留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe负载UiO-66协同非均相类Fenton氧化降解废气苯的研究

张婷婷 周长松 周梦长 吴昊 张振 杨宏旻

张婷婷, 周长松, 周梦长, 吴昊, 张振, 杨宏旻. Fe负载UiO-66协同非均相类Fenton氧化降解废气苯的研究[J]. 燃料化学学报(中英文), 2021, 49(2): 220-227. doi: 10.19906/j.cnki.JFCT.2021013
引用本文: 张婷婷, 周长松, 周梦长, 吴昊, 张振, 杨宏旻. Fe负载UiO-66协同非均相类Fenton氧化降解废气苯的研究[J]. 燃料化学学报(中英文), 2021, 49(2): 220-227. doi: 10.19906/j.cnki.JFCT.2021013
ZHANG Ting-ting, ZHOU Chang-song, ZHOU Meng-chang, WU Hao, ZHANG Zhen, YANG Hong-min. Study on the synergistic heterogeneous Fenton oxidation degradation of benzene containing waste gas using Fe doped UiO-66[J]. Journal of Fuel Chemistry and Technology, 2021, 49(2): 220-227. doi: 10.19906/j.cnki.JFCT.2021013
Citation: ZHANG Ting-ting, ZHOU Chang-song, ZHOU Meng-chang, WU Hao, ZHANG Zhen, YANG Hong-min. Study on the synergistic heterogeneous Fenton oxidation degradation of benzene containing waste gas using Fe doped UiO-66[J]. Journal of Fuel Chemistry and Technology, 2021, 49(2): 220-227. doi: 10.19906/j.cnki.JFCT.2021013

Fe负载UiO-66协同非均相类Fenton氧化降解废气苯的研究

doi: 10.19906/j.cnki.JFCT.2021013
基金项目: 国家自然科学基金(51906114),江苏省自然科学基金(BK20180731)和中国博士后科学基金(2018T110523)资助
详细信息
    通讯作者:

    E-mail: cszhou@njnu.edu.cn

  • 中图分类号: X511

Study on the synergistic heterogeneous Fenton oxidation degradation of benzene containing waste gas using Fe doped UiO-66

Funds: The project was supported by the National Natural Science Foundation of China (51906114), National Science Foundation of Jiangsu Province (BK20180731), China Postdoctoral Science Foundation Project (2018T110523)
More Information
  • 摘要: 采用水热合成法制备了不同掺杂比例Fe负载UiO-66,并借助XRD、SEM、XPS等分析测试手段对催化剂物理化学特性进行分析,通过自制非均相类Fenton体系装置探究不同Fe负载量、H2O2浓度、空塔速率、反应温度等条件下对废气苯的氧化降解效率影响。结果表明,不同Fe负载量的UiO-66均具有较高的结晶度,呈不规则球状;在非均相类Fenton氧化降解苯实验中,30%的Fe负载UiO-66具有最高的苯脱除效率。EPR结果显示,Fe负载量的增大促进·OH的产生,在一定程度上促进苯的氧化降解。过高的反应温度导致H2O2不稳定,非均相类Fenton氧化降解苯的效率随温度的升高先增大后降低。
  • 图  1  实验装置流程示意图

    Figure  1  Schematic diagram of the experimental apparatus

    图  2  不同Fe负载量的Fe/UiO-66催化剂的XRD谱图

    Figure  2  XRD patterns of the Fe/UiO-66 catalysts with different Fe loadings

    图  3  不同Fe负载量的Fe/UiO-66催化剂的SEM照片

    Figure  3  SEM images of the Fe/UiO-66 catalysts with different Fe loadings

    (a):10% Fe/UiO-66;(b):20% Fe/UiO-66; (c):30% Fe/UiO-66;(d):40% Fe/UiO-66

    图  4  不同Fe负载量的Fe/UiO-66的XPS谱图

    Figure  4  XPS patterns of the Fe/UiO-66 catalysts with different Fe loadings

    (a):survey scans;(b):Fe 2p spectra;(c):O 1s spectra

    图  5  Fe负载量对苯氧化降解效率的影响

    Figure  5  Effect of Fe loading on benzene removal efficiency

    (reaction conditions: the initial concentration is 600 mg/m3, temperature is 130 ℃, H2O2 concentration is 1 mol/L)

    图  6  H2O2浓度对不同Fe掺杂量Fe/UiO-66催化剂氧化降解苯的影响

    Figure  6  Effect of H2O2 concentration on benzene removal by four Fe/UiO-66 catalysts with different Fe loadings (reaction conditions: the initial concentration is 600 mg/m3, temperature is 130 ℃)

    图  7  空塔速率对30% Fe/UiO-66非均相类Fenton氧化降解苯的影响

    Figure  7  Effect of superficial velocity on benzene removal by 30% Fe/UiO-66 heterogeneous Fenton reaction (reaction conditions: the initial concentration is 600 mg/m3, temperature is 130 ℃, H2O2 concentration is 1 mol/L)

    图  8  反应温度对30% Fe/UiO-66非均相Fenton氧化降解苯的影响

    Figure  8  Effect of reaction temperature on benzene removal by 30% Fe/UiO-66 heterogeneous Fenton reaction (reaction conditions: the initial concentration is 600 mg/m3, the concentration of H2O2 is 1 mol/L)

    图  9  10% Fe/UiO-66、20% Fe/UiO-66、30% Fe/UiO-66和40% Fe/UiO-66类Fenton反应过程的EPR波谱强度

    Figure  9  EPR spectrum intensity of 10% Fe/UiO-66, 20% Fe/UiO-66, 30% Fe/UiO-66 and 40% Fe/Ui O-66 Fenton reaction processes

    reaction conditions: H2O2 concentration is 1 mol/L, DMPO concentration is 5 mmol/L and reaction measurement time is 15 min

    图  10  30% Fe/UiO-66催化剂的稳定性

    Figure  10  Stability test of the 30% Fe/UiO-66 catalyst

    表  1  催化剂的比表面积及孔容

    Table  1  Surface area and pore volume of the catalysts with different Fe loadings

    SampleSBET/(m2·g−1)Pore volume/(cm3·g−1)
    10% Fe/UiO-661007.00.346
    20% Fe/UiO-661021.80.333
    30% Fe/UiO-661210.50.428
    40% Fe/UiO-661169.70.440
    下载: 导出CSV
  • [1] 汤吉昀, 朱超, 张红欣. 分子筛在挥发性有机物处理中的研究[J]. 应用能源技术,2018,,(9):46−49. doi: 10.3969/j.issn.1009-3230.2018.08.011

    TANG Ji-yun, ZHU Chao, ZHANG Hong-xin. Research on molecular sieve in the treatment of volatile organic compounds[J]. Appl Energy Technol,2018,,(9):46−49. doi: 10.3969/j.issn.1009-3230.2018.08.011
    [2] 贾永芹, 张晓晶. 分子筛负载CoOx催化剂用于苯的催化氧化[J]. 环境科学与技术,2018,41(9):28−32.

    JIA Yong-qin, ZHANG Xiao-jing. Molecular sieve supported CoOx catalyst for catalytic oxidation of Benzene[J]. Environ Sci Technol,2018,41(9):28−32.
    [3] MARIA L A, VIVIAN S M, VIVIAN S M, BRASILEIRO C, POLLYANA C R. Synthesis of mixed oxide Ti/Fe2O3 as solar light-induced photocatalyst for heterogeneous photo-Fenton like process[J]. J Photochem Photobiol, A, 2021, 404: 112873.
    [4] KHAN N A, HASAN Z, JHUNG S H. Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): A review[J]. J Hazard Mater,2013,244-245:444−456. doi: 10.1016/j.jhazmat.2012.11.011
    [5] WU J H, XIA Q B, LI Z, PI Y H. Facilitation of the visible light-induced Fenton-like excitation of H2O2 via heterojunction of g-C3N4/NH2-Iron terephthalate metal-organic framework for MB degradation[J]. Appl Catal B: Environ,2017,202:653−663. doi: 10.1016/j.apcatb.2016.09.073
    [6] MA X C, LI L Q, CHEN R F, WANG C H, LI H L, WANG S B. Heteroatom-doped nanoporous carbon derived from MOF-5 for CO2 capture[J]. Appl Surf Sci,2018,435:494−502. doi: 10.1016/j.apsusc.2017.11.069
    [7] PAN Y, JIANG S S, XIONG W, LIU D R, LUO D. Supported CuO catalysts on metal-organic framework (Cu-UiO-66) for efficient catalytic wet peroxide oxidation of 4-chlorophenol in wastewater[J]. J Hazard Mater,2020,291:109703.
    [8] GONZALEZ-OLMOS R, MARTIN M J, GEORGI A, KOPINKE F D, OLLER L, MALATO S. Fe-zeolites as heterogeneous catalysts in solar Fenton-like reactions at neutral pH[J]. Appl Catal B: Environ,2012,125:51−58. doi: 10.1016/j.apcatb.2012.05.022
    [9] 李银莹. 铁基金属—有机框架非均相类Fenton催化剂降解染料研究[D]. 重庆: 西南大学, 2019.

    LI Yin-ying Study on Fe-based metal-organic framework heterogeneous Fenton catalyst for degradation of dyes[D]. Chongqing: Southwest University, 2019.
    [10] SUN Q, LIU M, LI K Y, HAN Y T, ZUO Y, WANG J H, SONG C S, ZHANG G L, GUO X W. Controlled synthesis of mixed-valent Fe-containing metal organic framework for degradation of phenol under mild conditions[J]. Dalton Trans,2016,10:1039.
    [11] CAVKA J H, JAKOBSEN S, OLSBYE U, GUILLOU N, LAMBERTI C, BORDIGA S, LILLERUD K P. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. J Am Chem Soc,2008,130(42):13850−1. doi: 10.1021/ja8057953
    [12] WEN C Y, WANG C G, CHEN, L G, ZHANG X H, LIU Q Y, MA L L. Effect of hierarchical ZSM-5 zeolite support on direct transformation from syngas to aromatics over the iron-based catalyst[J]. Fuel,2019,244:492−498. doi: 10.1016/j.fuel.2019.02.041
    [13] YU C L, DONG L F, CHEN F, LIU X Q, HUANG B C. Low-temperature SCR of NOx by NH3 over MnOx/SAPO-34 prepared by two different methods: a comparative study[J]. Environ Technol,2017,38:1030−1042. doi: 10.1080/09593330.2016.1216170
    [14] SANDRO B, OLIVER K, ARNO T, RODERIK A. The state of the art in selective catalytic reduction of NOx by ammonia using metal-exchanged zeolite catalysts[J]. Catal Rev,2008,50:492−531. doi: 10.1080/01614940802480122
    [15] 聂明星. 铁基氧化物非均相类Fenton催化剂的制备及其对四环素的降解研究[D]. 合肥: 中国科学技术大学, 2020.

    NIE Ming-xing. Study on the Preparation of Iron-based Oxide Heterogenerous Fenton-like catalysts and Degradation of Tetracycline[D]. Hefei: University of Science and Technology of China, 2020.
    [16] GUO L S, LI J, ZENG Y, KOSOL R, TSUBAKI N. Heteroatom doped iron-based catalysts prepared by urea self-combustion method for efficient CO2 hydrogenation[J]. Fuel,2020,276:118102.
    [17] SALAZAR-AGUILAR A D, VEGA G, CASAS J A, VEGA-DÍAZ S M, QUINTANILLA A. Direct hydroxylation of phenol to dihydroxybenzenes by H2O2 and Fe-based metal-organic framework catalyst at room temperature[J]. Catalysts,2020,10(2):172.
    [18] YAMASHITA T, HAYES P. Erratum to "Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials"[J]. Appl Surf Sci,2008,254:2441−2449. doi: 10.1016/j.apsusc.2007.09.063
    [19] GONG Z J, WEN F W, ZHAO Z W, LI B W. Combination of catalytic combustion and catalytic denitration on semi-coke with Fe2O3 and CeO2[J]. Catal Today,2018,318:59−65.
    [20] XU Y, AI X, ZHANG H. The mechanism of degradation of bisphenol A using the magnetically separable CuFe2O4/peroxymonosulfate heterogeneous oxidation process[J]. J Hazard Mater,2016,309:87−96. doi: 10.1016/j.jhazmat.2016.01.023
    [21] CHEN H, ZHANG Z L, YANG Z L, YANG Q, LI B, BAI Z Y. Heterogeneous fenton-like catalytic degradation of 2,4-dichlorophenoxyacetic acid in water with FeS[J]. Chem Eng J,2015,273:481−489. doi: 10.1016/j.cej.2015.03.079
    [22] WANG Y, LIU Y X, LIU Y. Elimination of nitric oxide using new Fenton process based on synergistic catalysis: Optimization and mechanism[J]. Chem Eng J,2019,372:92−98. doi: 10.1016/j.cej.2019.04.122
    [23] XIN S S, LIU G C, MA X H, GONG J X, XIN Y J. High efficiency heterogeneous Fenton-like catalyst biochar modified CuFeO2 for the degradation of tetracycline: Economical synthesis, catalytic performance and mechanism[J]. Appl Catal B: Environ, 2021, 280: 119386.
    [24] GUO R T, PAN W G, ZHANG X B, REN J X, JIN Q, XU H J, WU J. Removal of NO by using Fenton reagent solution in a lab-scale bubbling reactor[J]. Fuel,2011,90(11):3295−3298. doi: 10.1016/j.fuel.2011.06.030
    [25] LIU Y, WANG Y. Removal of gaseous hydrogen sulfide by a Photo-Fenton wet oxidation scrubbing system[J]. Energy Fuels,2019,33(11):10812−10819.
    [26] 周长松. 铁基非均相类Fenton催化剂脱除烟气中汞的实验与机理研究[D]. 武汉: 华中科技大学, 2016.

    ZHOU Chang-song. Experimental and mechanism study of elemental mercury removal from flue gas over iron-based Fenton-like catalysts[D]. Wuhan: Huazhong University of Science and Technology, 2016.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  318
  • HTML全文浏览量:  139
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-29
  • 修回日期:  2020-11-09
  • 刊出日期:  2021-02-08

目录

    /

    返回文章
    返回