Ni supported on Ti-doped SBA-15 catalyst for the selective hydrodeoxygenation conversion of lignin derivatives
-
摘要: 开发廉价高效催化剂用于木质素衍生物的选择性加氢脱氧制备先进燃料和精细化学品对木质素增值转化具有重要意义。本研究通过在SBA-15分子筛骨架内掺杂Ti物种并负载Ni纳米颗粒合成了“金属-酸”双功能催化剂(Ni/Ti-SBA-15)。Ti的掺杂不仅提高了催化剂酸性位点的数量,还促进了Ni纳米颗粒在载体上的高度分散。在绿色、温和条件下实现了香兰素到2-甲氧基-4-甲基苯酚(MMP)高效转化,目标产物选择性高达96.46%。此外,Ni/Ti-SBA-15催化剂价格低廉,制备工艺简单,这项工作为制备廉价高效催化剂提供了新的思路,有利于实现生物质衍生物的绿色、低成本升级转化。Abstract: The development of cost-effective and efficient catalysts plays a critical role in the selective hydrodeoxygenation of lignin derivatives for lignin valorization. Herein, we reported “metal-acid” bifunctional catalysts (Ni/Ti-SBA-15) consist of Ni nanoparticles highly dispersed on Ti doped SBA-15, which achieved 100% vanillin conversion and 96.46% selectivity of 2-methoxy-4-methylphenol (MMP) under mild conditions. Characterizations were employed to reveal the morphology and physicochemical properties of the catalysts. The results indicated that doping of Ti species not only increased the number of acidic sites but also promoted the high dispersion of Ni nanoparticles on the support. This research provides a novel concept for the synthesis of cost-effective and efficient catalysts, which contributes to the environmentally friendly and economical conversion of biomass derivatives.
-
Key words:
- vanillin /
- hydrodeoxygenation /
- bifunctional catalyst /
- lignin
-
图 5 (a) 载体Ti7-SBA-15和Ti掺杂量不同的系列催化剂的催化活性;(b) 催化剂Ni/Ti7-SBA-15在不同温度下的催化活性;(c) 催化剂Ni/Ti7-SBA-15在不同氢压下的催化活性;(d) 催化剂Ni/Ti7-SBA-15催化反应过程的时间曲线
Figure 5 (a) Catalytic activity of the carrier Ti7-SBA-15 and the series catalysts with different Ti doping; (b) Catalytic activity of catalyst Ni/Ti7-SBA-15 at different temperatures; (c) Catalytic activity of catalyst Ni/Ti7-SBA-15 at different hydrogen pressures; (d) Time profile of the catalytic reaction process of catalyst Ni/Ti7-SBA-15
表 1 BET和ICP-OES测量结果
Table 1 BET and ICP-OES measurement results
Samples SBET (m2·g−1) Vt (cm3·g−1) Pore size (nm) Ni (wt%) Ti (wt%) SBA-15 970.4 0.49 2.46 - - Ti7-SBA-15 828.1 0.46 2.61 - - Ni/SBA-15 521.0 0.23 2.57 10.0 - Ni/Ti7-SBA-15 425.0 0.26 3.37 9.9 7.46 表 2 已报道的香兰素加氢脱氧制MMP的催化剂和Ni/Ti7-SBA-15的催化效果
Table 2 Catalytic effects of reported catalysts for the hydrodeoxygenation of vanillin to MMP and Ni/Ti7-SBA-15
Catalyst Reaction conditions Conv.(%) Sel.(%) Ref. Pd/ZrO2(x) Ethanol、Polymethylhydrosiloxane、25 ℃、1 h >99 >99 [5] Pd/Ru@GO Methanol、1 MPa H2、25 ℃、12 h >99 >99 [6] Au/Co3O4 NRs-OVs 2-Propanol、0.1 MPa N2、240 ℃、3 h >99 >99 [7] Co@NC-700 H2O、Formic acid、180 ℃、4 h 95.7 >99 [9] Cu-Ga/HNZY Methanol、1 MPa H2、160 ℃、2 h >99 99 [10] Ni/ZrP Isopropanol、0.5 MPa H2、220 ℃、0.5 h 95 85 [11] HD-Ni/N-CMS H2O、2 MPa H2、130 ℃、10 h >99 >99 [12] Ni/Nb2O5 H2O、1 MPa H2、180 ℃、1 h 96 79 [13] Ni0.5Zn1.5Al1-MMO H2O、1 MPa H2、130 ℃、2 h 99 56 [14] Ni/Ti7-SBA-15 H2O、1 MPa H2、140 ℃、2 h 99 96 - 表 3 Ni/Ti-SBA-15对多种木质素衍生物的加氢脱氧催化效果
Table 3 HDO of various substrates catalyzed by Ni/Ti-SBA-15
Entry Substrate Product Conv. (%) Sel. (%) 1 100 96.46 2 100 >99 3 100 >99 4 100 >99 反应条件:50 mg催化剂,1 mmol 底物,20 mL H2O,140 ℃,1 MPa H2,2 hReaction condition: 50 mg catalyst, 1 mmol substrate, 20 mL H2O, 140 ℃, 1 MPa H2, 2 h. -
[1] WANG H L, PU Y Q, RAGAUSKAS A, et al. From lignin to valuable products–strategies, challenges, and prospects[J]. Bioresource Technol,2019,271:449−461. doi: 10.1016/j.biortech.2018.09.072 [2] WANG H L, YANG B, ZHANG Q, et al. Catalytic routes for the conversion of lignocellulosic biomass to aviation fuel range hydrocarbons[J]. Renew Sust Energ Rev,2020,120:109612. doi: 10.1016/j.rser.2019.109612 [3] QIU Z G, HE X X, LI Z Q, et al. CoZn/N-Doped porous carbon derived from bimetallic zeolite imidazolate framework/g-C3N4 for efficient hydrodeoxygenation of vanillin[J]. Catal Sci Technol,2022,12(16):5178−5188. doi: 10.1039/D2CY00642A [4] ZHANG L K, SHANG N Z, GAO S T, et al. Atomically Dispersed Co Catalyst for Efficient Hydrodeoxygenation of Lignin-Derived Species and Hydrogenation of Nitroaromatics[J]. ACS Catal,2020,10(15):8672−8682. doi: 10.1021/acscatal.0c00239 [5] JIANG J Y, DING W T, ZHANG W, et al. Defect-rich ZrO2 anchored Pd nanoparticles for selective hydrodeoxygenation of bio-models at room temperature[J]. Fuel,2022,318:123529. doi: 10.1016/j.fuel.2022.123529 [6] ARORA S, GUPTA N, SINGH V. Improved Pd/Ru metal supported graphene oxide nano-catalysts for hydrodeoxygenation (HDO) of vanillyl alcohol, vanillin and lignin[J]. Green Chem,2020,22(6):2018−2027. doi: 10.1039/D0GC00052C [7] LIAO Q L, SHI M, ZHANG Q X, et al. Gold Catalyst Anchored to Pre-Reduced Co3O4 Nanorods for the Hydrodeoxygenation of Vanillin Using Alcohols as Hydrogen Donors[J]. ACS Appl Mater Inter,2022,14(3):3939−3948. doi: 10.1021/acsami.1c18197 [8] 李秉硕, 冯薜萱, 吴开页, 等. Ni-Cu-Ru/HZSM-5催化木质素生物油加氢脱氧制芳香烃的研究[J]. 燃料化学学报(中英文),2023,51(3):358−364 + 366 + 365.LI Bing-shuo, FENG Xue-xuan, WU Kai-ye, et al. Hydrodeoxygenation of lignin derived bio-oil into aromatic hydrocarbons over Ni-Cu-Ru/HZSM-5 catalyst[J]. J Fuel Chem Technol,2023,51(3):358−364 + 366 + 365. [9] YANG H H, NIE R F, XIA W, et al. Co embedded within biomass-derived mesoporous N-doped carbon as an acid-resistant and chemoselective catalyst for transfer hydrodeoxygenation of biomass with formic acid[J]. Green Chem,2017,19(23):5714−5722. doi: 10.1039/C7GC02648J [10] VERMA D, INSYANI R, CAHYADI H S, et al. Ga-doped Cu/H-nanozeolite-Y catalyst for selective hydrogenation and hydrodeoxygenation of lignin-derived chemicals[J]. Green Chem,2018,20(14):3253−3270. doi: 10.1039/C8GC00629F [11] GAO J, CAO Y, LUO G, et al. High-efficiency catalytic hydrodeoxygenation of lignin-derived vanillin with nickel-supported metal phosphate catalysts[J]. Chem Eng J,2022,448:137723. doi: 10.1016/j.cej.2022.137723 [12] FAN R Y, HU Z, CHEN C, et al. Highly dispersed nickel anchored on a N-doped carbon molecular sieve derived from metal-organic frameworks for efficient hydrodeoxygenation in the aqueous phase[J]. Chem Commun,2020,56(49):6696−6699. doi: 10.1039/D0CC02620D [13] ZHANG Z, XU H, LI H. Insights into the catalytic performance of Ni/Nb2O5 catalysts for vanillin hydrodeoxygenation in aqueous phase: The role of Nb2O5 crystal structures[J]. Fuel,2022,324(B):124400. [14] YUE X K, ZHANG L H, SUN L X, et al. Highly efficient hydrodeoxygenation of lignin-derivatives over Ni-based catalyst[J]. Appl Catal B-Environ,2021,293:120243. doi: 10.1016/j.apcatb.2021.120243 [15] KANG Y, RAO X R, YUAN P, et al. Al-functionalized mesoporous SBA-15 with enhanced acidity for hydroisomerization of n-octane[J]. Fuel Process Technol,2021,215:106765. doi: 10.1016/j.fuproc.2021.106765 [16] BERUBE F, NOHAIR B, KLEITZ F, et al. Controlled Postgrafting of Titanium Chelates for Improved Synthesis of Ti-SBA-15 Epoxidation Catalysts[J]. Chem Mater,2010,22(6):1988−2000. doi: 10.1021/cm9030667 [17] WEN M C, SONG S N, ZHAO W N, et al. Atomically dispersed Pd sites on Ti-SBA-15 for efficient catalytic combustion of typical gaseous VOCs[J]. Environ SCI-Nano,2021,8(12):3735−3745. doi: 10.1039/D1EN00744K [18] WANG X C, WANG Z Q, ZHOU L L, et al. Efficient hydrodeoxygenation of guaiacol to phenol over Ru/Ti-SiO2 catalysts: the significance of defect-rich TiOx species[J]. Green Chem,2022,24(15):5822−5834. doi: 10.1039/D2GC01714H [19] DEVI P, DAS U, DALAI A K. Production of glycerol carbonate using a novel Ti-SBA-15 catalyst[J]. Chem Eng J,2018,346:477−488. doi: 10.1016/j.cej.2018.04.030 [20] LEDESMA B C, ANUNZIATA O A, BELTRAMONE A R. HDN of indole over Ir-modified Ti-SBA-15[J]. Appl Catal B-Environ,2016,192:220−233. doi: 10.1016/j.apcatb.2016.03.066 [21] WANG W C, SHENG T, CHEN S S, et al. Defect engineering of Metal-Organic Framework for highly efficient hydrodeoxygenation of lignin derivates in water[J]. Chem Eng J,2023,453(2):139711. [22] SULLIVAN M M, BHAN A. Acetone Hydrodeoxygenation over Bifunctional Metallic-Acidic Molybdenum Carbide Catalysts[J]. ACS Catal,2016,6(2):1145−1152. doi: 10.1021/acscatal.5b02656 -