Enhanced photocatalysis using metal–organic framework MIL-101(Fe) for crude oil degradation in oil-polluted water
-
摘要: 利用溶剂热法成功合成了一种稳定的金属有机框架(MOF)MIL-101(Fe),并作为一种新型光催化剂提高了油田废水中原油的降解性能。通过对反应条件的优化,确定了以下最佳参数:暗反应时间为30 min,光反应时间为30 min,pH为5.5,催化剂量为0.15 g/L,反应温度为303.15 K。在这些反应条件下,去除率达到了94.73%。本研究是铁基MOFs在油田废水光催化降解中的首次应用。MIL-101(Fe)在温和的酸性条件下表现出良好的稳定性,并且可以有效地循环利用。这些发现为利用MIL-101(Fe)作为一种很有前途的工业应用材料,通过光催化降解从受油污染的水中去除原油提供了有价值的见解。Abstract: A stable metal-organic framework (MOF), MIL-101(Fe), was successfully synthesised using a solvothermal method and employed as a novel photocatalyst for degrading crude oil in oilfield wastewater. Through optimisation of reaction conditions, the following optimal parameters were determined: a dark reaction time of 30 min, a light reaction time of 30 min, a pH of 5.5, a catalyst amount of 0.15 g/L, and a reaction temperature of 303.15 K. Under these reaction conditions, an impressive removal of 94.73% was achieved. This study represents the first application of Fe-based MOFs in the photocatalytic degradation of oilfield wastewater. MIL-101(Fe) notably demonstrated excellent stability under mild acid conditions and can be efficiently recycled. These findings offer valuable insights into using MIL-101(Fe) as a promising material for industrial applications in removing crude oil from oil-polluted water through photocatalytic degradation.
-
Key words:
- MIL-101(Fe) /
- MOF /
- photocatalysis /
- Solvothermal /
- oilfield wastewater /
- degradation.
-
Table 1 Summary of research on photocatalytic degradation of oily wastewater by various catalysts
Photocatalyst Activator
amount /gPollutant Concentration Dose of
pollutant /mlSource of
irradiationTime /
minMaximum
degradation/
adsorptionReference MIL-101(Fe) 0.015 OPW 500 ppm 60 UV 30 94.73 This paper TiO2-SiO2 0.16 OPW 100 ppm 400 UV 30 95 19 Ce/Bi2O3 10.51 OPW 50 ppm 2000 Visible 30 90 20 Fe- TiO2 0.10 OPW 205 ppm 100 UV 60 98.1 21 Go/ZnIn2S4 0.10 OPW 100 ppm
(COD)100 Visible 60 72 22 MoS2/ZIS 0.10 OPW 120 ppm 100 Visible 80 92 23 TiO2
(Aerogel)0.16 OPW 100 ppm 400 UV 90 91 24 MoS2/P-C3N4 0.10 OPW 160 ppm
(COD)100 Visible 100 94 25 γ-Fe2O3 1 toluene 50000 ppm 100 Visible 120 90 26 γ-Fe2O3 1 toluene 100000 ppm 100 Visible 120 86 26 γ-Fe2O3 1 toluene 150000 ppm 100 Visible 120 78 26 Ag@ZnO/
Zn2Ti3O80.10 OPW 150 ppm 100 UV 300 89 27 AgTiZn
(MW)0.10 OPW 150 ppm 100 UV 300 90.15 28 CuTiZn 0.10 OPW 150 ppm 100 UV 300 87.02 28 AgMgZn
(MW)0.10 OPW 150 ppm 100 UV 300 93.35 28 AgMnZn
(MW)0.10 OPW 150 ppm 100 UV 300 88.95 28 Pt/TiO2 0.30 POME (COD) 40000−100000 ppm 300 UV& Visible 480 90 29 Ag/TiO2 0.30 POME (COD) 40000−100000 ppm 300 UV& Visible 480 90 30 PVDF/TiO2 15 cm2
membraneOIL 1000 ppm 100 UV 480 60 + 31 g-C3N4-2AC 0.025 OPW 1000 ppm 50 Visible 480 97.2 32 GCN 0.20 OPW 1000 ppm 200 UV 540 96.6 33 GCN 0.20 OPW 1000 ppm 200 Visible 540 85.4 33 EG-ZnO 0.10 OPW 1000 ppm 100 UV 4320 35 34 N/TiO2/rGO 0.025 OPW 500000 ppm 200 UV 40320 54.80 35 -
[1] HASSANI S S, DARAEE M, SOBAT Z. Advanced development in upstream of petroleum industry using nanotechnology[J]. CHINESE J CHEM ENG,2020,28(6):1483−1491. doi: 10.1016/j.cjche.2020.02.030 [2] SHEN Y, LI D W, WANG L L, et al. Superelastic polyimide nanofiber-based aerogels modified with silicone nano filaments for ultrafast oil/water separation[J]. ACS Appl. Mater. Interfaces,2021,13(17):20489−20500. doi: 10.1021/acsami.1c01136 [3] LIU B C, LI H S, LIU N, et al. Experimental study on filtration effect of oilfield sewage based on new polyurethane modified materials[J]. WATER SCI TECHNOL,2020,82(10):2039−2050. doi: 10.2166/wst.2020.462 [4] ZHU X L, RAN Y L, GUO W J, et al. Optimization of reinjection treatment technology for oilfield wastewater in Longdong area[J]. E3S Web of Conferences,2020,194:04046. doi: 10.1051/e3sconf/202019404046 [5] HOFFMANN M R, MARTIN S T, CHOI W. Environmental applications of semiconductor photocatalysis[J]. Chem. Rev,1995,95(1):69−96. doi: 10.1021/cr00033a004 [6] SINGH M, PAKSHIRAJAN K, TRIVEDI V. A study on combined effect of methylene blue and sodium anthraquinone-2-sulphonate on inactivation efficiency of escherichia coli and enterococcus hirae[J]. APPL CATAL B-ENVIRON,2019,88(3):283−291. [7] SIEDL N, BAUMANN S O, ELSER M J, et al. Particle networks from powder mixtures: generation of Tio2-Sno2 heterojunctions via surface charge-induced heteroaggregation[J]. J. Phys. Chem. C,2019,116(43):22967−22973. [8] MA S L, ZHAN S H, XIA Y G, et al. Enhanced photocatalytic bactericidal performance and mechanism with novel Ag/ZnO/g-C3N4 composite under visible light[J]. CATAL TODAY,2019,330:179−188. doi: 10.1016/j.cattod.2018.04.014 [9] ZHU T T, Ye X J, ZHANG Q Q, et al. Efficient utilisation of photogenerated electrons and holes for photocatalytic redox reactions using visible light-driven Au/ZnIn2S4 hybrid[J]. J HAZARD MATER,2019,367:277−285. doi: 10.1016/j.jhazmat.2018.12.093 [10] XIA Q, WANG H, HUANG B B, et al. State‐of‐the‐Art Advances and Challenges of Iron‐Based Metal Organic Frameworks from Attractive Features, Synthesis to Multifunctional Applications[J]. Small,2019,15(2):1803088. doi: 10.1002/smll.201803088 [11] RUI K, ZHAO G, CHEN Y, et al. Hybrid 2D dual-metal–organic frameworks for enhanced water oxidation catalysis[J]. ADV FUNCT MATER,2018,28(26):1801554. doi: 10.1002/adfm.201801554 [12] ZHAO F, LIU Y, HAMMOUDA S B, et al. MIL-101(Fe)/g-C3N4 for enhanced visible-light-driven photocatalysis toward simultaneous reduction of Cr(VI) and oxidation of bisphenol A in aqueous media[J]. APPL CATAL B-ENVIRON,2020,272:119033. doi: 10.1016/j.apcatb.2020.119033 [13] HAN H, ZHANG H X, CHEN Y, et al. Enhanced photocatalysis degradation of organophosphorus flame retardant using MIL-101(Fe)/persulfate: effect of irradiation wavelength and real water matrixes[J]. CHEM ENG J,2019,368:273−284. doi: 10.1016/j.cej.2019.02.190 [14] ZHANG Y, XIONG M Y, SUN A R, et al. MIL-101(Fe) nanodot-induced improvement of adsorption and photocatalytic activity of carbon fiber/TiO2-based weavable photocatalyst for removing pharmaceutical pollutants[J]. J CLEAN PROD,2021,290:125782. doi: 10.1016/j.jclepro.2021.125782 [15] MILLANGE F, GUILLOU N, MEDINA M E. Selective sorption of organic molecules by the flexible porous hybrid metal-organic framework MIL-53(Fe) controlled by various host-guest interactions[J]. J MATER CHEM A , 2010, 22, 14: 4237–4245. [16] KIM P J, YOU Y W, PARK H, et al. Separation of SF6 from SF6/N2 mixture using metal–organic framework MIL-100(Fe) granule[J]. CHEM ENG J,2015,262:683−690. doi: 10.1016/j.cej.2014.09.123 [17] KIM B C, HONG W G, LEE S M, et al. Enhancement of hydrogen storage capacity in polyaniline-vanadium pentoxide nanocomposites[J]. INT J HYDROGEN ENERG,2010,35:1300−1304. [18] AI L H, ZHANG C H, LI L L, et al. Iron terephthalate metal–organic framework: Revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation[J]. APPL CATAL B-ENVIRON , 2014, 148–149: 191-200. [19] LI X W, ZHAO H L, LU P P, et al. Photocatalytic activity of monolithic TiO2-SiO2 composite aerogels obtained by ambient drying for degrading oily wastewater[J]. Journal of University of Science and Technology Beijing,2013,35(5):651−658. [20] ZHOU G H. Degradation of oily wastewater by coated photocatalyst with visible light response[D]. Dalian : Dalian Maritime University, 2014. [21] GAO Y H, CHEN Y, WANG Z X, et al. Treatment of Oily Wastewater by Photocatalytic Degradation Using Nano Fe-TiO2[J]. Adv Mater Res,2013,781-784(2606):2241−2244. [22] ZHANG Y, ZHAO L. Ozone-assisted photocatalytic degradation of oil-polluted water on graphene/ZnIn2S4 composites[J]. Chem Res & Appl,2022,34(8):1719−1726. [23] XIA D G, DU Y L. Preparation of MoS2/ZnIn2S4 and photocatalytic degradation of oily wastewater[J]. Industrial Water & Wastewater,2022,53(5):51−56. [24] LI X W, LÜ P P, YAO K F, et al. Preparation of Monolithic TiO2 Aerogel via Ambient Drying and Photocatalytic Degradation of Oily Wastewater[J]. J INORG MATER,2012,27(11):1153−1158. [25] RUAN Y. Study on the performance of P-C3N4 coated with MoS2 for the degradation of oily wastewater[J]. Energy Chemical Industry,2022,43(5):64−68. [26] ROUSHERNAS P, YUSOP Z, MAJIDNIA Z. Photocatalytic degradation of spilled oil in sea water using maghemite nanoparticles[J]. DESALIN WATER TREAT,2016,57(13):5837−5841. doi: 10.1080/19443994.2015.1005149 [27] CHU Y H, WU X, LU D Q, et al. Preparation of Nano-Ag@ZnO/Zn2Ti3O8 and Its Application in Photocatalytic degradation of Oilfield Wastewater[J]. Contemporary Chemical Industry,2022,51(2):350−353. [28] SUN B. Study on Microwave Synthesis, Characterisation and Properties of Nanocomposites[D]. Fushun: LiaoNing Petrochemical University, 2020. [29] CHENG C K, DERAHMAN M R, KHAN M R. Evaluation of the photocatalytic degradation of pre-treated palm oil mill effluent (POME) over Pt-loaded titania[J]. J ENVIRON CHEM ENG,2015,1(3):261−270. [30] CHENG C K, DERAHMAN M R, NG K H, et al. Preparation of titania doped argentum photocatalyst and its photoactivity towards palm oil mill effluent degradation[J]. J CLEAN PROD,2016,112(1):1128−1135. [31] RUSLI U N, ALIAS N H, SHAHRUDDIN M Z, et al. Photocatalytic Degradation of Oil using Polyvinylidene Fluoride/Titanium Dioxide Composite Membrane for Oily Wastewater Treatment. Munich: MATEC Web of Conferences, 2016. [32] RAN L T. Study on Modification of g-C3N4 Photocatalyst and its Degradation of Oily Wastewater[D]. Xi an shiyou University, 2022 [33] ALIAS N H, JAAFAR J, SAMITSU S, et al. Photocatalytic degradation of oilfield produced water using graphitic carbon nitride embedded in electrospun polyacrylonitrile nanofibers[J]. Chemosphere,2018,204(AUG.):79−86. [34] WANG W Y, WANG L Q, ZHANG R J. Preparation of expanded graphite-ZnO composite and its photocatalytic degradation of crude oil[J]. Environmental Protection and of Chemical Industry,2007,27(4):367−370. [35] LI Y H, ZHANG Q Q, JIANG J X, et al. Long-acting photocatalytic degradation of crude oil in seawater via combination of TiO2 and N-doped TiO2/ reduced graphene oxide[J]. ENVIRON TECHNOL,2021,42(5/8):860−870. -