留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高分散Co3O4对LaCoO3乏风甲烷催化燃烧性能的影响

陈雪 王雪峰 王荀 邓存宝 曹敏敏

陈雪, 王雪峰, 王荀, 邓存宝, 曹敏敏. 高分散Co3O4对LaCoO3乏风甲烷催化燃烧性能的影响[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60051-3
引用本文: 陈雪, 王雪峰, 王荀, 邓存宝, 曹敏敏. 高分散Co3O4对LaCoO3乏风甲烷催化燃烧性能的影响[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60051-3
CHEN Xue, WANG Xue-feng, WANG Xun, DENG Cun-bao, CAO Min-min. Effect of highly dispersed Co3O4 on catalytic combustion of ventilation air methane of LaCoO3[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60051-3
Citation: CHEN Xue, WANG Xue-feng, WANG Xun, DENG Cun-bao, CAO Min-min. Effect of highly dispersed Co3O4 on catalytic combustion of ventilation air methane of LaCoO3[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60051-3

高分散Co3O4对LaCoO3乏风甲烷催化燃烧性能的影响

doi: 10.1016/S1872-5813(22)60051-3
基金项目: 国家自然科学基金联合基金项目(U1810206),国家自然科学基金面上项目(51774172)
详细信息
    作者简介:

    王荀(1984−),女,河北保定人,博士,讲师,Tel:18634300787,E-mail:wangxun@tyut.edu.cn

    通讯作者:

    王雪峰(1975− ),女,辽宁阜新人,博士,副教授、硕士生导师,Tel:13303433823,E-mail:wangxuefeng01@tyut.edu.cn

  • 中图分类号: X959

Effect of highly dispersed Co3O4 on catalytic combustion of ventilation air methane of LaCoO3

Funds: Supported by the NSF Joint Foundation Program (U1810206) and the NSF Facial Program (51774172).
  • 摘要: 钙钛矿因具有良好的热稳定性而广泛应用于低浓度甲烷催化燃烧,但同时存在低温催化活性低这一问题。本文采用溶胶凝胶法,通过调变镧钴比例合成了一种纳米新型钙钛矿类催化剂。利用ICP、XRD、BET、H2-TPR、O2-TPD和XPS等技术对催化剂进行了表征,并通过CH4氧化活性测试评价了催化剂的催化性能。当La/Co=0.9时,在空速30000 mL/(gcat • h)条件下,甲烷的起燃温度为382 ℃,稳定运行72 h后,甲烷转化率保持在95%以上,说明高分散性的Co3O4纳米颗粒有利于CH4的低温活化,且催化剂中镧钴钙钛矿体相可提供大量的晶格氧,促进高温条件下CH4的催化燃烧速率和催化剂的高温稳定性。通过调变镧钴比例,可有效调变催化剂中Co3O4纳米颗粒的分散状态,进而实现催化剂低温活性和高温稳定性的有效统一,为今后开发低成本、高活性、高稳定性的甲烷催化燃烧催化剂提供参考。
  • 图  1  (a)镧钴系列催化剂的X射线衍射图;(b)2-Theta=36−38.5°的局部X射线衍射图

    Figure  1  (a)XRD pattern of LaxCoO3 samples;(b)XRD pattern of LaxCoO3 samples from 36 ° to 38.5°

    图  2  La0.9CoO3的(a)TEM和(b)HRTEM图像

    Figure  2  (a)TEM and (b) HRTEM images of La0.9CoO3

    图  3  (a)镧钴系列催化剂的Co 2p谱图和(b) Co 2p3/2拟合谱图

    Figure  3  (a)Co 2p spectra and (b)Co 2p3/2 fitting spectra of LaxCoO3 samples

    图  4  镧钴系列催化剂的O 1s拟合谱图

    Figure  4  O 1s fitting spectra of LaxCoO3 samples

    图  5  镧钴系列催化剂的O2-TPD谱图

    Figure  5  O2-TPD spectra of LaxCoO3 samples

    图  6  镧钴系列催化剂的H2-TPR谱图

    Figure  6  H2-TPR spectra of LaxCoO3 samples

    图  7  (a)镧钴系列催化剂的甲烷氧化活性;(b)La0.9CoO3在640 ℃下的稳定性测试

    Figure  7  (a)Methane oxidation activity of LaxCoO3 samples; (b)Stability test of La0.9CoO3 at 640 ℃(0.2g catalysts, CH4∶O2∶N2=1∶20∶79, GHSV=30000 mL• gcat−1• h−1)

    图  8  (a)甲烷浓度和(b)氧气浓度对La0.9CoO3催化甲烷燃烧的影响

    Figure  8  Effects of (a)methane and (b)oxygen concentrations on methane combustion catalyzed by La0.9CoO3(CH4∶O2∶N2=x∶20∶80−x or CH4∶O2∶N2=1∶y∶99−y, GHSV=30000 mL• gcat−1• h−1)

    表  1  镧钴系列催化剂的物性参数

    Table  1  Physical properties of LaxCoO3 samples

    SampleLa/Co molar ratioaSBET(m2 •g−1bV(cm3 •g−1bdCo3O4-XRD (nm)c
    LaCoO30.9174.4360.03427.76
    La0.95CoO30.9064.3110.12127.59
    La0.9CoO30.8795.5040.03728.78
    La0.8CoO30.7815.4660.06621.05
    Co3O4/4.2760.05579.68
    a. La/Co molar ratio determined by ICP;
    b. SBET and V represent the specific surface area and pore volume of LaxCoO3 samples;
    c. dCo3O4 is calculated by Scherrer's formula.
    下载: 导出CSV

    表  2  镧钴系列催化剂的Co 2p3/2谱图拟合数据

    Table  2  Co 2p3/2 spectrum fitting data of LaxCoO3 samples

    SampleCo3 + Co2 + Co3 + /Co2 +
    Binding energy
    (eV)
    Area percentage
    (%)
    Binding energy
    (eV)
    Area percentage
    (%)
    LaCoO3779.5361 781.29391.56
    La0.95CoO3779.7660.16781.4739.841.51
    La0.9CoO3779.6747.78781.0852.220.92
    La0.8CoO3779.6143.71780.9956.290.78
    Co3O4779.5245.06781.0254.940.82
    下载: 导出CSV

    表  3  镧钴系列催化剂的O 1s谱图拟合数据

    Table  3  O 1s fitting data of LaxCoO3 samples

    SampleOlatt OsurfOsurf/ Olatt
    Binding energy
    (eV)
    Area percentage
    (%)
    Binding energy
    (eV)
    Area percentage
    (%)
    LaCoO3528.5936.92 530.9863.081.71
    La0.95CoO3528.939.3531.2760.71.54
    La0.9CoO3528.8548.1531.351.91.08
    La0.8CoO3528.8448.49531.2551.511.06
    Co3O4529.8147.53531.1552.471.10
    下载: 导出CSV

    表  4  镧钴系列催化剂的H2-TPR拟合数据

    Table  4  H2-TPR fitting data of LaxCoO3 samples

    SamplePeak 1
    Co3 + →Co2 + (Co3O4
    Peak 2
    Co2 + →Co0(Co3O4
    Co3 + →Co2 + (LaCoO3
    Peak 3
    Co2 + →Co0(LaCoO3
    Co3O4/LaCoO3b
    Tred a
    (℃)
    Area percentage a
    (%)
    Tred
    (℃)
    Area percentage
    (%)
    Tred
    (℃)
    Area percentage
    (%)
    LaCoO3359.2613.39 401.5721.24 588.9465.370.0149
    La0.95CoO3353.9414.19406.8924.26599.3361.550.0623
    La0.9CoO335232.17406.57.2593.5860.630.0747
    La0.8CoO3359.2623.15409.3711.91594.2664.940.0199
    Co3O4350.5622.52447.777.48
    a. Tred refers to the temperature corresponding to the maximum value of the reduction peak, and area percentage refers to the percentage of the reduction peak area to the total reduction peak area;
    b. According to the stoichiometric number, the relative content of Co3O4 and LaCoO3 is calculated by the reduction peak area in H2-TPR, that is, Co3O4/LaCoO3 = Speak 1/(0.5 × Speak 3).
    下载: 导出CSV

    表  5  甲烷催化燃烧代表性催化剂性能对比

    Table  5  Performance comparison of representative catalysts for methane catalytic combustion

    NumberCatalystPreparation
    method
    Methane initial
    concentration
    (vol%)
    GHSV
    (mL• gcat−1• h−1)
    T10
    (℃)
    T50
    (℃)
    T90
    (℃)
    Stability testReferences
    Temperature-
    time
    Conversion
    1La0.9CoO3sol-gel method130000382449530640 ℃-72h96%This work
    2Pd/Al2O3impregnation112000298346401370 ℃-20h68%[36]
    3BaMnAl11O19−dcoprecipitation0.518000545640///[37]
    4Co3O4coprecipitation118000285373455360 ℃-30h80%[38]
    5LaCoO3template method330000370485578650 ℃-70h82%[11]
    6LaMnO3template method330000405480570650 ℃-70h98%[11]
    7MnOx/LaMnO3acid etching method2.530000351441519//[39]
    8La0.8Sr0.2CoO3acid etching method144000385491595600 ℃-24h90%[40]
    下载: 导出CSV
  • [1] ZHANG B, CHEN G Q. Methane emissions in China 2007[J]. Renew Energ,2014,30:886−902. doi: 10.1016/j.rser.2013.11.033
    [2] PFEFFERLE L D, PFEFFERLE W C. Catalysis in Combustion[J]. Catal Rev,1987,29(2-3):219−267. doi: 10.1080/01614948708078071
    [3] ANIL B, JACQUELINE M G, OLIVIA L, MICHAEL B. Low-Temperature Activity and PdO-PdOx Transition in Methane Combustion by a PdO-PdOx/γ-Al2O3 Catalyst[J]. Catalysts,2018,8(7):266−284. doi: 10.3390/catal8070266
    [4] CASTELLAZZI P, GROPPI G, FORZATTI P, ALEXANDRE. Role of Pd loading and dispersion on redox behaviour and CH4 combustion activity of Al2O3 supported catalysts[J]. Catal Today,2010,155(1−2):18−26. doi: 10.1016/j.cattod.2009.02.029
    [5] WANG J H, CHEN H, HU Z C, YAO M F, LI Y D. A Review on the Pd-Based Three-Way Catalyst[J]. Catal Rev,2015,57(1):79−144. doi: 10.1080/01614940.2014.977059
    [6] TIAN M, WANG X, LIU X, WANG A, ZHANG T. Fe-substituted Ba-hexaaluminates oxygen carrier for carbon dioxide capture by chemical looping combustion of methane[J]. AIChE J,2016,62(3):792−801. doi: 10.1002/aic.15135
    [7] ZHENG J, YU J, JIE C, XIAO T, M O JONES, HAO Z, EDWARDS PP. Catalytic combustion of methane over mixed oxides derived from Co-Mg/Al ternary hydrotalcites[J]. Fuel Process Technol,2010,91(1):97−102. doi: 10.1016/j.fuproc.2009.08.023
    [8] CHEN Z, WANG S, LIU W, GAO X, GAO D, WANG M, WANG S. Morphology-dependent performance of Co3O4 via facile and controllable synthesis for methane combustion[J]. Appl Catal A-Gen,2016,525:94−102. doi: 10.1016/j.apcata.2016.07.009
    [9] IABLOKOV V, BARBOSA R, POLLEFEYT G, VAN D. I, CHENAKIN S, KRUSE N. Catalytic CO Oxidation over Well-Defined Cobalt Oxide Nanoparticles: Size-Reactivity Correlation[J]. ACS Catal,2015,5(10):5714−5718. doi: 10.1021/acscatal.5b01452
    [10] PAREDES J R, DÍAZ E, DÍEZ F V, ORDONEZ S. Combustion of Methane in Lean Mixtures over Bulk Transition-Metal Oxides: Evaluation of the Activity and Self-Deactivation[J]. Energy Fuels,2008,23(1):86−93.
    [11] GUO G, LIAN K, WANG L, GU, F, HAN D, WANG Z. High specific surface area LaMO3 (M = Co, Mn) hollow spheres: synthesis, characterization and catalytic properties in methane combustion[J]. RSC Adv,2014,4(102):699−707.
    [12] GAO Z, WANG R. Catalytic activity for methane combustion of the perovskite-type La1−xSrxCoO3−δ oxide prepared by the urea decomposition method[J]. Appl Catal B,2010,98(3−4):147−53. doi: 10.1016/j.apcatb.2010.05.023
    [13] LI B, YANG Q, PENG Y, CHEN J, DENG L, WANG D, HONG X, LI J. Enhanced low-temperature activity of LaMnO3 for toluene oxidation: The effect of treatment with an acidic KMnO4[J]. Chem Eng J,2019,366:92−99. doi: 10.1016/j.cej.2019.01.139
    [14] SI W, WANG Y, SHEN Z, HU F, LIN J. A Facile Method for in Situ Preparation of the MnO2/LaMnO3 Catalyst for the Removal of Toluene[J]. Environ Sci Technol,2016,50(8):4572−4578. doi: 10.1021/acs.est.5b06255
    [15] NIE L, WANG J, TAN Q. In-situ preparation of macro/mesoporous NiO/LaNiO3 pervoskite composite with enhanced methane combustion performance[J]. Catal Commun,2017,97:1−4. doi: 10.1016/j.catcom.2017.04.010
    [16] JYA B, HL A, BO H A, LJ A, YONG X A, DL A. Acidic H2O2 treatment of LaCoO3 towards highly dispersed Co3O4 nanoparticles with excellent catalytic performance for C3H8 combustion[J]. Catal Commun,2020,135.
    [17] LUO Y J, WANG K C, ZUO J C, QIAN Q R, XU Y X, LIU X P, XUE H, CHEN Q H. Selective corrosion of LaCoO3 by NaOH: structural evolution and enhanced activity for benzene oxidation[J]. Catal Sci Technol,2017,7(2):496−501. doi: 10.1039/C6CY02489K
    [18] WANG S, XUE G, LIANG J, MENG, J. Effect of tourmaline additive on the crystal growth and activity of LaCoO3 for catalytic combustion of methane[J]. J Rare Earths,2014,32(9):855−859. doi: 10.1016/S1002-0721(14)60153-8
    [19] WANG S, XU X, ZHU J, TANG, D, ZHAO, Z. Effect of preparation method on physicochemical properties and catalytic performances of LaCoO3 perovskite for CO oxidation[J]. J Rare Earths,2019,37(9):970−977. doi: 10.1016/j.jre.2018.11.011
    [20] ZHENG YIFAN, LIU YAN, ZHOU HUAN, HUANG WANZHEN, PU ZHIYING. Complete combustion of methane over Co3O4 catalysts: Influence of pH values[J]. J Alloys Compd,2018,734:112−120. doi: 10.1016/j.jallcom.2017.11.008
    [21] FAYE J, BAYLET A, TRENTESAUX M, ROYER S, DUMEIGNIL F, DUPREZ D, VALANGE S, TATIBOUËT JM. Influence of lanthanum stoichiometry in La1−xFeO3−δ perovskites on their structure and catalytic performance in CH4 total oxidation[J]. Appl Catal B,2012,126:134−143. doi: 10.1016/j.apcatb.2012.07.001
    [22] ZHANG G, LI C, LIU J, ZHOU LEI, LIU RUIHUA, HAN XIAO, HUANG HUI, HU HAILIANG, LIU YANG, KANG ZHENHUI. One-step conversion from metal–organic frameworks to Co3O4@N-doped carbon nanocomposites towards highly efficient oxygen reduction catalysts[J]. J Mater A,2014,2(22):8184−8189.
    [23] CHEN H, WEI G, LIANG X, LIU P, XI Y, ZHU J. Facile surface improvement of LaCoO3 perovskite with high activity and water resistance towards toluene oxidation: Ca substitution and citric acid etching[J]. Catal Sci Technol,2020,10(17):5829−5839. doi: 10.1039/D0CY01150A
    [24] PU Z, ZHOU H, ZHENG Y, HUANG W, LI X. Enhanced methane combustion over Co3O4 catalysts prepared by a facile precipitation method: Effect of aging time[J]. Appl Surf Sci,2017,410:14−21. doi: 10.1016/j.apsusc.2017.02.186
    [25] ZHENG Y, FENG X, LIN D, WU E, LUO Y, YOU Y, HUANG B, QIAN Q, CHEN Q. Insights into the Low-temperature Synthesis of LaCoO3 Derived from Co(CH3COO)2 via Electrospinning for Catalytic Propane Oxidation[J]. Chinese J Chem,2019,38(2):144−150.
    [26] FENG Z, DU C, CHEN Y, LANG Y, SHAN B. Improved durability of Co3O4 particles supported on SmMn2O5 for methane combustion[J]. Catal Sci Technol,2018,8(15):3785−3794. doi: 10.1039/C8CY00897C
    [27] 刘敬伟. Pd/Co3O4/载体催化剂的制备及甲烷催化燃烧性能研究 [D]. 上海: 上海大学, 2017.

    LIU Jing-wei. The Research on the Synthesis and Catalytic Properties of Pd/Co3O4/supporting for Methane Combustion [D]. Shanghai: Shanghai University, 2017.
    [28] YANG Q, WANG D, WANG C, LI X, LI K, YUE P, LI J. Facile surface improvement method for LaCoO3 for toluene oxidation[J]. Catal Sci Technol,2018,8(12):3166−3173. doi: 10.1039/C8CY00765A
    [29] 王婷. Co3O4催化剂的制备及低浓度甲烷催化燃烧的性能研究 [D]. 太原: 太原理工大学, 2017.

    WANG Ting. Preparation and Prperties of Co3O4 Catalyst for Low Concentration Methane Catalytic [D]. Taiyuan: Taiyuan University of Technology, 2017.
    [30] ROYER S, ALAMDARI H, DUPREZ D, KALIAGUINE S. Oxygen storage capacity of La1−xAxBO3 perovskites (with A=Sr, Ce; B=Co, Mn) relation with catalytic activity in the CH4 oxidation reaction[J]. Appl Catal B,2005,58(3−4):273−288. doi: 10.1016/j.apcatb.2004.12.010
    [31] WANG Y, REN J, WANG Y, ZHANG F, LU G. Nanocasted Synthesis of Mesoporous LaCoO3 Perovskite with Extremely High Surface Area[J]. J Phys Chem C,2008,112:15293−15298. doi: 10.1021/jp8048394
    [32] WU Y, NI X, BEAURAIN A, DUJARDIN C, GRANGER P. Stoichiometric and non-stoichiometric perovskite-based catalysts: Consequences on surface properties and on catalytic performances in the decomposition of N2O from nitric acid plants[J]. Appl Catal B,2012,125:149−157. doi: 10.1016/j.apcatb.2012.05.033
    [33] LI L, YANG Q, WANG B, WANG D, CRITTENDEN J. Sacrificial carbon strategy for facile fabrication of highly-dispersed cobalt-silicon nanocomposites: Insight into its performance on the CO and CH4 oxidation[J]. J Clean Prod.,2021,278:1−9.
    [34] QIAN Z, LIU QL, ZHENG YF, HAN R, SONG CF, JI N, MA DG. Enhanced catalytic performance for volatile organic compound oxidation over in-situ growth of MnOx on Co3O4 nanowire[J]. Chemosphere,2020,244:125532−125541. doi: 10.1016/j.chemosphere.2019.125532
    [35] ZHANG Y, WANG M, KANG S, PAN T, DENG H, SHAN W, HE H. Investigation of suitable precursors for manganese oxide catalysts in ethyl acetate oxidation[J]. J Environ Sci,2021,104:17−26. doi: 10.1016/j.jes.2020.11.025
    [36] HONG E, JEON SA, LEE SS, SHIN CH. Methane combustion over Pd/Ni-Al oxide catalysts: Effect of Ni/Al ratio in the Ni-Al oxide support[J]. Korean J Chem Eng,2018,35(9):1815−1822. doi: 10.1007/s11814-018-0090-0
    [37] LAASSIRI S, BION N, DUPREZ D, ALAMDARI HS, ROYER S. Role of Mn + cations in the redox and oxygen transfer properties of BaMxAl12−xO19−δ (M = Mn, Fe, Co) nanomaterials for high temperature methane oxidation[J]. Catal Sci Technol,2013,3(9):2259−2269. doi: 10.1039/c3cy00192j
    [38] ZHEN H, ZHANG H, BING D, NI Y, KONG A, SHAN Y. High Efficient Mesoporous Co3O4 Nanocatalysts For Methane Combustion at Low Temperature[J]. Chemistry Select,2016,1(5):979−983.
    [39] CHEN H, LI J, CUI W, FEI Z, QIAO X. Precise fabrication of surface-reconstructed LaMnO3 perovskite with enhanced catalytic performance in CH4 oxidation[J]. Appl Surf Sci,2020,505:1−9.
    [40] YANG J, HU S, SHI L, HOANG S, GUO Y. Oxygen Vacancies and Lewis Acid Sites Synergistically Promoted Catalytic Methane Combustion over Perovskite Oxides[J]. Environ Sci Technol,2021,55(13):9243−9254. doi: 10.1021/acs.est.1c00511
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  2
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-23
  • 录用日期:  2022-06-21
  • 修回日期:  2022-06-10
  • 网络出版日期:  2022-07-19

目录

    /

    返回文章
    返回