 [33] LI L, YANG Q, WANG B, WANG D, CRITTENDEN J. Sacrificial carbon strategy for facile fabrication of highly-dispersed cobalt-silicon nanocomposites: Insight into its performance on the CO and CH4 oxidation[J]. J Clean Prod.,2021,278:1−9. [34] QIAN Z, LIU QL, ZHENG YF, HAN R, SONG CF, JI N, MA DG. Enhanced catalytic performance for volatile organic compound oxidation over in-situ growth of MnOx on Co3O4 nanowire[J]. Chemosphere,2020,244:125532−125541. doi: 10.1016/j.chemosphere.2019.125532 [35] ZHANG Y, WANG M, KANG S, PAN T, DENG H, SHAN W, HE H. Investigation of suitable precursors for manganese oxide catalysts in ethyl acetate oxidation[J]. J Environ Sci,2021,104:17−26. doi: 10.1016/j.jes.2020.11.025 [36] HONG E, JEON SA, LEE SS, SHIN CH. Methane combustion over Pd/Ni-Al oxide catalysts: Effect of Ni/Al ratio in the Ni-Al oxide support[J]. Korean J Chem Eng,2018,35(9):1815−1822. doi: 10.1007/s11814-018-0090-0 [37] LAASSIRI S, BION N, DUPREZ D, ALAMDARI HS, ROYER S. Role of Mn + cations in the redox and oxygen transfer properties of BaMxAl12−xO19−δ (M = Mn, Fe, Co) nanomaterials for high temperature methane oxidation[J]. Catal Sci Technol,2013,3(9):2259−2269. doi: 10.1039/c3cy00192j [38] ZHEN H, ZHANG H, BING D, NI Y, KONG A, SHAN Y. High Efficient Mesoporous Co3O4 Nanocatalysts For Methane Combustion at Low Temperature[J]. Chemistry Select,2016,1(5):979−983. [39] CHEN H, LI J, CUI W, FEI Z, QIAO X. Precise fabrication of surface-reconstructed LaMnO3 perovskite with enhanced catalytic performance in CH4 oxidation[J]. Appl Surf Sci,2020,505:1−9. [40] YANG J, HU S, SHI L, HOANG S, GUO Y. Oxygen Vacancies and Lewis Acid Sites Synergistically Promoted Catalytic Methane Combustion over Perovskite Oxides[J]. Environ Sci Technol,2021,55(13):9243−9254. doi: 10.1021/acs.est.1c00511 -