留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甲醇水蒸气重整制氢CuO/La1−xCe x CrO3 催化剂

乔韦军 肖国鹏 张磊 庆绍军 赵瑛祁 耿忠兴 高志贤

乔韦军, 肖国鹏, 张磊, 庆绍军, 赵瑛祁, 耿忠兴, 高志贤. 甲醇水蒸气重整制氢CuO/La1−xCe x CrO3 催化剂[J]. 燃料化学学报(中英文), 2021, 49(2): 205-210. doi: 10.19906/j.cnki.JFCT.2021012
引用本文: 乔韦军, 肖国鹏, 张磊, 庆绍军, 赵瑛祁, 耿忠兴, 高志贤. 甲醇水蒸气重整制氢CuO/La1−xCe x CrO3 催化剂[J]. 燃料化学学报(中英文), 2021, 49(2): 205-210. doi: 10.19906/j.cnki.JFCT.2021012
QIAO Wei-jun, XIAO Guo-peng, ZHANG Lei, QING Shao-jun, ZHAO Ying-qi, GENG Zhong-xing, GAO Zhi-xian. Catalytic performance of CuO/La1−xCexCrO3 in the steam reforming of methanol[J]. Journal of Fuel Chemistry and Technology, 2021, 49(2): 205-210. doi: 10.19906/j.cnki.JFCT.2021012
Citation: QIAO Wei-jun, XIAO Guo-peng, ZHANG Lei, QING Shao-jun, ZHAO Ying-qi, GENG Zhong-xing, GAO Zhi-xian. Catalytic performance of CuO/La1−xCexCrO3 in the steam reforming of methanol[J]. Journal of Fuel Chemistry and Technology, 2021, 49(2): 205-210. doi: 10.19906/j.cnki.JFCT.2021012

甲醇水蒸气重整制氢CuO/La1−xCe x CrO3 催化剂

doi: 10.19906/j.cnki.JFCT.2021012
基金项目: 国家自然科学基金(21673270)资助
详细信息
    通讯作者:

    E-mail: lnpuzhanglei@163.com

  • 中图分类号: O643

Catalytic performance of CuO/La1−xCexCrO3 in the steam reforming of methanol

Funds: The project was supported by the National Natural Science Foundation of China (21673270)
  • 摘要: 采用溶胶凝胶法制备了负载型CuO/La1−xCexCrO3催化剂,研究了A位中Ce元素掺杂量对CuO/La1−xCexCrO3催化剂结构、性质及其催化甲醇水蒸气重整制氢性能的影响。结果表明,掺杂Ce元素影响了CuO的还原性能和钙钛矿载体与CuO之间的作用力,进而影响了CuO/La1−xCexCrO3催化剂对甲醇水蒸气重整制氢反应的催化性能。其中,CuO/La0.8Ce0.2CrO3具有较好的催化性能,在280 °C、水醇物质的量比为1.2、甲醇气体空速为800 h−1的条件下,甲醇转化率达到100%。
  • 图  1  La1−xCexCrO3钙钛矿载体的XRD谱图

    Figure  1  XRD patterns of the La1−xCe x CrO3 perovskite supports

    a: LaCrO3; b: La0.8Ce0.2CrO3; c: La0.5Ce0.5CrO3; d: La0.2Ce0.8CrO3

    图  2  CuO/La1−xCexCrO3催化剂的XRD谱图

    Figure  2  XRD patterns of various CuO/La1−xCe x CrO3 catalysts

    a: CuO/LaCrO3; b: CuO/La0.8Ce0.2CrO3; c: CuO/La0.5Ce0.5CrO3; d: CuO/La0.2Ce0.8CrO3

    图  3  La1−xCexCrO3钙钛矿的晶胞参数与Ce/ La物质的量比关系图

    Figure  3  Relationship between the unit cell parameters of the La1−xCe x CrO3 perovskite and the Ce/La molar ratio

    a: La0.8Ce0.2CrO3; b: La0.5Ce0.5CrO3; c: La0.2Ce0.8CrO3

    图  4  La1−xCexCrO3载体的N2吸附-脱附等温线

    Figure  4  N2 adsorption-desorption isotherms of various CuO/ La1−xCe x CrO3 catalysts

    a: LaCrO3; b: La0.8Ce0.2CrO3; c: La0.5Ce0.5CrO3; d: La0.2Ce0.8CrO3

    图  5  不同CuO/La1−xCexCrO3催化剂的氢气程序升温还原谱图

    Figure  5  H2-TPR profiles of various CuO/La1−xCe x CrO3 catalysts

    a: CuO/LaCrO3; b: CuO/La0.8Ce0.2CrO3; c: CuO/La0.5Ce0.5CrO3; d: CuO/La0.2Ce0.8CrO3

    图  6  反应温度对催化剂活性的影响

    Figure  6  Activity of various CuO/La1−xCe x CrO3 catalysts as a function of temperature in the methanol steam reforming

    a: CuO/LaCrO3; b: CuO/La0.8Ce0.2CrO3; c: CuO/La0.5Ce0.5CrO3; d: CuO/La0.2Ce0.8CrO3

    图  7  温度对重整气中CO含量的影响

    Figure  7  Effect of reaction temperature on the CO content in reformate over various CuO/La1−xCe x CrO3 catalysts

    a: CuO/LaCrO3; b: CuO/La0.8Ce0.2CrO3; c: CuO/La0.5Ce0.5CrO3; d: CuO/La0.2Ce0.8CrO3

    表  1  La1-xCexCrO3载体和CuO/La1-xCexCrO3催化剂的比表面积及孔结构参数

    Table  1  Surface area and pore structure parameters of La1−xCe x CrO3 support and CuO/La1−xCe x CrO3 catalysts

    CatalystABET/
    (m2·g−1)
    Pore volume v/
    (cm3·g−1)
    Bore diameter/nmCu surface area A/
    (m2·gcat−1)
    H2 production rate/
    (mL·kgcat−1·s−1)
    LaCrO310.60.023.06
    La0.8Ce0.2CrO315.30.063.44
    La0.5Ce0.5CrO322.60.123.66
    La0.2Ce0.8CrO324.10.153.91
    CuO/LaCrO312.10.033.092.1651
    CuO/La0.8Ce0.2CrO316.60.063.543.11056
    CuO/La0.5Ce0.5CrO325.50.133.732.8746
    CuO/La0.2Ce0.8CrO327.10.153.922.8669
    下载: 导出CSV

    表  2  催化剂的产氢速率对比

    Table  2  A comparison of various catalysts in the hydrogen production rate

    CatalystTemperature t/℃Water/methanol mol/%GHSV/h−1H2 production rate/(mL·kg−1·s−1)
    CuO/La0.8Ce0.2CrO32801.2:18001056
    CuO/CeO2-R[12]2401.2:1800378
    CuO/CeO2[17]2801.2:1800380
    CuZnCeZr[18]2401.2:11200510
    Zn0.5Ce1Zr9Ox[19]4501.4:11500808
    下载: 导出CSV
  • [1] ZAICENKO V M, SHPILRAIN E E, SHTERENBERG V Y. Hydrogen energy: Present state and lines of future development[J]. Teploenergetika,2003,1(5):61−67.
    [2] HERDEM M S, SINAKI M Y, FARHAD S, HAMDULLAHPUR F. An overview of the methanol reforming process: comparison of fuels, catalysts, reformers, and systems[J]. Int J Hydrogen Energy,2019,43:5076−5085.
    [3] CLAUDE L. From hydrogen production by water electrolysis to its utilization in a PEM fuel cell or in a SO fuel cell: Some considerations on the energy efficiencies[J]. Int J Hydrogen Energy,2016,41(34):15415−15425. doi: 10.1016/j.ijhydene.2016.04.173
    [4] HOSSAIN M A, JEWARATNAM J, GANESAN P. Prospect of hydrogen production from oil palm biomass by thermochemical process-A review[J]. Int J Hydrogen Energy,2016,41(38):16637−16655. doi: 10.1016/j.ijhydene.2016.07.104
    [5] SA S, SILVA H, BRANDAO L, SOUSA J M, MENDES A. Catalysts for methanol steam reforming—A review[J]. Appl Catal B: Environ,2010,99(1-2):43−57. doi: 10.1016/j.apcatb.2010.06.015
    [6] LYTKINA A A, ZHILYAEVA N A, ERMILOVA M M, OREKHOVA N V, YAROSLAVTSEV A B. Influence of the support structure and composition of Ni-Cu-based catalysts on hydrogen production by methanol steam reforming[J]. Int J Hydrogen Energy,2015,40(31):9677−9684. doi: 10.1016/j.ijhydene.2015.05.094
    [7] HE J P, YANG Z X, ZHANG L, LI Y, PAN L W. Cu supported on ZnAl-LDHs precursor prepared by in-situ synthesis method on γ-Al2O3 as catalytic material with high catalytic activity for methanol steam reforming[J]. Int J Hydrogen Energy,2017,42(15):9930−9937. doi: 10.1016/j.ijhydene.2017.01.229
    [8] WANG Z J, WANG C X, CHEN S Q, LIU Y. Co-Ni bimetal catalyst supported on perovskite-type oxide for steam reforming of ethanol to produce hydrogen[J]. Int J Hydrogen Energy,2014,39(11):5644−5652. doi: 10.1016/j.ijhydene.2014.01.151
    [9] GLISENTI A, GALENDA A, NATILE M M. Steam reforming and oxidative steam reforming of methanol and ethanol: The behaviour of LaCo0.7Cu0.3O3[J]. Appl Catal A: Gen,2013,453:102−112. doi: 10.1016/j.apcata.2012.11.031
    [10] 肖国鹏, 乔韦军, 王丽宝, 张磊, 张健, 王宏浩. LaNiO3的焙烧温度对甲醇水蒸气重整制氢CuO/LaNiO3催化剂的影响[J]. 燃料化学学报,2020,48(2):213−240. doi: 10.3969/j.issn.0253-2409.2020.02.011

    XIAO Guo-peng, QIAO Wei-jun, WANG Li-bao, ZHANG Lei, ZHANG Jian, WANG Hong-hao. The effect of LaNiO3 roasting temperature on CuO/LaNiO3 catalysts for hydrogen production by methanol steam reforming[J]. J Fuel Chem Technol,2020,48(2):213−240. doi: 10.3969/j.issn.0253-2409.2020.02.011
    [11] KHALESI A, ARANDIYAN H R, PARVARI M. Effects of Lanthanum Substitution by Strontium and Calcium in La-Ni-Al Perovskite Oxides in Dry Reforming of Methane[J]. J Catal,2008,29(10):18−26.
    [12] YANG S Q, ZHOU F, LIU Y J, ZHANG L, YU C, WANG H H, TIAN Y, ZHANG C S, LIU D S. Morphology effect of ceria on the performance of CuO/CeO2 catalysts for hydrogen production by methanol steam reforming[J]. Int J Hydrogen Energy,2019,44(14):7252−7261. doi: 10.1016/j.ijhydene.2019.01.254
    [13] XI H J, HOU X N, LIU Y J, QING S J, GAO Z X. Cu–Al spinel oxide as an efficient catalyst for methanol steam reforming[J]. Angew Chem Int Ed,2014,126:12080−12083.
    [14] 王丽宝, 王东哲, 张磊, 庆绍军, 韩蛟, 张财顺, 高志贤, 张海娟, 冯旭浩. 铈源对甲醇水蒸气重整制氢CuO/CeO2催化剂的影响[J]. 燃料化学学报,2020,48(7):852−859.

    WANG Li-bao, WANG Dong-zhe, ZHANG Lei, QING Shao-jun, HAN Jiao, ZHANG Cai-shun, GAO Zhi-xian, ZHANG Hai-juan, FENG Xu-hao. Effect of cerium source on CuO/CeO2 catalysts for hydrogen production by methanol steam reforming[J]. J Fuel Chem Technol,2020,48(7):852−859.
    [15] 苏石龙, 张磊, 张艳, 雷俊腾, 桂建舟, 刘丹, 刘道胜, 潘立卫. 千瓦级PEMFC甲醇水蒸气重整制氢过程热力学模拟[J]. 石油化工高等学校学报,2015,28(2):21−25.

    SU Shi-long, ZHANG Lei, ZHANG Yan, LEI Jun-teng, GUI Jian-zhou, LIU Dan, LIU Dao-sheng, PAN Li-wei. Thermodynamic simulation of hydrogen production process from kilowatt PEMFC methanol steam reforming[J]. J Petrochem College,2015,28(2):21−25.
    [16] 杨淑倩, 贺建平, 张娜, 隋晓伟, 张磊, 杨占旭. 稀土掺杂改性对Cu/ZnAl水滑石衍生催化剂甲醇水蒸气重整制氢性能的影响[J]. 燃料化学学报,2018,46(2):179−188. doi: 10.3969/j.issn.0253-2409.2018.02.007

    YANG Shu-qian, HE Jian-ping, ZHANG Na, SUI Xiao-wei, ZHANG Lei, YANG Zhan-xu. Effect of rare-earth element modification on the performance of Cu/ZnAl catalysts derived from hydrotalcite precursor in methanol steam reforming[J]. J Fuel Chem Technol,2018,46(2):179−188. doi: 10.3969/j.issn.0253-2409.2018.02.007
    [17] 刘玉娟, 王东哲, 张磊, 王宏浩, 陈琳, 刘道胜, 韩蛟, 张财顺. 载体焙烧气氛对甲醇水蒸气重整制氢CuO/CeO2催化剂的影响[J]. 燃料化学学报,2018,46(8):992−999. doi: 10.3969/j.issn.0253-2409.2018.08.011

    LIU Yu-juan, WANG Dong-zhe, ZHANG Lei, WANG Hong-hao, CHEN Lin, LIU Dao-sheng, HAN Jiao, ZHANG Cai-shun. Effect of carrier roasting atmosphere on CuO/CeO2 catalyst for methanol steam reforming[J]. J Fuel Chem Technol,2018,46(8):992−999. doi: 10.3969/j.issn.0253-2409.2018.08.011
    [18] ZHANG L, PAN L W, NI C J, SUN T J, ZHAO S S, WANG S D, WANG A J, HU Y K. CeO2-ZrO2-promoted CuO/ZnO catalyst for methanol steam reforming[J]. Int J Hydrogen Energy,2013,38(11):4397−4406. doi: 10.1016/j.ijhydene.2013.01.053
    [19] SONG Q L, MEN Y, WANG J G, LIU S, CHAI S S, AN W, WANG K, LI Y Y, TANG Y H. Methanol steam reforming for hydrogen production over ternary composite ZnyCe1Zr9Ox catalysts[J]. Int J Hydrogen Energy,2020,45(16):9592−9602. doi: 10.1016/j.ijhydene.2020.01.175
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  524
  • HTML全文浏览量:  160
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-03
  • 修回日期:  2020-10-06
  • 刊出日期:  2021-02-08

目录

    /

    返回文章
    返回