-
摘要: 通过烷烃芳构化可将催化裂化汽油深度脱硫工艺和煤制油工艺中产生的大量低辛烷值饱和直链烷烃转化成芳烃,从而提升油品质量和芳烃产能,是制备芳烃的重要非石油路线,具有显著的社会经济价值。其中,C2−C5轻烃芳构化技术相对成熟,已进入到工业应用阶段;而针对
${\rm{C}}_6^+ $ 直链烷烃芳构化,由于反应过程复杂、多种基元反应相互竞争,导致芳烃收率偏低、催化剂易结焦失活。为此,本工作综述了近年来有关${\rm{C}}_6^+ $ 正构烷烃芳构化的研究进展,重点讨论了${\rm{C}}_6^+ $ 直链烷烃芳构化的反应机理以及单功能及双功能催化体系中金属位点分散度、电子状态及载体的酸性、形貌和孔道结构等对反应性能的影响。-
关键词:
- C6 +正构烷烃芳构化 /
- 反应机理 /
- 单(双)功能催化剂 /
- 金属位点 /
- 载体
Abstract: Conversion of saturated straight-chain alkanes generated in the deep desulfurization process of fluid catalytic cracking (FCC) gasoline and the coal-to-oil processes into aromatics via alkane aromatization is an important non-petroleum route for the preparation of aromatics that effectively improves the quality of oil. The aromatization technology of C2−C5 light hydrocarbons is relatively mature and has been used in industry. However, for the aromatization of${\rm{C}}_6^+ $ n-alkanes, the aromatics yield is still very low due to the complex reaction process and the competition of various elemental reactions. In addition, the catalysts usually suffer from rapid deactivation. In this work, we summarize the recent advances in the aromatization of${\rm{C}}_6^+ $ n-alkanes. The reaction mechanism of aromatization of${\rm{C}}_6^+ $ alkanes and the effects of the dispersion of metal sites, electronic state, and acidity, morphology and pore structure of the support on the catalytic performance are discussed in detail. -
Figure 2 Pathways of n-heptane reforming over Pt/BaKL catalyst[30] (with permission from Elsevier)
Figure 3 Bifunctional reaction scheme for reforming of C6 hydrocarbons[32] (with permission from Elsevier)
Figure 4 Reaction pathways for aromatization (a), hydro-isomerization (b) and cracking (c) of n-heptane on Pt/meso-Kβ-0.05-4 catalyst[33] (with permission from Elsevier)
Figure 5 (A) H2-TPR profiles of virous samples; (B) n-octane conversion in n-octane dehydrocyclization (DHC) at 823 K on (e) ZrO2 in water vapor-hydrogen (WVH2) atmosphere, (f) ZrO2 in H2 atmosphere, (g) Pt/ZrO2 in H2 atmosphere, (h) Pt/ZrO2 in WVH2 atmosphere, (i) Pt-Sn/ZrO2 in H2 atmosphere and (j) Pt-Sn/ZrO2 in WVH2 atmosphere [36] (with permission from Elsevier)
Figure 6 (a) Selectivity of aromatics and C6-C8 alkanes in octane conversion over various Pt/ZSM-5 catalysts; (b) Energy profiles for n-octane dissociation to form 1-C8H16 and H2 on the Pt(111) surface and Pt8 clusters distributing in the inner pores of the catalyst[38] (with permission from American Chemical Society)
Figure 7 Aromatization of n-octane over CZ (CrOx/ZrO2) and CLZ (CrOx/La2O3-ZrO2) catalyst at 823 K, W/F = 58 and TOS = 90 min [44] (with permission from Elsevier)
Figure 8 (A) Conversion and products distribution for n-heptane aromatization over different Pt/ZSM-5 catalysts at TOS of 12 h (a), catalytic stability of Pt/KZSM-5(deAl) catalyst for the aromatization of n-heptane (b), n-octane (c) and n-nonane (d); (B) pore size distributions (a) and NH3-TPD profiles (b) of various Pt/ZSM-5 catalysts[51] (with permission from Royal Society of Chemistry)
Figure 9 (A) Schematic process for the synthesis of bimetallic PtCo-n/KL (n = 1, 5, and 20) and CoPt/KL catalysts; (B) Catalytic performances of the catalysts: (a) Conversion of n-heptane and product selectivity over the catalysts after 5 h test and (b) Catalytic results as a function of reaction time in the aromatization of n-heptane over PtCo-5/KL catalyst[57] (with permission from Royal Society of Chemistry)
Figure 10 (A) NH3-TPD profiles (I) and Py-IR spectra (II); (B) Pt 4f XPS spectra of various catalysts[61] (with permission from Elsevier)
Table 1 Conversion of n-heptane, selectivity to aromatics and lifetime of various catalysts in the aromatization of n-heptane[61] (with permission from Elsevier)
Catalyst C7
conv. /%Arom. sel. /% Lifetime /h C-depos. rate /(pct·h−1) Pt/H-Beta-NS
Pt/K-Beta-NS-1.0M
Pt/H-Beta-HS
Pt/K-Beta-HS-0.2M
Pt/K-Beta-HS-0.6M
Pt/K-Beta-HS-0.8M
Pt/K-Beta-HS-1.0M
Pt/K-Beta-HS-1.2M97.2
78.8 (58.8)
94.5
98.7
97.6 (88.7)
98.8 (82.1)
91.8 (80.0)
78.4 (60.0)30.6
74.4 (59.9)
45.9
80.0
69.1 (64.2)
66.2 (65.7)
69.3 (67.8)
70.0 (57.0)12
60
21
11
166
175
205
552.53
0.41
1.33
1.06
0.35
0.24
0.16
0.35Note: (1) reaction was conducted at 550 ℃ and atmospheric pressure, with a weight hourly space velocity (WHSV) of 2 h−1 and H2/n-heptane mole ratio of 6. (2) conversion of n-heptane (C7 conv.) and selectivity to aromatics (Arom. sel.) were obtained after 4 h time on stream (the values for TOS = 60 h were provided in parentheses). (3) coking rate (C-depos. rate) was estimated with the TG analysis -
[1] KAMINSKY W, MENNERICH C. Pyrolysis of synthetic tire rubber in a fluidised-bed reactor to yield 1, 3-butadiene, styrene and carbon black[J]. J Anal Appl Pyrolysis,2001,58:803−811. [2] MARZOCCA A J. Evaluation of the polymer-solvent interaction parameter chi for the system cured styrene butadiene rubber and toluene[J]. Eur Polym J,2007,43(6):2682−2689. doi: 10.1016/j.eurpolymj.2007.02.034 [3] DEMIRBAS A. Pyrolysis of municipal plastic wastes for recovery of gasoline-range hydrocarbons[J]. J Anal Appl Pyrolysis,2004,72(1):97−102. doi: 10.1016/j.jaap.2004.03.001 [4] GAO Z, MA B, CHEN S, TIAN J, ZHAO C. Converting waste PET plastics into automobile fuels and antifreeze components [J]. Nat Commun, 2022, 13(1): 3343. [5] LIANG X, JIANG J, FEI Q, ZHOU J, LI M, XU X, JIN Q, JIN W. Rapid determination of residual benzene homologues in food-packing plastic bags[J]. Part B: Chem Anal,2007,43(8):627−628,641. [6] ZHANG B, QU F, ZHOU X, ZHANG S, THOMAS T, YANG M. Porous coral-like NiCo2O4 nanospheres with promising xylene gas sensing properties[J]. Sens Actuators, B-Chem,2018,261:203−209. doi: 10.1016/j.snb.2018.01.125 [7] BARRY T L, PETZINGER G, LEHR G, SPECCHIO J J. Purge-and-trap gas-chromatographic mass-spectrometric determination of benzene in denture adhesives[J]. J AOAC Int,1995,78(2):413−418. doi: 10.1093/jaoac/78.2.413 [8] ISSAM A M, POH B T, KHALIL H P S A, LEE W C. Adhesion properties of adhesive prepared from waste polystyrene[J]. J Polym Environ,2009,17(3):165−169. doi: 10.1007/s10924-009-0134-y [9] CHO H J, REN L, VATTIPALLI V, YEH Y-H, GOULD N, XU B, GORTE R J, LOBO R, DAUENHAUER P J, TSAPATSIS M, FAN W. Renewable p-xylene from 2, 5-dimethylfuran and ethylene using phosphorus-containing zeolite catalysts[J]. ChemCatChem,2017,9(3):398−402. doi: 10.1002/cctc.201601294 [10] ENDO M, KIM Y A, TAKEDA T, HONG S H, MATUSITA T, HAYASHI T, DRESSELHAUS M S. Structural characterization of carbon nanofibers obtained by hydrocarbon pyrolysis[J]. Carbon,2001,39(13):2003−2010. doi: 10.1016/S0008-6223(01)00019-7 [11] IRANSHAHI D, RAFIEI R, JAFARI M, AMIRI S, KARIMI M, RAHIMPOUR M R. Applying new kinetic and deactivation models in simulation of a novel thermally coupled reactor in continuous catalytic regenerative naphtha process[J]. Chem Eng J,2013,229:153−176. doi: 10.1016/j.cej.2013.05.052 [12] WANG L, LI D, HANG F, ZHU Y, ZHANG M, LI W. Experimental optimization and reactor simulation of coal-derived naphtha reforming over Pt-Re/gamma-Al2O3 using design of experiment and response surface methodology[J]. React Kinet Mech Catal,2018,125(1):245−269. doi: 10.1007/s11144-018-1403-3 [13] GAO W Y, REN L G, ZHANG X L, GAO X H. The preparation and application of a novel catalyst for gasoline hydrodesulfurization[J]. Pet Sci Technol,2014,32(9):1087−1094. doi: 10.1080/10916466.2011.644014 [14] ZHANG K, LIU Y, TIAN S, ZHAO E, ZHANG J, LIU C. Preparation of bifunctional NiPb/ZnO-diatomite-ZSM-5 catalyst and its reactive adsorption desulfurization coupling aromatization performance in FCC gasoline upgrading process[J]. Fuel,2013,104:201−207. doi: 10.1016/j.fuel.2012.08.052 [15] ZHANG Q, DENG W, WANG Y. Recent advances in understanding the key catalyst factors for Fischer-Tropsch synthesis[J]. J Energy Chem,2013,22(1):27−38. doi: 10.1016/S2095-4956(13)60003-0 [16] LUQUE R, RAQUEL DE LA OSA A, MANUEL CAMPELO J, ANGEL ROMERO A, LUIS VALVERDE J, SANCHEZ P. Design and development of catalysts for Biomass-To-Liquid-Fischer-Tropsch (BTL-FT) processes for biofuels production[J]. Energy Environ Sci,2012,5(1):5186−5202. doi: 10.1039/C1EE02238E [17] KANGVANSURA P, SCHULZ H, SURAMITR A, POO-ARPORN Y, VIRAVATHANA P, WORAYINGYONG A. Reduced cobalt phases of ZrO2 and Ru/ZrO2 promoted cobalt catalysts and product distributions from Fischer-Tropsch synthesis[J]. Mater Sci Eng, B,2014,190:82−89. doi: 10.1016/j.mseb.2014.09.008 [18] SILVA R S F, TAMANQUEIRA J B, DIAS J C M, PASSARELLI F M, BIDART A M F, AQUINO NETO F R, AZEVEDO D A. Comprehensive two-dimensional gas chromatography with time of flight mass spectrometry applied to analysis of Fischer-Tropsch synthesis products obtained with and without carbon dioxide addition to feed gas[J]. J Brazil Chem Soc,2011,22(11):2121−2126. doi: 10.1590/S0103-50532011001100015 [19] DOOLAN P C, PUJADO P R. Make aromatics from LPG[J]. Hydrocarb Process,1989,68(9):72−74, 76. [20] CHEN N Y, YAN T Y. M2 forming - a process for aromatization of light-hydrocarbons[J]. Ind Eng Chem Process Des Dev,1986,25(1):151−155. doi: 10.1021/i200032a023 [21] CHOUDHARY V R, DEVADAS P, BANERJEE S, KINAGE A K. Aromatization of dilute ethylene over Ga-modified ZSM-5 type zeolite catalysts[J]. Microporous Mesoporous Mater,2001,47(2-3):253−267. doi: 10.1016/S1387-1811(01)00385-7 [22] RICE R W, LU K. Comparison of platinum and platinum iridium catalysts for heptane reforming at different pressures[J]. J Catal,1982,77(1):104−117. doi: 10.1016/0021-9517(82)90151-8 [23] XUYEN L N, LANH H D, THOANG H S, VOLTER J. Normal-hexane dehydrocyclization over pt-ni supported on alumina catalysts[J]. React Kinet Catal Lett,1989,39(2):293−298. doi: 10.1007/BF02071342 [24] YANG O B, WOO S I, KIM Y G. Comparison of platinum iridium bimetallic catalysts supported on gamma-alumina and HY-zeolite in n-hexane reforming reaction[J]. Appl Catal A: Gen,1994,115(2):229−241. doi: 10.1016/0926-860X(94)80355-2 [25] KAZANSKII B A, LIBERMAN A L, LOZA G V, VASINA T V. Parallel formation of 5-member and 6-member paraffin rings (C5 and C6-dehydrocyclization) on platinized charcoal[J]. Dokl Akad Nauk Sssr,1959,128(6):1188−1191. [26] DAVIS B H. C-14 tracer study of dehydrocyclization of heptane over Pt on nonacidic alumina[J]. J Catal,1973,29(3):398−403. doi: 10.1016/0021-9517(73)90246-7 [27] DAVIS B H. Conversion of labeled hydrocarbons. 6. normal- 1-(C-14)- and normal- 4-(C-14)- heptane over Pt-Sn-Al2O3 and Pt-Re-Al2O3 catalysts[J]. J Catal,1977,46(3):348−355. doi: 10.1016/0021-9517(77)90218-4 [28] IGLESIA E, BAUMGARTNER J, PRICE G L, ROSE K D, ROBBINS J L. Alkane rearrangement pathways on tellurium-based catalysts[J]. J Catal,1990,125(1):95−111. doi: 10.1016/0021-9517(90)90081-T [29] PAAL Z. On the possible reaction scheme of aromatization in catalytic reforming[J]. J Catal,1987,105(2):540−542. doi: 10.1016/0021-9517(87)90083-2 [30] ARCOYA A, SEOANE X L, GRAU J M. Dehydrocyclization of n-heptane over a PtBa/Kl catalyst: Reaction mechanism[J]. Appl Catal A: Gen,2005,284(1/2):85−95. doi: 10.1016/j.apcata.2005.01.024 [31] MILLS G A, HEINEMANN H, MILLIKEN T H, OBLAD A G. Houdriforming reactions-catalytic mechanism[J]. Ind Eng Chem,1953,45(1):134−137. doi: 10.1021/ie50517a043 [32] PARERA J M, BELTRAMINI J N, QUERINI C A, MARTINELLI E E, CHURIN E J, ALOE P E, FIGOLI N S. The role of Re and S in the Pt-Re-S/Al2O3 catalyst[J]. J Catal,1986,99(1):39−52. doi: 10.1016/0021-9517(86)90196-X [33] ZHOU Q, CHEN Y, FAN S, WANG S, QIN Z, DONG M, WANG J, FAN W. Development and catalytic mechanism of a highly efficient Pt/Kβ catalyst for n-heptane aromatization[J]. Fuel,2022,337:126874. [34] SMIESKOVA A, ROJASOVA E, HUDEC P, SABO L. Aromatization of light alkanes over ZSM-5 catalysts Influence of the particle properties of the zeolite[J]. Appl Catal A: Gen,2004,268(1/2):235−240. doi: 10.1016/j.apcata.2004.03.043 [35] WAN H, ZHANG X, ZHANG R, SONG L. Influence of doping methods of palladium on n-hexane aromatization and sulphur-resistance of Pt/KL zeolite[J]. J Jilin Univ Sci Ed,2014,52(6):1342−1348. [36] HOANG D L, FARRAGE S A F, RADNIK J, POHL M M, SCHNEIDER M, LIESKE H, MARTIN A. A comparative study of zirconia and alumina supported Pt and Pt-Sn catalysts used for dehydrocyclization of n-octane[J]. Appl Catal A: Gen,2007,333(1):67−77. doi: 10.1016/j.apcata.2007.09.003 [37] HUANG Z, FRYER J R, PARK C, STIRLING D, WEBB G. Transmission electron microscopy, energy dispersive X-ray spectroscopy, and chemisorption studies of Pt-Ge/gamma-Al2O3 reforming catalysts[J]. J Catal,1998,175(2):226−235. doi: 10.1006/jcat.1998.2017 [38] HE P, CHEN Y, JARVIS J, MENG S, LIU L, WEN X-D, SONG H. Highly selective aromatization of octane over Pt-Zn/UZSM-5: The effect of Pt-Zn interaction and Pt position[J]. ACS Appl Mater,2020,12(25):28273−28287. doi: 10.1021/acsami.0c07039 [39] DAVIS B H. Alkane dehydrocyclization mechanism[J]. Catal Today,1999,53(3):443−516. doi: 10.1016/S0920-5861(99)00136-4 [40] SPARKS D E, SRINIVASAN R, DAVIS B H. Paraffin dehydrocyclization. 8. conversion of n-octane with mono and bifunctional PT-Al2O3 catalysts at 100 psig[J]. J Mol Catal,1994,88(3):325−341. doi: 10.1016/0304-5102(93)E0279-P [41] YUE B-H, ZHOU R-X, ZHENG X-M. Influence of preparation conditions on thermal stability of alumina modified by SiO2[J]. Chin J Inorg Chem,2007,23(3):533−536. [42] FANG D, MA A, PAN J. Study on the aromatization performance of PT/ZrO2-gamma-Al2O3 catalyst[J]. Pet Process Petrochem,2008,39(3):28−33. [43] DUAN R, GONG Y, KONG D, LIU Y, LIU X, DUAN A, DOU T. Development of the catalyst for light paraffins aromatization[J]. Acta Pet Sin Pet Process Sect,2013,29(4):726−737. [44] TRUNSCHKE A, HOANG D L, RADNIK J, LIESKE H. Influence of lanthana on the nature of surface chromium species in La2O3-modified CrOx/ZrO2 catalysts[J]. J Catal,2000,191(2):456−466. doi: 10.1006/jcat.1999.2791 [45] MOLE T, ANDERSON J R, CREER G. The reaction of propane over ZSM-5-H and ZSM-5-Zn zeolite catalysts[J]. Appl Catal,1985,17(1):141−154. doi: 10.1016/S0166-9834(00)82709-8 [46] SIROKMAN G, SENDODA Y, ONO Y. COnversion of pentane into aromatics over ZSM-5 zeolites[J]. Zeolites,1986,6(4):299−303. doi: 10.1016/0144-2449(86)90084-9 [47] ONO Y. Transformation of lower alkanes into aromatic-hydrocarbons over ZSM-5 zeolites[J]. Catal Rev-Sci Eng,1992,34(3):179−226. doi: 10.1080/01614949208020306 [48] SAHOO S K, VISWANADHAM N, RAY N, GUPTA J K, SINGH I D. Studies on acidity, activity and coke deactivation of ZSM-5 during n-heptane aromatization[J]. Appl Catal A: Gen,2001,205(1/2):1−10. doi: 10.1016/S0926-860X(00)00543-3 [49] VISWANADHAM N, GUPTA J K, DHAR G M, GARG M O. Effect of synthesis methods and modification treatments of ZSM-5 on light alkane aromatization[J]. Energy Fuels,2006,20(5):1806−1814. doi: 10.1021/ef0601770 [50] LI Y, LIU S, ZHANG Z, ME S, ZHU X, XU L. Aromatization and isomerization of 1-hexene over alkali-treated HZSM-5 zeolites: Improved reaction stability[J]. Appl Catal A: Gen,2008,338(1-2):100−113. doi: 10.1016/j.apcata.2007.12.026 [51] ZHOU Q, WANG S, WU Z, QIN Z, DONG M, WANG J, FAN W. Aromatization of n-C7–n-C9 alkanes on a Pt/KZSM-5(deAl) catalyst[J]. Catal Sci Technol,2023,13(4):1009−1020. doi: 10.1039/D2CY01903E [52] BESOUKHANOVA C, GUIDOT J, BARTHOMEUF D, BREYSSE M, BERNARD J R. Platinum-zeolite interactions in alkaline l-zeolites - correlations between catalytic activity and platinum state[J]. J Chem Soc Faraday Trans I,1981,77:1595−1604. [53] DAVIS R J. Aromatization on zeolite L-supported Pt clusters[J]. Heterogen Chem Rev,1994,1(1):41−53. [54] DEROUANE E G, VANDERVEKEN D J. Structural recognition and preorganization in zeolite catalysis - direct aromatization of normal-hexane on zeolite L-based catalysts[J]. Appl Catal,1988,45(1):L15−L22. doi: 10.1016/S0166-9834(00)82386-6 [55] FUKUNAGA T, KATSUNO H. Halogen-promoted Pt/KL zeolite catalyst for the production of aromatic hydrocarbons from light naphtha[J]. Catal Surv Asia,2010,14(3/4):96−102. doi: 10.1007/s10563-010-9092-6 [56] XU D, WANG S, WU B, HUO C, QIN Y, ZHANG B, YIN J, HUANG L, WEN X, YANG Y, LI Y. Tailoring Pt locations in KL zeolite by improved atomic layer deposition for excellent performance in n-heptane aromatization[J]. J Catal,2018,365:163−173. doi: 10.1016/j.jcat.2018.07.001 [57] WANG S, XU D, ZHU D, ZHAO B, GUAN H, QIN Y, WU B, YANG Y, LI Y. Elucidating the restructuring-induced highly active bimetallic Pt-Co/KL catalyst for the aromatization of n-heptane[J]. Chem Commun,2020,56(6):892−895. doi: 10.1039/C9CC08845H [58] JACOBS G, GHADIALI F, PISANU A, BORGNA A, ALVAREZ W E, RESASCO D E. Characterization of the morphology of Pt clusters incorporated in a KL zeolite by vapor phase and incipient wetness impregnation. Influence of Pt particle morphology on aromatization activity and deactivation[J]. Appl Catal A: Gen,1999,188(1/2):79−98. doi: 10.1016/S0926-860X(99)00235-5 [59] JACOBS G, PADRO C L, RESASCO D E. Comparative study of n-hexane aromatization on Pt/KL, Pt/Mg(Al)O, and Pt/SiO2 catalysts: Clean and sulfur-containing feeds[J]. J Catal,1998,179(1):43−55. doi: 10.1006/jcat.1998.2176 [60] LI K, CHANG Q, YIN J, ZHAO C, HUANG L, TAO Z, YUN Y, ZHANG C, XIANG H, YANG Y, LI Y. Deactivation of Pt/KL catalyst during n-heptane aromatization reaction[J]. J Catal,2018,361:193−203. doi: 10.1016/j.jcat.2018.03.001 [61] SHI Y, ZHOU Q, QIN Z, WU Z, JIAO W, DONG M, FAN W, WANG J. Hierarchically structured Pt/K-Beta zeolites for the catalytic conversion of n-heptane to aromatics[J]. Microporous Mesoporous Mater,2021,324:111308. doi: 10.1016/j.micromeso.2021.111308 [62] SHI Y, ZHOU Q, QIN Z, WU Z, JIAO W, DONG M, FAN W, WANG J. Promoting effect of alkali metal on the catalytic performance of hierarchical Pt/Beta in the aromatization of n-heptane[J]. Microporous Mesoporous Mater,2022,343:12189. [63] ZHAO C, WU B, TAO Z, LI K, LI T, GAO X, HUANG L, YUN Y, YANG Y, LI Y. Synthesis of nano-sized LTL zeolite by addition of a Ba precursor with superior n-octane aromatization performance[J]. Catal Sci Technol,2018,8(11):2860−2869. doi: 10.1039/C8CY00661J -