留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ti掺杂SBA-15负载Ni基催化剂用于木质素衍生物定向加氢脱氧转化

张鸿科 汪炜琛 向治宇 周方圆 朱万斌 王洪亮

张鸿科, 汪炜琛, 向治宇, 周方圆, 朱万斌, 王洪亮. Ti掺杂SBA-15负载Ni基催化剂用于木质素衍生物定向加氢脱氧转化[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(23)60387-1
引用本文: 张鸿科, 汪炜琛, 向治宇, 周方圆, 朱万斌, 王洪亮. Ti掺杂SBA-15负载Ni基催化剂用于木质素衍生物定向加氢脱氧转化[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(23)60387-1
ZHANG Hong-ke, WANG Wei-chen, XIANG Zhi-yu, ZHOU Fang-yuan, ZHU Wan-bin, WANG Hong-liang. Ni supported on Ti-doped SBA-15 catalyst for the selective hydrodeoxygenation conversion of lignin derivatives[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(23)60387-1
Citation: ZHANG Hong-ke, WANG Wei-chen, XIANG Zhi-yu, ZHOU Fang-yuan, ZHU Wan-bin, WANG Hong-liang. Ni supported on Ti-doped SBA-15 catalyst for the selective hydrodeoxygenation conversion of lignin derivatives[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(23)60387-1

Ti掺杂SBA-15负载Ni基催化剂用于木质素衍生物定向加氢脱氧转化

doi: 10.1016/S1872-5813(23)60387-1
基金项目: 该工作得到了国家重点研发计划(2018YFB1501500)、中国农业大学基金2115人才培养计划(1011-00109018)、北京市现代农业产业技术体系创新团队BAIC08-2022的支持
详细信息
    通讯作者:

    Tel: 18518958285,E-mail: hlwang@cau.edu.cn

  • 中图分类号: TK6

Ni supported on Ti-doped SBA-15 catalyst for the selective hydrodeoxygenation conversion of lignin derivatives

Funds: This work was supported by the National Key Research and Development Program (2018YFB1501500), the China Agricultural University Foundation 2115 Talent Training Program (1011-00109018), and the Beijing Modern Agricultural Industry Technology System Innovation Team BAIC08-2022.
  • 摘要: 开发廉价高效催化剂用于木质素衍生物的选择性加氢脱氧制备先进燃料和精细化学品对木质素增值转化具有重要意义。本研究通过在SBA-15分子筛骨架内掺杂Ti物种并负载Ni纳米颗粒合成了“金属-酸”双功能催化剂(Ni/Ti-SBA-15)。Ti的掺杂不仅提高了催化剂酸性位点的数量,还促进了Ni纳米颗粒在载体上的高度分散。在绿色、温和条件下实现了香兰素到2-甲氧基-4-甲基苯酚(MMP)高效转化,目标产物选择性高达96.46%。此外,Ni/Ti-SBA-15催化剂价格低廉,制备工艺简单,这项工作为制备廉价高效催化剂提供了新的思路,有利于实现生物质衍生物的绿色、低成本升级转化。
  • 图  1  操作流程简图

    Figure  1  Operation flow sketch

    图  2  (a) 载体和催化剂的N2吸附-脱附曲线;(b) 载体和催化剂的孔径分布;(c) 载体和催化剂的XRD谱图;(d) 催化剂的NH3-TPD曲线

    Figure  2  (a) N2 adsorption-desorption curves of the carrier and catalyst; (b) pore size distribution of the carrier and catalyst; (c) XRD spectra of the carrier and catalyst; (d) NH3-TPD curves of the catalyst

    图  3  催化剂Ni/Ti7-SBA-15的TEM图像

    Figure  3  TEM images of catalyst Ni/Ti7-SBA-15

    图  4  Ni/Ti7-SBA-15催化剂在Ni 2p、O 1s和Ti 2p的 XPS分析谱图

    Figure  4  XPS spectra of Ni/Ti7-SBA-15 catalyst in the Ni 2p、O 1s and Ti 2p region

    图  5  (a) 载体Ti7-SBA-15和Ti掺杂量不同的系列催化剂的催化活性;(b) 催化剂Ni/Ti7-SBA-15在不同温度下的催化活性;(c) 催化剂Ni/Ti7-SBA-15在不同氢压下的催化活性;(d) 催化剂Ni/Ti7-SBA-15催化反应过程的时间曲线

    Figure  5  (a) Catalytic activity of the carrier Ti7-SBA-15 and the series catalysts with different Ti doping; (b) Catalytic activity of catalyst Ni/Ti7-SBA-15 at different temperatures; (c) Catalytic activity of catalyst Ni/Ti7-SBA-15 at different hydrogen pressures; (d) Time profile of the catalytic reaction process of catalyst Ni/Ti7-SBA-15

    图  6  催化剂Ni/Ti-SBA-15催化香兰素加氢脱氧生成MMP的作用机理

    Figure  6  Mechanism of catalyst Ni/Ti-SBA-15 catalyzed hydrodeoxygenation of vanillin to generate MMP

    表  1  BET和ICP-OES测量结果

    Table  1  BET and ICP-OES measurement results

    SamplesSBET (m2·g−1)Vt (cm3·g−1)Pore size (nm)Ni (wt%)Ti (wt%)
    SBA-15970.40.492.46--
    Ti7-SBA-15828.10.462.61--
    Ni/SBA-15521.00.232.5710.0-
    Ni/Ti7-SBA-15425.00.263.379.97.46
    下载: 导出CSV

    表  2  已报道的香兰素加氢脱氧制MMP的催化剂和Ni/Ti7-SBA-15的催化效果

    Table  2  Catalytic effects of reported catalysts for the hydrodeoxygenation of vanillin to MMP and Ni/Ti7-SBA-15

    CatalystReaction conditionsConv.(%)Sel.(%)Ref.
    Pd/ZrO2(x)Ethanol、Polymethylhydrosiloxane、25 ℃、1 h>99>99[5]
    Pd/Ru@GOMethanol、1 MPa H2、25 ℃、12 h>99>99[6]
    Au/Co3O4 NRs-OVs2-Propanol、0.1 MPa N2、240 ℃、3 h>99>99[7]
    Co@NC-700H2O、Formic acid、180 ℃、4 h95.7>99[9]
    Cu-Ga/HNZYMethanol、1 MPa H2、160 ℃、2 h>9999[10]
    Ni/ZrPIsopropanol、0.5 MPa H2、220 ℃、0.5 h9585[11]
    HD-Ni/N-CMSH2O、2 MPa H2、130 ℃、10 h>99>99[12]
    Ni/Nb2O5H2O、1 MPa H2、180 ℃、1 h9679[13]
    Ni0.5Zn1.5Al1-MMOH2O、1 MPa H2、130 ℃、2 h9956[14]
    Ni/Ti7-SBA-15H2O、1 MPa H2、140 ℃、2 h9996-
    下载: 导出CSV

    表  3  Ni/Ti-SBA-15对多种木质素衍生物的加氢脱氧催化效果

    Table  3  HDO of various substrates catalyzed by Ni/Ti-SBA-15

    EntrySubstrateProductConv. (%)Sel. (%)
    110096.46
    2100>99
    3100>99
    4100>99
    反应条件:50 mg催化剂,1 mmol 底物,20 mL H2O,140 ℃,1 MPa H2,2 hReaction condition: 50 mg catalyst, 1 mmol substrate, 20 mL H2O, 140 ℃, 1 MPa H2, 2 h.
    下载: 导出CSV
  • [1] WANG H L, PU Y Q, RAGAUSKAS A, et al. From lignin to valuable products–strategies, challenges, and prospects[J]. Bioresource Technol,2019,271:449−461. doi: 10.1016/j.biortech.2018.09.072
    [2] WANG H L, YANG B, ZHANG Q, et al. Catalytic routes for the conversion of lignocellulosic biomass to aviation fuel range hydrocarbons[J]. Renew Sust Energ Rev,2020,120:109612. doi: 10.1016/j.rser.2019.109612
    [3] QIU Z G, HE X X, LI Z Q, et al. CoZn/N-Doped porous carbon derived from bimetallic zeolite imidazolate framework/g-C3N4 for efficient hydrodeoxygenation of vanillin[J]. Catal Sci Technol,2022,12(16):5178−5188. doi: 10.1039/D2CY00642A
    [4] ZHANG L K, SHANG N Z, GAO S T, et al. Atomically Dispersed Co Catalyst for Efficient Hydrodeoxygenation of Lignin-Derived Species and Hydrogenation of Nitroaromatics[J]. ACS Catal,2020,10(15):8672−8682. doi: 10.1021/acscatal.0c00239
    [5] JIANG J Y, DING W T, ZHANG W, et al. Defect-rich ZrO2 anchored Pd nanoparticles for selective hydrodeoxygenation of bio-models at room temperature[J]. Fuel,2022,318:123529. doi: 10.1016/j.fuel.2022.123529
    [6] ARORA S, GUPTA N, SINGH V. Improved Pd/Ru metal supported graphene oxide nano-catalysts for hydrodeoxygenation (HDO) of vanillyl alcohol, vanillin and lignin[J]. Green Chem,2020,22(6):2018−2027. doi: 10.1039/D0GC00052C
    [7] LIAO Q L, SHI M, ZHANG Q X, et al. Gold Catalyst Anchored to Pre-Reduced Co3O4 Nanorods for the Hydrodeoxygenation of Vanillin Using Alcohols as Hydrogen Donors[J]. ACS Appl Mater Inter,2022,14(3):3939−3948. doi: 10.1021/acsami.1c18197
    [8] 李秉硕, 冯薜萱, 吴开页, 等. Ni-Cu-Ru/HZSM-5催化木质素生物油加氢脱氧制芳香烃的研究[J]. 燃料化学学报(中英文),2023,51(3):358−364 + 366 + 365.

    LI Bing-shuo, FENG Xue-xuan, WU Kai-ye, et al. Hydrodeoxygenation of lignin derived bio-oil into aromatic hydrocarbons over Ni-Cu-Ru/HZSM-5 catalyst[J]. J Fuel Chem Technol,2023,51(3):358−364 + 366 + 365.
    [9] YANG H H, NIE R F, XIA W, et al. Co embedded within biomass-derived mesoporous N-doped carbon as an acid-resistant and chemoselective catalyst for transfer hydrodeoxygenation of biomass with formic acid[J]. Green Chem,2017,19(23):5714−5722. doi: 10.1039/C7GC02648J
    [10] VERMA D, INSYANI R, CAHYADI H S, et al. Ga-doped Cu/H-nanozeolite-Y catalyst for selective hydrogenation and hydrodeoxygenation of lignin-derived chemicals[J]. Green Chem,2018,20(14):3253−3270. doi: 10.1039/C8GC00629F
    [11] GAO J, CAO Y, LUO G, et al. High-efficiency catalytic hydrodeoxygenation of lignin-derived vanillin with nickel-supported metal phosphate catalysts[J]. Chem Eng J,2022,448:137723. doi: 10.1016/j.cej.2022.137723
    [12] FAN R Y, HU Z, CHEN C, et al. Highly dispersed nickel anchored on a N-doped carbon molecular sieve derived from metal-organic frameworks for efficient hydrodeoxygenation in the aqueous phase[J]. Chem Commun,2020,56(49):6696−6699. doi: 10.1039/D0CC02620D
    [13] ZHANG Z, XU H, LI H. Insights into the catalytic performance of Ni/Nb2O5 catalysts for vanillin hydrodeoxygenation in aqueous phase: The role of Nb2O5 crystal structures[J]. Fuel,2022,324(B):124400.
    [14] YUE X K, ZHANG L H, SUN L X, et al. Highly efficient hydrodeoxygenation of lignin-derivatives over Ni-based catalyst[J]. Appl Catal B-Environ,2021,293:120243. doi: 10.1016/j.apcatb.2021.120243
    [15] KANG Y, RAO X R, YUAN P, et al. Al-functionalized mesoporous SBA-15 with enhanced acidity for hydroisomerization of n-octane[J]. Fuel Process Technol,2021,215:106765. doi: 10.1016/j.fuproc.2021.106765
    [16] BERUBE F, NOHAIR B, KLEITZ F, et al. Controlled Postgrafting of Titanium Chelates for Improved Synthesis of Ti-SBA-15 Epoxidation Catalysts[J]. Chem Mater,2010,22(6):1988−2000. doi: 10.1021/cm9030667
    [17] WEN M C, SONG S N, ZHAO W N, et al. Atomically dispersed Pd sites on Ti-SBA-15 for efficient catalytic combustion of typical gaseous VOCs[J]. Environ SCI-Nano,2021,8(12):3735−3745. doi: 10.1039/D1EN00744K
    [18] WANG X C, WANG Z Q, ZHOU L L, et al. Efficient hydrodeoxygenation of guaiacol to phenol over Ru/Ti-SiO2 catalysts: the significance of defect-rich TiOx species[J]. Green Chem,2022,24(15):5822−5834. doi: 10.1039/D2GC01714H
    [19] DEVI P, DAS U, DALAI A K. Production of glycerol carbonate using a novel Ti-SBA-15 catalyst[J]. Chem Eng J,2018,346:477−488. doi: 10.1016/j.cej.2018.04.030
    [20] LEDESMA B C, ANUNZIATA O A, BELTRAMONE A R. HDN of indole over Ir-modified Ti-SBA-15[J]. Appl Catal B-Environ,2016,192:220−233. doi: 10.1016/j.apcatb.2016.03.066
    [21] WANG W C, SHENG T, CHEN S S, et al. Defect engineering of Metal-Organic Framework for highly efficient hydrodeoxygenation of lignin derivates in water[J]. Chem Eng J,2023,453(2):139711.
    [22] SULLIVAN M M, BHAN A. Acetone Hydrodeoxygenation over Bifunctional Metallic-Acidic Molybdenum Carbide Catalysts[J]. ACS Catal,2016,6(2):1145−1152. doi: 10.1021/acscatal.5b02656
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  3
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-12
  • 修回日期:  2023-08-28
  • 录用日期:  2023-09-13
  • 网络出版日期:  2023-11-10

目录

    /

    返回文章
    返回