留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The promotional effects of ZrO2 modification on the activity and selectivity of Co/SiC catalysts for Fischer-Tropsch synthesis

WANG Min GUO Shupeng XU Jinshan LI Liuzhong CHEN Congbiao MA Zhongyi JIA Litao HOU Bo LI Debao

王民, 郭舒鹏, 许金山, 李留忠, 陈从标, 马中义, 贾丽涛, 侯博, 李德宝. ZrO2修饰对Co/SiC催化剂的费托合成性能影响[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60439-1
引用本文: 王民, 郭舒鹏, 许金山, 李留忠, 陈从标, 马中义, 贾丽涛, 侯博, 李德宝. ZrO2修饰对Co/SiC催化剂的费托合成性能影响[J]. 燃料化学学报(中英文). doi: 10.1016/S1872-5813(24)60439-1
WANG Min, GUO Shupeng, XU Jinshan, LI Liuzhong, CHEN Congbiao, MA Zhongyi, JIA Litao, HOU Bo, LI Debao. The promotional effects of ZrO2 modification on the activity and selectivity of Co/SiC catalysts for Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60439-1
Citation: WANG Min, GUO Shupeng, XU Jinshan, LI Liuzhong, CHEN Congbiao, MA Zhongyi, JIA Litao, HOU Bo, LI Debao. The promotional effects of ZrO2 modification on the activity and selectivity of Co/SiC catalysts for Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(24)60439-1

ZrO2修饰对Co/SiC催化剂的费托合成性能影响

doi: 10.1016/S1872-5813(24)60439-1
详细信息
  • 中图分类号: TQ546

The promotional effects of ZrO2 modification on the activity and selectivity of Co/SiC catalysts for Fischer-Tropsch synthesis

Funds: The project was supported by the Natural Science Foundation of Shanxi Province (202203021212005), Basic Research Program of Shanxi Province (20210302124466), Central Guidance for Local Scientific and Technological Development Funds (YDZJSX2021C041) and the Innovation Fund Project by ICC CAS (SCJC-DT-2022-06).
More Information
  • 摘要: 本研究采用 ZrO2 对 SiC 表面进行改性,制得系列 Co-ZrO2/SiC 催化剂,借助N2物理吸附、XRD、H2-TPR、XPS等表征手段对催化剂物化性质进行结构分析,并利用微型固定床反应器对催化剂的活性进行评价,研究 ZrO2 改性 SiC 载体对钴基费托合成催化剂的影响。研究结果表明,由于 ZrO2 体相存在氧空穴等不同的活性位,H2 在 Co 表面被活化后形成的部分 H* 溢流到 ZrO2 表面并储存到 ZrO2 表面,而 ZrO2 与 Co 之间存在相对较强的相互作用,使得 Co 周围的 H* 浓度增加,进而 Co/SiC 催化剂的还原度显著增加。同时, ZrO2 与 SiC 表面的无定形相发生相互作用形成 Zr−O−Si 键。由于 Si (1.90)的电负性高于 Zr (1.33),部分电子可以通过 Zr-O-Si 结构从 Zr 转向 Si,形成富电子的 SiOxCy 相和 SiO2 相。从而降低了 SiC 表面无定形相的对 Co 物相吸电子能力,减弱了 Co 与 SiC 表面的无定形相的相互作用,进而提高了Co 相的电子密度。采用 ZrO2 对 SiC 进行修饰后,同时提高了 Co/SiC 催化剂中 Co 物相的电子密度和还原度,使得催化剂对长链烃的选择性显著提升。
  • Figure  1  XRD patterns of catalysts

    Figure  2  H2-TPR profiles of the catalysts

    Figure  3  XPS spectra of Co 2p, Si 2p, Zr 3d on the catalysts

    Table  1  Physicochemical properties of the catalysts

    Catalyst BET area/
    (m2·g−1)
    Pore diameter/nm Total pore volume/(cm3·g−1) Crystallite size of Co3O4a/nm Reduction degreeb/% Ratio of measured Co to
    actual Co contentb
    Co-SiC 31.1 21.4 0.166 24.6 50.2 0.96
    Co -SiC-Zr -2 31.2 24.1 0.189 25.9 78.8 1.33
    Co -SiC-Zr -5 29.2 21.6. 0.148 23.8 81.5 1.45
    Co-SiC-Zr -10 33.6 23.2 0.195 25.9 86.9 1.51
    a: Average diameter of particle size calculated from the XRD; b: Determined from the TPR.
    下载: 导出CSV

    Table  2  Catalytic performance of the catalysts

    Catalyst Conv./% $s_{{\mathrm{CH}}_4} $/% $s_{{\mathrm{C}}_2-{\mathrm{C}}_4} $/% $s_{{\mathrm{C}}_{5+}} $/%
    Co-SiC 55.3 14.0 11.0 75.0
    Co -SiC-Zr-2 47.8 12.0 11.0 77.0
    Co -SiC-Zr -5 55.7 10.3 9.2 80.5
    Co -SiC-Zr-10 55.4 10.0 9.1 80.9
    Reaction conditions: 2.0MPa, 220 °C, H2/CO=2.
    下载: 导出CSV
  • [1] FRATALOCCHI L, VISCONTI C G, LIETTI L, et al. On the performance of a Co-based catalyst supported on modified γ-Al2O3 during Fischer-Tropsch synthesis in the presence of co-fed water[J]. Catal Sci Technol,2016,6(16):6431−6440. doi: 10.1039/C6CY00583G
    [2] IGLESIA E. Fischer-Tropsch synthesis on cobalt catalysts: Structural requirements and reaction pathways[J]. Stud Surf Sci Catal,1997,107:153−162.
    [3] IGLESIA E. Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts[J]. Appl Catal A: Gen,1997,161:59−78. doi: 10.1016/S0926-860X(97)00186-5
    [4] DEN OTTER J H, NIJVELD S R, DE JONG K P. Synergistic promotion of Co/SiO2 Fischer-Tropsch catalysts by niobia and platinum[J]. ACS Catal,2016,6(3):1616−1623. doi: 10.1021/acscatal.5b02418
    [5] BORG Ø, ERI S, BLEKKAN E A, et al. Fischer-Tropsch synthesis over γ-alumina-supported cobalt catalysts: Effect of support variables[J]. J Catal,2007,248:89−100. doi: 10.1016/j.jcat.2007.03.008
    [6] LIU C, HE Y, WEI L, et al. Effect of TiO2 surface engineering on the performance of cobalt-based catalysts for Fischer-Tropsch Synthesis[J]. Ind Eng Chem Res,2019,58(2):1095−1104.
    [7] OSA A R D L, LUCAS A D, DÍAZ-MAROTO J, et al. FTS fuels production over different Co/SiC catalysts[J]. Catal Today,2012,187(1):173−182. doi: 10.1016/j.cattod.2011.12.029
    [8] TYMOWSKI B D, LIU Y, MENY C, et al. Co-Ru/SiC impregnated with ethanol as an effective catalyst for the Fischer-Tropsch synthesis[J]. Appl Catal A: Gen,2012,419:31−40.
    [9] OSA A R D L, LUCAS A D, ROMERO A, et al. Influence of the catalytic support on the industrial Fischer-Tropsch synthetic diesel production[J]. Catal Today,2011,167(1):298−302.
    [10] HOFFMANN C, PLATE P, STEINBRUCK A, et al. Nanoporous silicon carbide as nickel support for the carbon dioxide reforming of methane[J]. Catal Sci Technol,2015,5(8):4174−4183. doi: 10.1039/C4CY01234H
    [11] MASSON R, KELLER, VALÉRIE, ET A L. β-SiC alveolar foams as a structured photocatalytic support for the gas phase photocatalytic degradation of methylethylketone[J]. Appl Catal B: Environ,2015,170:301−311.
    [12] LIU Y, ERSEN O, MENY C, et al. Fischer-Tropsch reaction on a thermally conductive and reusable silicon carbide support[J]. ChemSusChem,2014,7(5):1218−1239. doi: 10.1002/cssc.201300921
    [13] TUCI G, LIU Y, ROSSIN A, et al. Porous silicon carbide (SiC): A chance for improving catalysts or just another active-phase carrier?[J]. Chem Rev,2021,121(17):10559−10665. doi: 10.1021/acs.chemrev.1c00269
    [14] NGUYEN P, PHAM C. Innovative porous SiC-based materials: From nanoscopic understandings to tunable carriers serving catalytic needs[J]. Appl Catal A: Gen,2011,391(1/2):443−454. doi: 10.1016/j.apcata.2010.07.054
    [15] LACROIX M, DREIBINE L, TYMOWSKI B D, et al. Silicon carbide foam composite containing cobalt as a highly selective and re-usable Fischer-Tropsch synthesis catalyst[J]. Appl Catal A: Gen,2011,397(1/2):62−72. doi: 10.1016/j.apcata.2011.02.012
    [16] PARK S J, KIM S M, WOO M H, et al. Effects of titanium impurity on alumina surface for the activity of Co/Ti-Al2O3 Fischer-Tropsch catalyst[J]. Appl Catal A: Gen,2012,419−420:148−155. doi: 10.1016/j.apcata.2012.01.022
    [17] MOENE R, MAKKEE M, MOULIJN J A. High surface area silicon carbide as catalyst support characterization and stability[J]. Appl Catal A: Gen,1998,167(2):321−330. doi: 10.1016/S0926-860X(97)00326-8
    [18] LIU Y, FLOREA I, ERSEN O, et al. Silicon carbide coated with TiO2 with enhanced cobalt active phase dispersion for Fischer-Tropsch synthesis[J]. Chem Commun,2015,51:145−148. doi: 10.1039/C4CC07469F
    [19] LEE B S, KOO H M, PARK M J, et al. Deactivation behavior of Co/SiC Fischer-Tropsch catalysts by formation of filamentous carbon[J]. Catal Lett,2013,143:18−22. doi: 10.1007/s10562-012-0936-8
    [20] ALL S, CHEN B, GOODWIN J G. Zr promotion of Co/SiO2 for Fischer-Tropsch synthesis[J]. J Catal,1995,157(1):35−41. doi: 10.1006/jcat.1995.1265
    [21] WONGSALEE T, JONGSOMJIT B, PRASERTHDAM P. Effect of zirconia-modified titania consisting of different phases on characteristics and catalytic properties of Co/TiO2 catalysts[J]. Catal Lett,2006,108:55−61. doi: 10.1007/s10562-006-0033-y
    [22] LU C, LIN Y, WANG I. Naphthalene hydrogenation over Pt/TiO2-ZrO2 and the behavior of strong metal-support interaction[J]. Appl Catal A: Gen,2000,1989(1/2):223−234.
    [23] RUPPERT A M, PARYJCZAK T. Pt/ZrO2/TiO2 catalysts for selective hydrogenation of crotonaldehyde: Tuning the SMSI effect for optimum performance[J]. Appl Catal A: Gen,2007,320:80−90. doi: 10.1016/j.apcata.2006.12.019
    [24] MORADI G R, BASIR M M, TAEB A, et al. Promotion of Co/SiO2 Fischer-Tropsch catalysts with zirconium[J]. Catal Commun,2003,4(1):27−32. doi: 10.1016/S1566-7367(02)00243-1
    [25] JONGSOMJIT B, PANPRANOT J, GOODWIN J G. Effect of zirconia-modified alumina on the properties of Co/γ-Al2O3 catalysts[J]. Catal,2003,215(1):66−77. doi: 10.1016/S0021-9517(02)00102-1
    [26] CHEN C, LIU Y, WANG Q, et al. The role of Zr as promoter in the CoZr catalysts for Fischer-Tropsch synthesis[J]. Fuel,2024,359(1):130405.
    [27] BERTELLA F, CONCEPCIÓN P, MARTÍNEZ A. TiO2 polymorph dependent SMSI effect in Co-Ru/TiO2 catalysts and its relevance to Fischer-Tropsch synthesis[J]. Catal Today,2017,289:181−191. doi: 10.1016/j.cattod.2016.08.008
    [28] KUNGUROVA O, KHASSIN A, CHEREPANOVA S, et al. δ-Alumina supported cobalt catalysts promoted by ruthenium for FischerTropsch Synthesis[J]. Appl Catal A: Gen,2017,539:48−58. doi: 10.1016/j.apcata.2017.04.003
    [29] STEEN E, SEWELL G, MAKHOTHE R, et al. TPR study on the preparation of impregnated Co/SiO2 catalysts[J]. J Catal,1996,162:220−229. doi: 10.1006/jcat.1996.0279
    [30] JACOBS G, DAS T K, ZHANG Y, et al. Fischer-Tropsch synthesis: Support, loading, and promoter effects on the reducibility of cobalt catalysts[J]. Appl Catal A: Gen,2002,233(1/2):263−281. doi: 10.1016/S0926-860X(02)00195-3
    [31] RIBEIRO N F P, SOUZA M M V M, SCHMAL M. Combustion synthesis of copper catalyst for selective CO oxidation[J]. J Power Sources,2008,179(1):329−334. doi: 10.1016/j.jpowsour.2007.12.096
    [32] AL-SALEH M A, HOSSAIN M M, SHALABI M A, et al. Hydrogen spillover effects on Pt-Rh modified Co-clay catalysts for heavy oil upgrading[J]. Appl Catal A: Gen,2003,253(2):453−459. doi: 10.1016/j.apcata.2003.06.001
    [33] HOSSAIN M M. Experimental investigation of hydrogen spillover on Co-clay hydrotreating catalysts by noble metals[D]. Dhaharn: King Fahd University of Petroleum and Minerals (Saudi Arabia), 2000.
    [34] WU G, WANG L, LIU M, et al. Research on the role of reverse hydrogen and water spillover in methanol decomposition over Cu/ZrO2 catalyst[J]. Acta Chim Sin,2006,64(10):1017−1021.
    [35] ZHANG H, DONG A, LIU B, et al. Hydrogen spillover effects in the Fischer-Tropsch reaction over carbon nanotube supported cobalt catalysts[J]. Catal Sci Technol,2023,13(6):1888−1904. doi: 10.1039/D3CY00014A
    [36] LUALDI M, CARLO G D, LGDBERG S, et al. Effect of Ti and Al addition via direct synthesis to SBA-15 as support for cobalt based Fischer-Tropsch catalysts[J]. Appl Catal A: Gen,2012,443−444(1):76−86.
    [37] LI Z, WU J, YU J, et al. Effect of incorporation manner of Zr on the Co/SBA-15 catalyst for the Fischer-Tropsch synthesis[J]. J Mol Catal A: Chem,2016,424:384−392. doi: 10.1016/j.molcata.2016.09.025
    [38] SHIMODA K, PARK J, HINOKI T, et al. Influence of surface structure of SiC nano-sized powder analyzed by X-ray photoelectron spectroscopy on basic powder characteristics[J]. Appl Surf Sci,2007,253(24):9450−9456. doi: 10.1016/j.apsusc.2007.06.023
    [39] DAMYANOVA S, PETROV L, GRANGE P. XPS characterization of zirconium-promoted CoMo hydrodesulfurization catalysts[J]. Appl Catal A: Gen,2003,239(1/2):241−252. doi: 10.1016/S0926-860X(02)00385-X
    [40] XIONG H, ZHANG Y, LIEW K, et al. Catalytic performance of zirconium-modified Co/Al2O3 for Fischer-Tropsch synthesis[J]. J Mol Catal A- Chem,2005,231(1/2):145−151. doi: 10.1016/j.molcata.2004.12.033
    [41] JUNG S M, DOPUNT O, GRANGE P. TiO2-SiO2 mixed oxide modified with H2SO4: I. Characterization of the microstructure of metal oxide and sulfate[J]. Appl Catal A: Gen,2001,208(1/2):393−401. doi: 10.1016/S0926-860X(00)00737-7
    [42] LIU J, LIAO S, JIANG G, et al. Preparation, characterization and catalytic activity of Zr embedded MSU-V with high thermal and hydrothermal stability[J]. Microporous Mesoporous Mater,2006,95:306−311. doi: 10.1016/j.micromeso.2006.06.003
    [43] SHEN J, SONG C. Influence of preparation method on performance of Cu/Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H2 production for fuel cells[J]. Catal Today,2002,77(1/2):89−98. doi: 10.1016/S0920-5861(02)00235-3
    [44] ARENA F, BARBERA K, ITALIANO G, et al. Synthesis, characterization and activity pattern of Cu-ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol[J]. J Catal,2007,249(2):185−194. doi: 10.1016/j.jcat.2007.04.003
    [45] ISHIHARA T, EGICHI K, ARAI H. Importance of surface hydrogen concentration in enhancing activity of Co Ni alloy catalyst for CO hydrogenation[J]. J Mol Catal,1992,72(2):253−261. doi: 10.1016/0304-5102(92)80050-Q
    [46] SHIMURA K, MIYAZAWA T, HANAOKA T, et al. Fischer-Tropsch synthesis over alumina supported cobalt catalyst: Effect of promoter addition[J]. Appl Catal A: Gen,2015,494:1−11. doi: 10.1016/j.apcata.2015.01.017
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  30
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-18
  • 修回日期:  2024-02-06
  • 录用日期:  2024-02-26
  • 网络出版日期:  2024-04-03

目录

    /

    返回文章
    返回