留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

KOH添加方式对煤基活性泡沫炭电化学性能的影响

周慧敏 杨暖暖 符海朝 王美君 申岩峰 刘冬 王建成 常丽萍

周慧敏, 杨暖暖, 符海朝, 王美君, 申岩峰, 刘冬, 王建成, 常丽萍. KOH添加方式对煤基活性泡沫炭电化学性能的影响[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(23)60372-X
引用本文: 周慧敏, 杨暖暖, 符海朝, 王美君, 申岩峰, 刘冬, 王建成, 常丽萍. KOH添加方式对煤基活性泡沫炭电化学性能的影响[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(23)60372-X
ZHOU Huimin, YANG Nuannuan, FU Haichao, WANG Meijun, SHEN Yanfeng, LIU Dong, WANG Jiancheng, CHANG Liping. Effect of KOH addition method on electrochemical properties of coal-based active carbon foams[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(23)60372-X
Citation: ZHOU Huimin, YANG Nuannuan, FU Haichao, WANG Meijun, SHEN Yanfeng, LIU Dong, WANG Jiancheng, CHANG Liping. Effect of KOH addition method on electrochemical properties of coal-based active carbon foams[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(23)60372-X

KOH添加方式对煤基活性泡沫炭电化学性能的影响

doi: 10.1016/S1872-5813(23)60372-X
基金项目: 晋中市科技重点研发计划(Y201002)资助
详细信息
    作者简介:

    周慧敏(1998−),女,山西大同人,硕士研究生。E-mail:2024745429@qq.com

    通讯作者:

    E-mail:lpchang@tyut.edu.cn

  • 中图分类号: TQ536

Effect of KOH addition method on electrochemical properties of coal-based active carbon foams

Funds: The project was supported by Jinzhong Key Research and Development Plan of Science and Technology (Y201002)
  • 摘要: 以强黏性炼焦煤为原料,经常压自发泡法制得的煤基泡沫炭(NCF)为碳基底,KOH为活化剂,采用机械混合、水溶液浸渍、乙醇浸渍三种不同的方式制备煤基活性泡沫炭(HPCs),并将其用作双电层电容器的电极材料,研究了KOH添加方式对其微观结构和电化学性能的影响。结果表明,KOH分散度和附着性对煤基活性泡沫炭孔隙结构的生成、晶体结构、表面化学性质以及电化学性能有显著影响。煤基泡沫炭本身具有三维连通泡孔结构,有利于活化剂(KOH)深入材料的泡孔内部并为其提供大量附着位点,增大活化剂与碳基体的接触面积进而发生高效的活化。KOH水溶液的流动性较好,可以使K + 更有效的穿插在NCF的泡孔结构中,在活化过程中作用于缺陷部位,在碳基体内部基质上产生更多的微孔以及介孔结构,有效地放大了活化效果。KOH水溶液浸渍泡沫炭材料制得的ACF-W样品拥有最高的比表面积(3098.35 m2/g)、总孔体积(1.68 cm3/g)、介孔体积比(59.13%),将其用作电极材料表现出优异的比电容(310 F/g)以及循环稳定性。
  • 图  1  原料煤膨胀度和流动度曲线

    Figure  1  Dilatation and fluidity curves of raw coal

    图  2  电极的组装和三电极体系中电化学性能测试示意图

    Figure  2  Schematic diagram of electrode assembly and electrochemical performance test in three-electrode system

    图  3  (a)RC、(b)NCF、(c)RC-W、(d)ACF-M、(e)ACF-W和(f)ACF-E的SEM照片

    Figure  3  SEM images of (a) RC, (b) NCF, (c) RC-W, (d)ACF-M, (e)ACF-W and (f)ACF-E

    图  4  不同样品的N2吸附-脱附等温线(a)和t-plot 法孔径分布(b)

    Figure  4  N2 adsorption/desorption isotherms of different samples (a) and PSD from t-plot method (b) of different samples

    图  5  不同样品的比表面积和比率(a)以及孔隙体积及比值(b)

    Figure  5  Specific surface area distribution and ratio analysis (a) and pore volume distribution and ratio analysis (b) of different samples

    图  6  样品的XRD谱图(a)和ACF-E的分峰拟合(b)

    Figure  6  XRD patterns of samples (a) and the split-peak fitting diagram of ACF-E (b)

    图  7  (a)样品的Raman谱图(b)ACF-E的分峰拟

    Figure  7  (a) Raman patterns of samples (b) The split-peak fitting diagram of ACF-E

    图  8  (a)样品的XPS全谱;(b)ACF-M、ACF-W、ACF-E的C 1s XPS分峰拟合谱图;(c)RC-W的C 1s XPS分峰拟合谱图;(d)ACF-M、ACF-W、ACF-E的O 1s XPS分峰拟合谱图;(e)RC-W的O 1s XPS分峰拟合谱图;(f)FT-IR谱图

    Figure  8  (a) XPS survey spectra of samples; (b) Deconvolution C 1s XPS spectra of ACF-M、ACF-W、ACF-E; (c) Deconvolution C 1s XPS spectra of RC-W; (d) Deconvolution O 1s XPS spectra of ACF-M、ACF-W、ACF-E; (e) Deconvolution O 1s XPS spectra of RC-W; (f) FT-IR spectra

    图  9  三电极体系下HPCs电极的电化学性能(a)10 mV/s扫描速率下的CV曲线;(b)1 A/g电流密度下的GCD曲线

    Figure  9  Electrochemical performances of HPCs as supercapacitor electrode in the three-electrode configuration. (a) CV curves at a scan rate of 10 mV/s; (b) GCD curves at a current density of 1 A/g

    图  10  三电极体系下HPCs电极的电化学性能(a)−(d)在5−100 mV/s扫描速率下的CV曲线;(e)−(h)在0.5−50 A/g电流密度下的GCD曲线

    Figure  10  Electrochemical performances of HPC as supercapacitor electrode in the three-electrode configuration. (a)−(d) CV curves at the scan rates of 5−100 mV/s; (e)−(h) GCD curves at different current densities of 0.5−50 A/g

    图  11  (a)比电容(Cg)与电流密度的关系;(b)HPCs的BET比表面积分布、孔径分布与比电容(Cg)的关系

    Figure  11  (a) Dependence of specific capacitance (Cg) on various current densities; (b) Relationship between BET specific surface area distribution, pore size distribution and specific capacitance (Cg) of HPCs

    图  12  HPCs的Nyquist图

    Figure  12  Nyquist plots of HPCs

    图  13  两电极体系下ACF-W作为超级电容器电极的电化学性能(a)在5−500 mV/s扫描速率下的CV曲线;(b)在0.5−50 A/g电流密度下的GCD曲线;(c)比电容与电流密度的关系;(d)Nyquist图

    Figure  13  Electrochemical performances of ACF-Ws as supercapacitor electrode in the two-electrode configuration. (a) CV curves at the scan rates of 5−500 mV/s; (b) GCD curves at different current densities of 0.5−50 A/g; (c) Dependence of specific capacitance (Cg) on various current densities; (d) Nyquist plots

    图  14  (a)ACF-W//ACF-W的Ragone图;(b)ACF-W//ACF-W在5 A/g的循环稳定性及库伦效率

    Figure  14  (a) Ragone plots of ACF-W//ACF-W; (b) Cycling stability and corresponding coulombic efficiency of ACF-W//ACF-W at 5 A/g

    表  1  原料煤的煤质分析

    Table  1  Proximate and ultimate analyses of coal

    Proximate analysis w/%Ultimate analysis wdaf/%G
    MadAdVdafFCdafCHNO*S
    0.6310.5229.1870.8277.854.481.3615.171.1495
    Note: ad is air-dried basis; d is dry basis; daf is dried and ash-free basis; G is caking index;
    * by difference
    下载: 导出CSV

    表  2  不同样品的孔结构

    Table  2  Pore structure parameters of different samples

    SampleSBET/
    (m2·g−1)
    Smic/
    (m2·g−1)
    vtotal/
    (cm3·g−1)
    vmic/
    (cm3·g−1)
    vmes/
    (cm3·g−1)
    vmes/vtotaldave/
    nm
    Yield/%
    RC2.231.213.14 × 10−34.79 × 10−42.66 × 10−384.765.65
    NCF1.430.991.54 × 10−33.56 × 10−41.18 × 10−376.874.31
    RC-W1739.321419.210.850.610.2428.431.9636.23
    ACF-M3023.461755.841.590.750.8452.562.1148.26
    ACF-W3098.351628.271.680.680.9959.132.1650.50
    ACF-E2850.441921.941.440.810.6343.742.0250.75
    下载: 导出CSV

    表  3  不同样品的孔隙结构特征

    Table  3  Pore structure characteristics of different samples

    SampleSBET(0.5−1 nm)/
    (m2·g−1)
    SBET(1−2 nm)/
    (m2·g−1)
    SBET(2−8 nm)/
    (m2·g−1)
    v(0.5−1 nm)/
    (cm3·g−1)
    v(1−2 nm)/
    (cm3·g−1)
    v(2−8 nm)/
    (cm3·g−1)
    RC-W752.89329.77137.330.210.200.16
    ACF-M900.24600.44412.970.270.360.52
    ACF-W789.09670.78454.460.220.410.59
    ACF-E926.41588.60308.110.260.360.37
    下载: 导出CSV

    表  4  KOH水溶液与KOH乙醇溶液的粘度对比

    Table  4  Viscosity comparison between KOH aqueous solution and KOH ethanol solution

    SampleKOH aqueous solutionKOH ethanol solution
    Viscosity/ (MPa·s)0.531.58
    下载: 导出CSV

    表  5  样品的微晶结构参数

    Table  5  Crystal structure parameters of samples

    SampleAγ2θ0022θ100A002d002/nmLa/nmLc/nmfaN
    RC5036.6925.2143.9211133.750.35312.022.550.68857.21
    NCF3957.8925.1943.8910925.600.35352.232.810.73417.94
    RC-W443.7525.7143.751842.420.34643.581.490.80594.31
    ACF-M174.6925.8843.501045.830.34433.671.560.85694.54
    ACF-W188.3825.3943.031232.290.35073.791.580.86744.51
    ACF-E416.7923.7743.713702.120.37444.391.700.89884.55
    下载: 导出CSV

    表  6  XPS光谱所得样品表面元素相对含量

    Table  6  Related concentration of the chemical element on the surface of samples from XPS spectra

    SampleConcentration of chemical element /(at.%)
    CONS
    RC75.0221.482.740.76
    NCF90.606.482.160.77
    RC-W86.2612.341.110.30
    ACF-M90.438.011.360.20
    ACF-W87.4411.400.960.20
    ACF-E87.6410.861.130.37
    下载: 导出CSV

    表  7  样品的C 1s和O 1s光谱分峰拟合

    Table  7  Contribution of the components in the area of the X-ray photoelectron C 1s and O 1s spectra

    SampleThe relative content of different types of
    oxygen on the surface
    /%
    The relative content of different types of
    carbon on the surface
    /%
    C=OIOC−Osp2−Csp3−CC−OC=O
    RC32.792.7564.4661.9212.303.732.44
    NCF39.103.4357.4884.669.073.612.66
    RC-W68.032.4129.5657.5926.617.578.23
    ACF-M80.9919.0160.4124.037.028.53
    ACF-W74.8225.1861.2722.926.878.93
    ACF-E77.3422.6661.8522.546.918.70
    下载: 导出CSV

    表  8  三电极体系中不同炭材料比容量(Cg)对比

    Table  8  Specific capacitance (Cg) comparison of different carbon materials under the three-electrode configuration

    PrecursorSBET/
    (m2·g−1)
    Current density/
    (A·g−1)
    Cg/
    (F·g−1)
    ElectrolyteRef.
    Bituminous coal3098.40.53106 mol/L KOHThis work
    Agricultural wastes952.01.01606 mol/L KOH[38]
    Pitaya peel1872.01.02556 mol/L KOH[51]
    Lignite2728.01.02466 mol/L KOH[52]
    Bituminous coal2784.00.52936 mol/L KOH[17]
    Coal877.01.02606 mol/L KOH[53]
    Zhundong coal1872.01.02116 mol/L KOH[35]
    Taixi anthracite984.61.01996 mol/L KOH[22]
    Anthracite coal2455.00.051046 mol/L KOH[54]
    Qitaihe bituminous2985.91.01946 mol/L KOH[55]
    下载: 导出CSV
  • [1] ZHONG C, DENG Y D, HU W B, QIAO J L, ZHANG L, ZHANG J J. A review of electrolyte materials and compositions for electrochemical supercapacitors[J]. Chem Soc Rev,2015,44(21):7484−7539. doi: 10.1039/C5CS00303B
    [2] LU X H, YU M H, WANG G M, TONG Y X, LI Y. Flexible solid-state supercapacitors: design, fabrication and applications[J]. Energ Environ Sci,2014,7(7):2160−2181. doi: 10.1039/c4ee00960f
    [3] ABIOYE A M, ANI F N. Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: a review[J]. Renew Sust Energ Rev,2015,52:1282−1293. doi: 10.1016/j.rser.2015.07.129
    [4] ZHANG Q, HAN K H, LI S J, LI M, LI J X, REN K. Synthesis of garlic skin-derived 3D hierarchical porous carbon for high-performance supercapacitors[J]. Nanoscale,2018,10(5):2427−2437. doi: 10.1039/C7NR07158B
    [5] LI X Y, LIU K T, LIU Z Z, WANG Z B, LI B, ZHANG D L. Hierarchical porous carbon from hazardous waste oily sludge for all-solid-state flexible supercapacitor[J]. Electrochim Acta,2017,240:43−52. doi: 10.1016/j.electacta.2017.04.061
    [6] SIMON P, GOGOTSI Y, DUNN B. Where do batteries and supercapacitors begin?[J]. Science,2014,343(6176):1210−1211. doi: 10.1126/science.1249625
    [7] YAN J, WANG Q, WEI T, FAN Z J. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities[J]. Adv Energy Mater,2014,4(4):1300816. doi: 10.1002/aenm.201300816
    [8] BURKE A. Ultracapacitors: why, how, and where is the technology[J]. J Power Sources,2000,91(1):37−50. doi: 10.1016/S0378-7753(00)00485-7
    [9] LONG C L, WEI T, YAN J, JIANG L L, FAN Z J. Supercapacitors based on graphere-supported iron nanosheets as negative electrode materials[J]. ACS Nano,2013,7(12):11325−11332. doi: 10.1021/nn405192s
    [10] CHEN L F, LU Y, YU L, LOU X W. Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors[J]. Energ Environ Sci,2017,10(8):1777−1783. doi: 10.1039/C7EE00488E
    [11] XIAO Z Y, MEI Y J, YUAN S, MEI H, XU B, BAO Y X, FAN L L, KANG W P, DAI F N, WANG R, WANG L, HU S Q, SUN D F, ZHOU H C. Controlled Hydrolysis of Metal-Organic Frameworks: Hierarchical Ni/Co-Layered Double Hydroxide Microspheres for High-Performance Supercapacitors[J]. ACS Nano,2019,13(6):7024−7030. doi: 10.1021/acsnano.9b02106
    [12] 侯彩霞, 孔碧华, 樊丽华, 郭秉霖, 许立军. 超级电容器用煤基活性炭研究[J]. 洁净煤技术,2017,23(5):56−61. doi: 10.13226/j.issn.1006-6772.2017.05.011

    HOU Cai-xia, KONG Bi-hua, FAN Li-hua, GUO Bing-lin, XU Li-jun. Study on coal-based activated carbon for supercapacitor[J]. Clean Coal Technol,2017,23(5):56−61. doi: 10.13226/j.issn.1006-6772.2017.05.011
    [13] YANG H, KANNAPPAN S, PANDIAN A S, JANG J H, LEE Y S, LU W. Graphene supercapacitor with both high power and energy density[J]. Nanotechnology,2017,28(44):445401. doi: 10.1088/1361-6528/aa8948
    [14] ZHAI Y P, DOU Y Q, ZHAO D Y, FULVIO P F, MAYES R T, DAI S. Carbon materials for chemical capacitive energy storage[J]. Adv Mater,2011,23(42):4828−4850. doi: 10.1002/adma.201100984
    [15] 陈航. 煤基活性泡沫炭制备及用于超级电容器性能研究[D]. 北京: 中国矿业大学, 2016.

    CHEN Hang. Study on preparation of coal-based active carbon foam and performance of supercapacitor[D]. Beijing: China University of Mining and Technology, 2016.
    [16] CHONG L W, WONG Y W, RAJKUMAR R K, LSA D. An adaptive learning control strategy for standalone PV system with battery-supercapacitor hybrid energy storage system[J]. J Power Sources,2018,394:35−49. doi: 10.1016/j.jpowsour.2018.05.041
    [17] 刘宇昊. 煤基活性炭的制备及其电化学性能研究[D]. 河南: 河南理工大学, 2020.

    LIU Yu-hao. Study on preparation and electrochemical properties of coal-based activated carbon[D]. Henan: Henan Polytechnic University, 2020.
    [18] DONG D, ZHANG Y S, XIAO Y, WANG T, WANG J W, REMERO C E, PAN W P. High performance aqueous supercapacitor based on nitrogen-doped coal-based activated carbon electrode materials[J]. J Colloid Interf Sci,2020,580:77−87. doi: 10.1016/j.jcis.2020.07.018
    [19] SHI M, XIN Y F, CHEN X X, ZOU K Y, JING W T, SUN J J, CHEN Y Z, LIU Y N. Coal-derived porous activated carbon with ultrahigh specific surface area and excellent electrochemical performance for supercapacitors[J]. J Alloy Compd,2021,859:157856. doi: 10.1016/j.jallcom.2020.157856
    [20] YUE X M, AN Z Y, YE M, LIU Z J, XIAO C C, HUANG Y, HAN Y J, ZHANG S Q, ZHU J S. Preparation of Porous Activated Carbons for High Performance Supercapacitors from Taixi Anthracite by Multi-Stage Activation[J]. Molecules,2019,24(19):3588. doi: 10.3390/molecules24193588
    [21] JIANG Y T, JIANG Z M, SHI M J, LIU Z, LIANG S C, FENG J, SHENG R, ZHANG S, WEI T, FAN Z J. Enabling high surface and space utilization of activated carbon for supercapacitors by homogeneous activation[J]. Carbon,2021,182:559−563. doi: 10.1016/j.carbon.2021.06.039
    [22] 王勋, 曾丹林, 陈诗渊, 沈康文, 裴阳, 王光辉. 生物质活性炭的研究进展[J]. 化工新型材料,2018,46(6):27−30.

    WANG Xun, ZENG Dan-lin, CHEN Shi-yuan, SHEN Kang-wen, PEI Yang, WANG Guang-hui. Research progress of biomass activated carbon[J]. New Chem Mater,2018,46(6):27−30.
    [23] 高奇, 项洪中, 倪良萌, 冯子兴, 杨建飞, 何玉玉, 侯艳梅, 刘志佳. 超级电容器用生物质基活性炭电极材料研究进展[J]. 化工新型材料,2022,50(3):12−17. doi: 10.19817/j.cnki.issn1006-3536.2022.03.003

    GAO Qi, XIANG Hong-zhong, NI Liang-meng, FENG Zi-xing, YANG Jian-fei, HE Yu-yu, HOU Yan-mei, LIU Zhi-jia. Research progress of biomass based activated carbon electrode materials for supercapacitors[J]. New Chem Mater,2022,50(3):12−17. doi: 10.19817/j.cnki.issn1006-3536.2022.03.003
    [24] 吴雅俊. 物理化学活化法制备煤基活性炭及其电化学性能研究[D]. 北京: 中国矿业大学, 2018.

    WU Ya-jun. Preparation of coal-based activated carbon by physicochemical activation and its electrochemical properties[D]. Beijing: China University of Mining and Technology, 2018.
    [25] 刘俊科. 无灰煤基活性炭孔结构调控及其电化学性能[D]. 河北: 华北理工大学, 2020.

    LIU Jun-ke. Pore structure regulation and electrochemical performance of ash-free coal-based activated carbon[D]. Hebei: North China University of Science and Technology, 2020.
    [26] ELMOUWAHIDI A, BAILÓN-GARCÍA E, PÉREZ-CADENAS A, MALDONADO-HÓDAR F J, CARRASCO-MARÍN F. Activated Carbons from KOH and H3PO4 activation of Olive Residues and Its Application as Supercapacitor Electrodes[J]. Electrochim Acta,2017,229:219−228. doi: 10.1016/j.electacta.2017.01.152
    [27] MORENO-CASTILLA C, CARRASCO-MARÍN F, LÓPEZ-RAMÓN M V, ALVAREZ-MERINO M A. Chemical and Physical Activation of Olive-mill Waste to Produce Activated Carbons[J]. Carbon,2001,39(9):1415−1420. doi: 10.1016/S0008-6223(00)00268-2
    [28] UBAGO-PÉREZ R, CARRASCO-MARÍN F, FAIRÉN-JIMÉNEZ D, MORENO-CASTILLA C. Granular and Monolithic Activated Carbons from KOH-activation of Olive Stones[J]. Micropor Mesopor Mat, 2006, 92(1−3): 64−70.
    [29] 王美君, 杨暖暖, 任秀蓉, 马清亮, 申岩峰, 孔娇, 常丽萍. 基于常压自发泡制备煤基泡沫炭的方法: 中国, CN111547703A[P]. 2020−08−18.

    WANG Mei-jun, YANG Nuan-nuan, REN Xiu-rong, MA Qing-liang, SHEN Yan-feng, KONG Jiao, CHANG Li-ping. Preparation of coal-based foam carbon based on atmospheric self-foaming: China, CN111547703A[P]. 2020−08−18.
    [30] LU H Y, LI Q W, GUO J H, SONG A X, GONG C H, ZHANG J W, ZHANG J W. Hierarchically porous carbon with high-speed ion transport channels for high performance supercapacitors[J]. Appl Surf Sci,2018,427:992−999. doi: 10.1016/j.apsusc.2017.09.065
    [31] 王海洋, 朱洪喆, 王守凯, 张功多, 申凯华. 煤沥青基多孔炭材料的研究进展[J]. 功能材料,2019,50(8):8032−8039. doi: 10.3969/j.issn.1001-9731.2019.08.006

    WANG Hai-yang, ZHU Hong-zhe, WANG Shou-kai, ZHANG Gong-duo, SHEN Kai-hua. Research progress of coal bitumen based porous carbon materials[J]. J Funct Mater,2019,50(8):8032−8039. doi: 10.3969/j.issn.1001-9731.2019.08.006
    [32] YANG N N, JI L, FU H C, SHEN Y F, WANG M J, LIU J H, CHANG L P, LV Y K. Hierarchical porous carbon derived from coal-based carbon foam for high-performance supercapacitors[J]. Chinese Chem Lett,2022,33(8):3961−3967. doi: 10.1016/j.cclet.2022.03.037
    [33] 刘冬冬. 不定型煤基活性炭结构演变机制及调控方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    LIU Dong-dong. Study on structure evolution mechanism and regulation method of amorphous coal-based activated carbon[D]. Harbin: Harbin Institute of Technology, 2017.
    [34] SONIBARE O O, HAEGER T, FOLEY S F. Structural characterization of nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy[J]. Energy,2010,35(12):5347−5353. doi: 10.1016/j.energy.2010.07.025
    [35] WANG L J, SUN F, GAO J H, PI X X, TONG P, QIE Z P, ZHAO G B, QIN Y K. A novel melt infiltration method promoting porosity development of low-rank coal derived activated carbon as supercapacitor electrode materials[J]. J Taiwan Inst Chem E,2018,91:588−596. doi: 10.1016/j.jtice.2018.06.014
    [36] ZHANG Y D, KANG X J, TAN J L, FROST R L. Influence of Calcination and Acidification on Structural Characterization of Anyang Anthracites[J]. Energ Fuel,2013,27(11):7191−7197. doi: 10.1021/ef401658p
    [37] SEKINE Y, ISHIKAWA K, KIKUCHI E, MATSUKATA M, AKIMOTO A. Reactivity and structural change of coal char during steam gasification[J]. Fuel,2006,85(2):122−126. doi: 10.1016/j.fuel.2005.05.025
    [38] WEI H G, WANG H, LI A, LI H Q, CUI D P, DONG M Y, LIN J, FAN J C, ZHANG J X, HOU H, SHI Y P, ZHOU D F, GUO Z H. Advanced porous hierarchical activated carbon derived from agricultural wastes toward high performance supercapacitors[J]. J Alloy Compd,2020,820:153111. doi: 10.1016/j.jallcom.2019.153111
    [39] RAYMUNDO-PIÑERO E, LEROUX F, BÉGUIN F. A High-Performance Carbon for Supercapacitors Obtained by Carbonization of a Seaweed Biopolymer[J]. Adv mater,2006,18(14):1877−1882. doi: 10.1002/adma.200501905
    [40] CAI X Y, REN Q Y, SUN W, YANG F Q. High-performance activated carbons for supercapacitor: Effects of porous structures, heteroatom doping, and morphology[J]. Int J Energ Res,2021,45(15):21414−21434. doi: 10.1002/er.7191
    [41] LI P, FENG C N, LI H P, ZHANG X L, ZHENG X C. Facile fabrication of carbon materials with hierarchical porous structure for high-performance supercapacitors[J]. J Alloy Compd,2021,851:156922. doi: 10.1016/j.jallcom.2020.156922
    [42] BEDIN K C, MARTINS A C, CAZETTA A L, PEZOTI O, ALMEIDA V C. KOH-activated carbon prepared from sucrose spherical carbon: Adsorption equilibrium, kinetic and thermodynamic studies for Methylene Blue removal[J]. Chem Eng J,2016,286:476−484. doi: 10.1016/j.cej.2015.10.099
    [43] FANG B, WEI Y Z, KUMAGAI M. Modified carbon materials for high-rate EDLCs application[J]. J Power Sources,2006,155(2):487−491. doi: 10.1016/j.jpowsour.2005.04.012
    [44] YIN X, ZHANG J Q, YANG L, XIAO W D, ZHOU L, TANG Y J, YANG W. Carbon electrodes with ionophobic characteristics in organic electrolyte for high-performance electric double-layer capacitors[J]. Sci China Mater,2022,65(2):383−390. doi: 10.1007/s40843-021-1751-x
    [45] 王心如, 刘嘉怡, 丁晗, 杜锦涛, 赵会玲. 超级电容器碳材料的制备及性能测试[J]. 广州化工,2022,50(13):76−80. doi: 10.3969/j.issn.1001-9677.2022.13.023

    WANG Xin-ru, LIU Jia-yi, DING Han, DU Jin-tao, ZHAO Hui-ling. Preparation and performance test of carbon materials for supercapacitors[J]. Guangzhou Chem Ind,2022,50(13):76−80. doi: 10.3969/j.issn.1001-9677.2022.13.023
    [46] JIANG Y T, JIANG Z M, SHI M J, LIU Z, LIANG S C, FENG J, SHENG R, ZHANG S, WEI T, FAN Z J. Enabling high surface and space utilization of activated carbon for supercapacitors by homogeneous activation[J]. Carbon,2021,182:559−563. doi: 10.1016/j.carbon.2021.06.039
    [47] 苏婷, 兰新哲, 宋永辉, 高雯雯, 景兴鹏. KOH添加方式对煤基电极材料结构及性能的影响[J]. 煤炭转化,2020,43(3):73−80. doi: 10.19726/j.cnki.ebcc.202003011

    SU Ting, LAN Xin-zhe, SONG Yong-hui, GAO Wen-wen, JING Xing-peng. Effect of KOH addition method on structure and properties of coal-based electrode materials[J]. Coal Convers,2020,43(3):73−80. doi: 10.19726/j.cnki.ebcc.202003011
    [48] EHRBURGER P, ADDOUN A, ADDOUN F, DONNET J B. Carbonization of coals in the presence of alkaline hydroxides and carbonates: Formation of activated carbons[J]. Fuel,1986,65(10):1447−1449. doi: 10.1016/0016-2361(86)90121-3
    [49] LILLO-RÓDENAS M A, CAZORLA-AMORÓS D, LINARES-SOLANO A. Understanding chemical reactions between carbons and NaOH and KOH: an insight into the chemical activation mechanism[J]. Carbon,2003,41(2):267−275. doi: 10.1016/S0008-6223(02)00279-8
    [50] SEVILLA M, DÍEZ N, FUERTES A B. More sustainable chemical activation strategies for the production of porous carbons[J]. ChemSusChem,2021,14(1):94−117. doi: 10.1002/cssc.202001838
    [51] LU W J, CAO X H, HAO L N, ZHOU Y P, WANG Y W. Activated carbon derived from pitaya peel for supercapacitor applications with high capacitance performance[J]. Mater Lett,2020,264:127339. doi: 10.1016/j.matlet.2020.127339
    [52] 续士勇, 岳劲松, 程园, 程嗣丹, 丁宁, 李梅. 褐煤基活性炭的制备及其电化学性能研究[J]. 煤炭转化,2023,46(1):62−71.

    XU Shi-yong, YUE Jin-song, CHENG Yuan, CHENG Si-dan, DING Ning, LI Mei. Study on preparation and electrochemical performance of lignite based activated carbon[J]. Coal Convers,2023,46(1):62−71.
    [53] HE Y T, WANG L X, JIA D Z. Coal/PAN interconnected carbon nanofibers with excellent energy storage performance and electrical conductivity[J]. Electrochim Acta,2016,194:239−245. doi: 10.1016/j.electacta.2016.01.191
    [54] 马卫平. 面向超级电容的煤基多孔炭微观结构调控及电化学性能研究[D]. 北京: 中国矿业大学, 2018.

    MA Wei-ping. Study on microstructure regulation and electrochemical properties of coal-based multi-pore carbon for Supercapacitor[D]. Beijing: China University of Mining and Technology, 2018.
    [55] 苏坤行. 煤基负极材料的调控及其构筑超级电容器储能性能研究[D]. 吉林: 东北电力大学, 2022.

    SU Kun-xing. Study on the regulation of coal-based anode Materials and its Energy Storage Performance in Constructing Supercapacitors[D]. Jilin: Northeast Electric Power University, 2022.
    [56] ZHAN Y B, ZHOU H M, GUO F Q, TIAN B L, DU S L, DONG Y C, QIAN L. Preparation of highly porous activated carbons from peanut shells as low-cost electrode materials for supercapacitors[J]. J Energy Storage,2021,34:102180. doi: 10.1016/j.est.2020.102180
    [57] PENG H R, YAO B, WEI X J, LIU T Y, KOU T Y, XIAO P, ZHANG Y H, LI Y. Pore and Heteroatom Engineered Carbon Foams for Supercapacitors[J]. Adv Energy Mater,2019,9(19):1803665. doi: 10.1002/aenm.201803665
    [58] YAGLIKCI S, GOKCE Y, YAGMUR E, BANFORD A, AKTAS Z. Does high sulphur coal have the potential to produce high performance-low cost supercapacitors?[J]. Surf Interfaces,2021,22:100899. doi: 10.1016/j.surfin.2020.100899
    [59] LI Z P, CHENG A, ZHONG W H, MA H, SI M Z, YE X J, LI Z H, ZHANG H Y. Facile fabrication of carbon nanosheets with hierarchically porous structure for high-performance supercapacitor[J]. Micropor Mesopor Mat,2020,306:110440. doi: 10.1016/j.micromeso.2020.110440
    [60] LIU H G, LI T H, SHI Y C, WANG X L, LV J, ZHANG W J. Effect of different secondary quinoline insoluble content on the cellular structure of carbon foam derived from coal tar pitch[J]. J Anal Appl Pyrol,2014,108:310−315. doi: 10.1016/j.jaap.2014.03.002
    [61] ALIFANOV O M, BUDNIK S A, NENAROKOMOV A V, SALOSINA M O. Design of thermal protection based on open cell carbon foam structure optimization[J]. Appl Therm Eng,2020,173:115252. doi: 10.1016/j.applthermaleng.2020.115252
    [62] 岳晓明, 吴雅俊, 张双全, 朱俊生, 袁翠翠, 戴斯星. 物理化学两步活化法制备煤基活性炭电极材料[J]. 中国矿业大学学报,2017,46(4):888−894. doi: 10.13247/j.cnki.jcumt.000711

    YUE Xiao-ming, WU Ya-jun, ZHANG Shuang-quan, ZHU Jun-sheng, YUAN Cui-cui, DAI Si-xing. Preparation of coal-based activated carbon electrode materials by physicochemical two-step activation method[J]. Int J Mining Sci Technol,2017,46(4):888−894. doi: 10.13247/j.cnki.jcumt.000711
    [63] YAKABOYLU G A, JIANG C L, YUMAK T, ZONDOL J W, WANG J X, SABOLSKY E M. Engineered hierarchical porous carbons for supercapacitor applications through chemical pretreatment and activation of biomass precursors[J]. Renew Energ,2021,163:276−287. doi: 10.1016/j.renene.2020.08.092
    [64] WAHID M, PARTE G, PHASE D, OGALE S. Yogurt: a novel precursor for heavily nitrogen doped supercapacitor carbon[J]. J Mater Chem A,2015,3(3):1208−1215. doi: 10.1039/C4TA06068G
    [65] REN Y M, ZHANG J M, XU Q, CHEN Z M, YANG D Y, WANG B, JIANG Z. Biomass-derived three-dimensional porous N-doped carbonaceous aerogel for efficient supercapacitor electrodes[J]. RSC Adv,2014,4(45):23412−23419. doi: 10.1039/c4ra02109f
    [66] SEO D H, YICK S, SU D W, WANG G X, HAN Z J, OSTRIKOV K. Sustainable process for all-carbon electrodes: Horticultural doping of natural-resource-derived nano-carbons for high-performance supercapacitors[J]. Carbon,2015,91:386−394. doi: 10.1016/j.carbon.2015.05.018
  • 加载中
图(14) / 表(8)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  64
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-04
  • 修回日期:  2023-04-21
  • 录用日期:  2023-05-05
  • 网络出版日期:  2023-06-14

目录

    /

    返回文章
    返回