Experimental study of Fe modified Mn/CeO2 catalyst for simultaneous removal of NO and toluene at low temperature
-
摘要: 本研究采用浸渍法制备了Fe改性的Mn/CeO2催化剂,并测试了催化剂在低温条件下同时脱硝与脱甲苯的性能。结果表明,Fe5Mn/CeO2催化剂表现出最佳的催化性能,甲苯的转化效率在175 ℃达到90%,NO转化率在95–300 ℃达到90%。通过BET、SEM、XRD、XPS、H2-TPR、NH3-TPD和O2-TPD等表征手段对催化剂的理化性质进行分析。XPS结果表明,Fe5Mn/CeO2催化剂中Ce3 + 和Mn4 + 的含量增加,促进氧空位和不饱和化学键的形成,提供了更多的活性位点,从而有利于在低温下高效脱除NO和甲苯。H2-TPR、NH3-TPD和O2-TPD表征表明,与其他催化剂相比,Fe5Mn/CeO2催化剂具有优异的氧化还原能力、更强的酸性和更好的氧迁移能力。此外,本研究还探究了Fe5Mn/CeO2催化剂上选择性催化还原(NH3-SCR)反应与甲苯催化氧化反应之间的影响。其中,NH3优先吸附活性位点而抑制了甲苯吸附,而NO2的生成促进了甲苯催化氧化反应;甲苯对NH3-SCR反应的抑制作用随着温度的升高而减弱,在100 ℃时,甲苯对NH3-SCR反应的抑制作用消失。超过225 ℃后,甲苯作为还原剂与NO发生反应且促进了NO2的生成,从而对NH3-SCR反应有促进作用。Abstract: A series of Mn/CeO2 catalysts modified with different Fe contents were prepared by impregnation method and tested for their low-temperature performance for simultaneous de-nitrification and toluene removal. It was found that the Fe5Mn/CeO2 catalyst showed the best catalytic performance and the conversion efficiency of toluene reached 90% at 175 ℃ and NO conversion reached 90% at 95−300 ℃. The physical and chemical properties of the catalysts were characterized by BET, SEM, XRD, XPS, H2-TPR, NH3-TPD and O2-TPD. XPS results showed that the increased content of Ce3+ and Mn4+ in the Fe5Mn/CeO2 catalyst promoted the formation of oxygen vacancies and unsaturated chemical bonds, providing more active sites, thus facilitating the efficient removal of NO and toluene at low temperatures. Compared with other catalysts, H2-TPR, NH3-TPD and O2-TPD indicate that Fe5Mn/CeO2 catalyst has great redox ability, stronger acidity and better oxygen migration ability. In addition, this paper explores the effects between selective catalytic reduction (NH3-SCR) and catalytic oxidation reaction of toluene over Fe5Mn/CeO2 catalyst. NH3 preferentially reacts with the active site on the catalyst to inhibit the toluene oxidation process, while NO promotes the toluene removal process. Toluene can promote the NH3-SCR process in a certain temperature range. While NO promotes the formation of NO2, NO2 effectively promotes the combination of toluene and active sites, which is conducive to the catalytic oxidation of toluene; The inhibition of toluene on the NH3-SCR process weakens with the increase of temperature. At 100 ℃, the inhibition of toluene on the NH3-SCR process disappears. When the temperature exceeds 225 ℃, toluene reacts with NO as a reducing agent and promotes the formation of NO2, thus promoting the NH3-SCR reaction.
-
Key words:
- multi-pollutant control /
- NO /
- low-temperature activity /
- NH3-SCR /
- toluene /
- catalytic oxidation
-
表 1 Mn/CeO2和FexMn/CeO2(x=4、5、6)催化剂的比表面积、孔容积和平均孔径
Table 1 Specific surface area, pore volume and average pore size of CeO2 and FexMn/CeO2 (x=4, 5, 6)
Catalyst BET surface
area A /(m2·g−1)Pore volume
v /(cm3·g−1)Pore size
d /nmMn/CeO2 23.7 0.065 7.9 Fe4Mn/CeO2 20.8 0.051 7.6 Fe5Mn/CeO2 22.1 0.052 7.2 Fe6Mn/CeO2 20.1 0.041 6.4 表 2 催化剂的元素组成
Table 2 Element composition of catalysts.
Catalyst Oα/Oβ Ce4 + /Ce3 + Mn4 + /(Mn3 + + Mn2 + ) Fe3 + /Fe2 + Mn/CeO2 0.84 4.26 0.419 – Fe5Mn/CeO2 1.05 4.59 0.708 2.15 Fe5Mn/CeO2(used) 0.86 6.38 0.521 1.10 -
[1] ZHAO L, ZHANG Z, LI Y, LENG X, ZHANG T, YUAN F, NIU X, ZHU Y. Synthesis of CeaMnOx hollow microsphere with hierarchical structure and its excellent catalytic performance for toluene combustion[J]. Appl Catal B: Environ,2019,245:502−512. doi: 10.1016/j.apcatb.2019.01.005 [2] CENTENO M A, PAULIS M, MONTES M, ODRIOZOLA J A. Catalytic combustion of volatile organic compounds on Au/CeO2/Al2O3 and Au/Al2O3 catalysts[J]. Appl Catal A: Gen, 2002, 234 (1/2): 65–78. [3] 张烁. 活性中心调控强化VOCs和NOx催化脱除的机理研究[D]. 杭州: 浙江大学, 2020.ZHANG Shuo. Mechanistic study on enhanced catalytic removal of VOCs and NOx by modulation of activation center[D]. Hangzhou: Zhejiang University, 2020. [4] 张楚莹, 王书肖, 邢佳, 赵瑜, 郝吉明. 中国能源相关的氮氧化物排放现状与发展趋势分析[J]. 环境科学学报,2008,28(12):2470−2479. doi: 10.3321/j.issn:0253-2468.2008.12.011ZHANG Chu-ying, WANG Shu-xiao, XING Jia, ZHAO Yu, HAO Ji-ming. Analysis of the current situation and development trend of energy-related NOx emissions in China[J]. J Environ Sci,2008,28(12):2470−2479. doi: 10.3321/j.issn:0253-2468.2008.12.011 [5] 陈颖, 叶代启, 刘秀珍, 吴军良, 黄碧纯, 郑雅楠. 我国工业源VOCs排放的源头追踪和行业特征研究[J]. 中国环境科学,2012,32(1):48−55. doi: 10.3969/j.issn.1000-6923.2012.01.008CHEN Ye, YE Dai-qi, LIU Xiu-zhen, WU Jun-liang, HUANG Bi-chun, ZHENG Ya-nan. Source tracking and industry characteristics of VOCs emissions from industrial sources in China[J]. Chin Environ Sci,2012,32(1):48−55. doi: 10.3969/j.issn.1000-6923.2012.01.008 [6] HE C, CHENG J, ZHANG X, DOUTHWAITE M, HAO Z. Recent advances in the catalytic oxidation of volatile organic compounds: A review based on pollutant sorts and sources[J]. Chem Rev,2019,119(7):4471−4568. doi: 10.1021/acs.chemrev.8b00408 [7] YE L M, LU P, CHEN X B, FANG P, PENG Y, LI J H, HUANG H B. The deactivation mechanism of toluene on MnOx-CeO2 SCR catalyst[J]. Appl Catal B: Environ,2020,277:119257. doi: 10.1016/j.apcatb.2020.119257 [8] MAO M, LV H, LI Y, YANG Y, ZENG M, LI N, ZHAO X. Metal support interaction in Pt nanoparticles partially confined in the mesopores of microsized mesoporous CeO2 for highly efficient purification of volatile organic compounds[J]. ACS Catal,2016,6(1):418−427. doi: 10.1021/acscatal.5b02371 [9] PLENGE-BONIG A, KARMAUS W. Exposure to toluene in the printing industry is associated with subfecundity in women but not in men[J]. Occup Environ Med,1999,56(7):443−448. doi: 10.1136/oem.56.7.443 [10] MORO A M, CHARAO R, BRUCKER R, BULCAO R, FREITAS R, GUERREIRO R, BAIERLE R, NASCIMENTO R, WAECHTER R, HIRAKATA R. Effects of low-level exposure to xenobiotics present in paints on oxidative stress in workers[J]. Sci Total Environ,2010,408(20):4461−4467. doi: 10.1016/j.scitotenv.2010.06.058 [11] BRAGUGLIA C M, BAGNUOLO G, GIANICO A, MININNI G, PASTORE C, MASCOLO G. Preliminary results of lab-scale investigations of products of incomplete combustion during incineration of primary and mixed digested sludge[J]. Environ Sci Pollut Res,2016,23(5):4585−4593. doi: 10.1007/s11356-015-5653-6 [12] 梁志程. VOCs废气危害及处理技术进展[J]. 化工管理,2020,35(30):120−121. doi: 10.3969/j.issn.1008-4800.2020.30.056LIANG Zhi-chen. Advances in VOCs waste gas hazards and treatment technologies[J]. Chem Enterp Manage,2020,35(30):120−121. doi: 10.3969/j.issn.1008-4800.2020.30.056 [13] SOU C I, DAMOKOSH A I, RYAN L M, CHEN D, HU Y A, SMITH T J. Effects of exposure to organic solvents on menstrual cycle length[J]. J Occup Environ Med,2001,43(6):567−575. doi: 10.1097/00043764-200106000-00012 [14] LIU L, SHEN B, LU F, PENG X. Highly efficient Mn-Fe bimetallic oxides for simultaneous oxidation of NO and toluene: Performance and mechanism[J]. Fuel,2023,332:126143. doi: 10.1016/j.fuel.2022.126143 [15] 闫晓淼, 李玉然, 朱廷钰, 齐枫. 钢铁烧结烟气多污染物排放及协同控制概述[J]. 环境工程技术学报,2015,5(2):85−90.YAN Xiao-miao, LI Yu-ran, ZHU Ting-yu, QI Feng. Overview of multi-pollutant emission and synergistic control of steel sinter flue gas[J]. J Environ Eng Technol,2015,5(2):85−90. [16] 张璞, 王珲, 李鹏飞, 杨景玲. 烧结烟气中污染物防治技术应用现状[J]. 环境工程,2017,35(7):101−105.ZHANG Pu, WANG Huan, LI Peng-fei, YANG Jing-ling. Current status of application of pollutant control technology in sintered flue gas[J]. Environ Eng,2017,35(7):101−105. [17] 方平, 陈雄波, 唐子君, 黄建航, 曾文豪, 吴海文, 唐志雄, 岑超平. 船舶柴油机大气污染物排放特性及控制技术研究现状[J]. 化工进展,2017,36(3):1067−1076.FANG Ping, CHEN Xiong-bo, TANG Zi-jun, HUANG Jian-hang, ZENG Wen-hao, WU Hai-wen, TANG Zhi-xiong, CEN Chao-ping. Current status of research on air pollutant emission characteristics and control technology of marine diesel engines[J]. Chem Ind Eng Prog,2017,36(3):1067−1076. [18] 张萍, 潘卫国, 郭瑞堂, 潘孝庆, 叶侠丰, 尤运. 燃煤烟气污染物协同控制技术的研究进展[J]. 应用化工,2017,46(12):2447−2450.ZHANG Ping, PAN Wei-guo, GUO Rui-tang, PAN Xiao-qing, YE Xiao-feng, YOU Yun. Research progress of coal-fired flue gas pollutant synergistic control technology[J]. Appl Chem Ind,2017,46(12):2447−2450. [19] WANG D, CHEN Q Z, ZHANG X, GAO C, WANG B, HUANG X, PENG Y, LI J H, LU C M, CRITTENDEN J. Multipollutant control (MPC) of flue gas from stationary sources using SCR technology: A critical review[J]. Environ Sci Technol,2021,55(5):2743−2766. doi: 10.1021/acs.est.0c07326 [20] SHAO J, WANG Z, LIU P, LIN F, CEN K. Interplay effect on simultaneous catalytic oxidation of NO and toluene over different crystal types of MnO2 catalysts[J]. Proc Combust Inst,2020,38(4):5433−5441. [21] 张娜, 黄妍, 张俊丰, 赵令葵, 李思密, 陶泓帆, 伍云凡. 负载型LaCoO3/MO2催化氧化甲苯与NO的性能研究[J]. 燃料化学学报,2022,50(7):868−876.ZHANG Na, HUANG Yan, ZHANG Jun-feng, ZHAO Ling-kui, LI Si-mi, TAO Hong-fan, WU Yun-fan. Performance study of loaded LaCoO3/MO2 catalytic oxidation of toluene and NO[J]. J Fuel Chem Technol,2022,50(7):868−876. [22] HAN L P, CAI S X, GAO M, HASEGAWA J, WANG P L, ZHANG J P, SHI L Y, ZHANG D S. Selective catalytic reduction of NOx with NH3 by using novel catalysts: State of the art and future prospects[J]. Chem Rev,2019,119(19):10916−10976. doi: 10.1021/acs.chemrev.9b00202 [23] 李燕. M-Mn(M=Ni, Co, Fe)复合氧化物催化剂对甲苯的催化燃烧[D]. 西安: 西安建筑科技大学, 2013.LI Yan. Catalytic combustion of toluene with M-Mn (M=Ni, Co, Fe) composite oxide catalyst[D]. Xi'an: Xi'an University of Architecture and Technology, 2013. [24] A H C, A Y X, A H H, A Y G, A X T, A C L, A J L, A R F, A J Z, A W Z. Highly dispersed surface active species of Mn/Ce/TiW catalysts for high performance at low temperature NH3-SCR[J]. Chem Eng J,2017,330:1195−1202. doi: 10.1016/j.cej.2017.08.069 [25] CHEN L, LIAO Y, CHEN Y, WU J, MA X. Performance of Ce-modified V-W-Ti type catalyst on simultaneous control of NO and typical VOCs[J]. Fuel Process Technol,2020,207:106483. doi: 10.1016/j.fuproc.2020.106483 [26] 张超. Pt基纳米催化剂的结构调控及其性能研究[D]. 南京: 东南大学, 2018.ZHANG Chao. Structural modulation of Pt-based nanocatalysts and their performance[D]. Nanjing: Southeast University, 2018. [27] 盛重义. 贵金属Pt和Pd改性TiO2催化剂气相光催化氧化NO机理研究[D]. 杭州: 浙江大学, 2010.SHENG Chong-yi. Study on the mechanism of gas-phase photocatalytic oxidation of NO by precious metal Pt and Pd modified TiO2 catalysts[D]. Hangzhou: Zhejiang University, 2010. [28] PENG R S, LI S J, SUN X B, REN Q M, CHEN L M, FU M L, WU J L, YE D Q. Size effect of Pt nanoparticles on the catalytic oxidation of toluene over Pt/CeO2 catalysts[J]. Appl Catal B: Environ,2018,220:462−470. doi: 10.1016/j.apcatb.2017.07.048 [29] ALI Z. 燃煤电厂商用SCR催化剂重金属中毒研究[D]. 北京: 华北电力大学(北京), 2019.ALI Z. Study of heavy metal poisoning in commercial SCR catalysts for coal-fired power plants[D]. Beijing: North China Electric Power University (Beijing), 2019. [30] LIU C, LI F, WU J, HOU X, HUANG W, ZHANG Y, YANG X G. A comparative study of MOx (M = Mn, Co and Cu) modifications over CePO4 catalysts for selective catalytic reduction of NO with NH3[J]. J Hazard Mater,2019,363:439−446. doi: 10.1016/j.jhazmat.2018.09.054 [31] 王丽间. 过渡金属负载催化剂催化燃烧双分组VOCs的性能[D]. 广州: 华南理工大学, 2012.WANG Li-jian. Performance of transition metal-loaded catalysts for catalytic combustion of double-group VOCs[D]. Guangzhou: South China University of Technology, 2012. [32] SANZ O, DELGADO J J, NAVARRO P, ARZAMENDI G, GANDÍA L M, MONTES M. VOCs combustion catalysed by platinum supported on manganese octahedral molecular sieves[J]. Appl Catal B: Environ,2011,110:231−237. doi: 10.1016/j.apcatb.2011.09.005 [33] 唐伟, 胡晓东, 宣逸安. 掺铈的铜锰钴复合氧化物催化剂对甲苯催化燃烧的性能研究[J]. 能源环境保护,2005,19(1):35−37.TANG Wei, HU Xiao-dong, XUAN Yi-an. Performance study of cerium-doped copper-manganese-cobalt composite oxide catalysts for catalytic combustion of toluene[J]. Energy Environ Prot,2005,19(1):35−37. [34] 吴波. 铜锰铈氧化物VOCs催化燃烧催化剂的制备与性能研究[D]. 成都: 西南交通大学, 2017.WU Bo. Preparation and performance study of catalytic combustion catalysts for copper-manganese cerium oxide VOCs[D]. Chengdu: Southwest Jiaotong University, 2017. [35] WANG F, LI C, ZHANG X, WEI M, EVANS D G, DUAN X. Catalytic behavior of supported Ru nanoparticles on the {1 0 0}, {1 1 0}, and {1 1 1} facet of CeO2[J]. J Catal,2015,329:177−186. doi: 10.1016/j.jcat.2015.05.014 [36] PAN H, CHEN Z, MA M, GUO T, LING X, ZHENG Y, HE C, CHEN J. Mutual inhibition mechanism of simultaneous catalytic removal of NOx and toluene on Mn-based catalysts[J]. J Colloid Interface Sci,2022,607:1189−1200. doi: 10.1016/j.jcis.2021.09.110 [37] ZENG Y, SONG W, WANG Y, ZHANG S, WANG T, ZHONG Q. Novel Fe-doped CePO4 catalyst for selective catalytic reduction of NO with NH3: The role of Fe3 + ions[J]. J Hazard Mater,2020,383:121212. doi: 10.1016/j.jhazmat.2019.121212 [38] FAN C, LI K, PENG Y, DUAN R, HU F, JING Q, CHEN J, LI J. Fe-doped α-MnO2 nanorods for the catalytic removal of NOx and chlorobenzene: The relationship between lattice distortion and catalytic redox properties[J]. Phys Chem Chem Phys,2019,21(46):25880−25888. doi: 10.1039/C9CP04930D [39] CHEN Z, WANG F, LI H, YANG Q, WANG L, LI X. Low-tmperature selective catalytic reduction of NOx with NH3 over Fe-Mn mixed-oxide catalysts containing Fe3Mn3O8 phase[J]. Ind Eng Chem Res,2012,51(1):202−212. doi: 10.1021/ie201894c [40] STAHL A, WANG Z, SCHWAEMMLE T, KE J, LI X. Novel Fe-W-Ce mixed oxide for the selective catalytic reduction of NOx with NH3 at low temperatures[J]. Catalysts,2017,7(12):71. doi: 10.3390/catal7020071 [41] 熊志波, 路春美, 韩奎华, 郭东旭, 王栋, 张信莉. 沉淀剂对铁铈复合氧化物催化剂SCR脱硝性能的影响[J]. 煤炭学报,2013,38(A1):201−205.XIONG Zhi-bo, LU Chun-mei, HAN Kui-hua, GUO Dong-xu, WANG Dong, ZHANG Xin-li. Effect of precipitating agent on the performance of iron-cerium composite oxide catalysts for SCR denitrification[J]. J Chin Coal Soc,2013,38(A1):201−205. [42] 刘智. SO2在商用SCR催化剂表面氧化机理研究[D]. 天津: 河北工业大学, 2019.LIU Zhi. Study on the oxidation mechanism of SO2 on the surface of commercial SCR catalyst[D]. Tianjin: Hebei University of Technology, 2019. [43] 陈传敏, 常昊, 贾文波, 刘松涛, 曹悦, 陈若希, 乔钏熙. Mn掺杂VWTi催化剂宽温区脱硝实验研究[J]. 燃料化学学报,2022,50(3):357−365.CHEN Chuan-min, CHANG Hao, JIA Wen-bo, LIU Song-tao, CAO Yue, CHEN Ruo-xi, QIAO Chuan-xi. Experimental study of Mn-doped VWTi catalysts for denitrification in the wide temperature region[J]. J Fuel Chem Technol,2022,50(3):357−365. [44] WANG W, ZHU Q, QIN F, DAI Q G, WANG X Y. Fe doped CeO2 nanosheets as fenton-like heterogeneous catalysts for degradation of salicylic acid[J]. Chem Eng J,2018,333:226−239. doi: 10.1016/j.cej.2017.08.065 [45] BAE S W, ROH S A, KIM S D. NO removal by reducing agents and additives in the selective non-catalytic reduction (SNCR) process[J]. Chemosphere,2006,65(1):170−175. doi: 10.1016/j.chemosphere.2006.02.040 [46] DONG L, WANG H, HUANG Y, CHEN H, CHENG H, LIU L, XU L, ZHA J, YU M, WANG S, DUAN Y. Elemental mercury removal from coal-fired flue gas using recyclable magnetic Mn-Fe based attapulgite sorbent[J]. Chem Eng J,2021,407:127182. doi: 10.1016/j.cej.2020.127182 [47] HUANG X, DONG F, ZHANG G, GUO Y, TANG Z. A strategy for constructing highly efficient yolk-shell Ce@Mn@TiOx catalyst with dual active sites for low-temperature selective catalytic reduction of NO with NH3[J]. Chem Eng J,2021,419:129572. doi: 10.1016/j.cej.2021.129572 [48] CHANG T, SHEN Z X, HUANG Y, LU J Q, REN D X, SUN J, CAO J J, LIU H X. Post-plasma-catalytic removal of toluene using MnO2-Co3O4 catalysts and their synergistic mechanism[J]. Chem Eng J,2018,348:15−25. doi: 10.1016/j.cej.2018.04.186 [49] 周媛媛, 刘晗, 邓琳, 吴功德, 万杰, 王晓丽, 胡纯政, 于先坤, 杨晓军. Mn1-yNiyOx的制备及其催化燃烧甲苯性能的研究[J]. 中国环境科学,2022,42(4):1601−1609. doi: 10.3969/j.issn.1000-6923.2022.04.013ZHOU Yuan-yuan, LIU Han, DENG Lin, WU Gong-de, WAN Jie, WANG Xiao-li, HU Chun-zheng, YU Xian-kun, YANG Xiao-jun. Preparation of Mn1-yNiyOx and its performance in catalytic combustion of toluene[J]. Chin Environ Sci,2022,42(4):1601−1609. doi: 10.3969/j.issn.1000-6923.2022.04.013 [50] CHANG H, CHEN X, LI J, LEI M, WANG C, LIU C, SCHWANK J W, HAO J. Improvement of activity and SO2 tolerance of Sn-modified MnOx-CeO2 catalysts for NH3-SCR at low temperatures[J]. Environ Sci Technol,2013,47(10):5294−5301. doi: 10.1021/es304732h [51] HE H, DAI H X, AU C T. Defective structure, oxygen mobility, oxygen storage capacity, and redox properties of Re-based (Re = Ce, Pr) solid solutions[J]. Catal Today, 2004, 89 (3/4): 245–254. [52] CHI G, SHEN B, YU R, HE C, ZHANG X. Simultaneous removal of NO and Hg0 over Ce-Cu modified V2O5/TiO2 based commercial SCR catalysts[J]. J Hazard Mater,2017,330:83−92. doi: 10.1016/j.jhazmat.2017.02.013 [53] LUPENG, HAN, MIN, GAO, CHONG, FENG, LIYI, SHI, DENGSONG, ZHANG. Fe2O3-CeO2@Al2O3 nanoarrays on Al-Mesh as SO2-Tolerant monolith catalysts for NOx reduction by NH3[J]. Environ Sci Technol,2019,53(10):5946−5956. doi: 10.1021/acs.est.9b01217 [54] YAO W, LIU Y, WANG X, WENG X, WANG H, WU Z. The superior performance of sol-gel made Ce-O-P catalyst for selective catalytic reduction of NO with NH3[J]. J Phys Chem C,2016,120(1):221−229. doi: 10.1021/acs.jpcc.5b07734 [55] CHEN L, SI Z, WU X, WENG D, RAN R, YU J. Rare earth containing catalysts for selective catalytic reduction of NOx with ammonia: A review[J]. J Rare Earth,2014,32(10):907−917. doi: 10.1016/S1002-0721(14)60162-9 [56] CHEN L, REN S, LIU L, SU B, YANG J, CHEN Z, WANG M, LIU Q. Catalytic performance over Mn-Ce catalysts for NH3-SCR of NO at low temperature: Different zeolite supports[J]. J Environ Chem Eng,2022,10(2):107167. doi: 10.1016/j.jece.2022.107167 [57] ZHAO F, ZHANG G, TANG Z, ZHA F. Construction of fluffy MnFe nanoparticles and their synergistic catalysis for selective catalytic reduction reaction at low temperature[J]. Fuel,2022,322:124185. doi: 10.1016/j.fuel.2022.124185 [58] HE H, LIN X, LI S, WU Z, GAO J, WU J, WEN W, YE D, FU M. The key surface species and oxygen vacancies in MnOx(0.4)-CeO2 toward repeated soot oxidation[J]. Appl Catal B: Environ,2018,223:134−142. doi: 10.1016/j.apcatb.2017.08.084 [59] FLAK D, CHEN Q, MUN B S, LIU Z, REKAS M, BRAUN A. In situ ambient pressure XPS observation of surface chemistry and electronic structure of α-Fe2O3 and γ-Fe2O3 nanoparticles[J]. Appl Surf Sci,2018,455(10):1019−1028. [60] WANG Y, WANG G, DENG W, HAN J, QIN L, ZHAO B, GUO L, XING F. Study on the structure-activity relationship of Fe-Mn oxide catalysts for chlorobenzene catalytic combustion[J]. Chem Eng J,2020,395:125172. doi: 10.1016/j.cej.2020.125172 [61] PAN H, JIAN Y, CHEN C, HE C, HAO Z, SHEN Z, LIU H. Sphere-shaped Mn3O4 catalyst with remarkable low-temperature activity for methyl-ethyl-ketone combustion[J]. Environ Sci Technol,2017,51(11):6288−6297. doi: 10.1021/acs.est.7b00136 [62] CHENG F, ZHANG D, SHI L, GAO R, ZHANG J. Highly dispersed CeO2 on carbon nanotubes for selective catalytic reduction of NO with NH3[J]. Cata Sci Technol,2013,3(3):803−811. doi: 10.1039/C2CY20670F [63] HUANG J, HUANG H, JIANG H, LIU L. The promotional role of Nd on Mn/TiO2 catalyst for the low-temperature NH3-SCR of NOx[J]. Catal Today,2019,332:49−58. doi: 10.1016/j.cattod.2018.07.031 [64] LI G, SHEN K, WANG L, ZHANG Y, YANG H, WU P, WANG B, ZHANG S. Synergistic degradation mechanism of chlorobenzene and NOx over the multi-active center catalyst: The role of NO2, Brønsted acidic site, oxygen vacancy[J]. Appl Catal B: Environ,2021,286:119865. doi: 10.1016/j.apcatb.2020.119865 [65] 刘欣. 高比表面积钒基催化剂选择性催化还原一氧化氮的研究[D]. 北京: 清华大学, 2018.LIU Xin. Selective catalytic reduction of nitric oxide by vanadium-based catalysts with high specific surface area[D]. Beijing: Tsinghua University, 2018. [66] MENG D, XU Q, JIAO Y, GUO Y, GUO Y, WANG L, LU G, ZHAN W. Spinel structured CoaMnbOx mixed oxide catalyst for the selective catalytic reduction of NOx with NH3[J]. Appl Catal B: Environ,2018,221:652−663. doi: 10.1016/j.apcatb.2017.09.034 [67] LIU Y, ZHANG P, ZHAN J, LIU L. Heat treatment of MnCO3: An easy way to obtain efficient and stable MnO2 for humid O3 decomposition[J]. Appl Surf Sci,2019,463:374−385. doi: 10.1016/j.apsusc.2018.08.226 [68] YAN L, WEI Z, FENG G, KOVARIK L, YONG W. Effect of oxygen defects on the catalytic performance of VOx /CeO2 catalysts for oxidative dehydrogenation of methanol[J]. ACS Catal,2015,5(5):3006−3012. doi: 10.1021/cs502084g [69] ZHAO L, HUANG Y, ZHANG J, JIANG L, WANG Y. Al2O3-modified CuO-CeO2 catalyst for simultaneous removal of NO and toluene at wide temperature range[J]. Chem Eng J,2020,397:125419. doi: 10.1016/j.cej.2020.125419 -