留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

镍基催化剂催化木醋液重整制氢实验研究

梁昌明 张安东 李志合 李玉峰 王绍庆 易维明

梁昌明, 张安东, 李志合, 李玉峰, 王绍庆, 易维明. 镍基催化剂催化木醋液重整制氢实验研究[J]. 燃料化学学报, 2021, 49(2): 168-177. doi: 10.19906/j.cnki.JFCT.2021016
引用本文: 梁昌明, 张安东, 李志合, 李玉峰, 王绍庆, 易维明. 镍基催化剂催化木醋液重整制氢实验研究[J]. 燃料化学学报, 2021, 49(2): 168-177. doi: 10.19906/j.cnki.JFCT.2021016
LIANG Chang-ming, ZAHNG An-dong, LI Zhi-he, LI Yu-feng, WANG Shao-qing, YI Wei-ming. Hydrogen production from wood vinegar reforming over cobalt modified nickel-based catalyst[J]. Journal of Fuel Chemistry and Technology, 2021, 49(2): 168-177. doi: 10.19906/j.cnki.JFCT.2021016
Citation: LIANG Chang-ming, ZAHNG An-dong, LI Zhi-he, LI Yu-feng, WANG Shao-qing, YI Wei-ming. Hydrogen production from wood vinegar reforming over cobalt modified nickel-based catalyst[J]. Journal of Fuel Chemistry and Technology, 2021, 49(2): 168-177. doi: 10.19906/j.cnki.JFCT.2021016

镍基催化剂催化木醋液重整制氢实验研究

doi: 10.19906/j.cnki.JFCT.2021016
基金项目: 国家重点研发计划项目(2019YFD1100600),国家自然科学基金(51606113)和山东省自然科学基金(ZR2020ME185)资助
详细信息
    通讯作者:

    Tel: 18678191880, E-mail: lizhihe@sdut.edu.cn

  • 中图分类号: O643

Hydrogen production from wood vinegar reforming over cobalt modified nickel-based catalyst

Funds: The project was supported by National Key Research and Development Program of China (2019YFD1100600), National Natural Science Foundation of China (51606113) and Natural Science Foundation of Shandong Province (ZR2020ME185)
More Information
  • 摘要: 为了实现木醋液的高值化利用,在固定床反应器中,进行木醋液催化重整制氢实验,采用浸渍法制备一系列不同Co添加量的Ni基催化剂,以产氢率、碳转化率、H2选择性和积炭量为主要评价指标,探究液时空速、反应温度、镍钴比等工况对木醋液催化重整制氢的影响,同时采用 XRF、H2-TPR、SEM及元素分析等方法对催化剂进行了表征。结果表明,液时空速增加,产气量增大,但液时空速过高会加速催化剂失活。高温有利于木醋液的催化重整制氢反应,温度到达900 ℃时,氢气产率最高。随着钴添加量的增加,反应产生的积炭降低,但氢气产率也会有所下降。因此,当液时空速为60 h−1,温度为800 ℃时,采用Ni-0.5Co/Al2O3催化剂,最适于木醋液的催化重整制氢实验。
  • 图  1  不同液时空速下各气体产率

    Figure  1.  Yields of gases at different LHSV

    图  2  不同液时空速下的碳转化率

    Figure  2.  Carbon conversion at different LHSV

    图  3  不同液时空速下的氢气选择性

    Figure  3.  H2 selectivity at different LHSV

    图  4  不同温度下各气体产率

    Figure  4.  Yields of gases at different temperatures

    图  5  不同温度下的碳转化率

    Figure  5.  Carbon conversion at different temperatures

    图  6  不同温度下的氢气选择性

    Figure  6.  H2 selectivity at different temperatures

    图  7  不同镍钴比催化剂的各气体产率

    Figure  7.  Yields of gases in catalysts with different Ni/CO ratios

    图  8  不同镍钴比催化剂的碳转化率

    Figure  8.  The carbon conversion in catalysts with different Ni/CO ratios

    图  9  不同镍钴比催化剂的氢气选择性

    Figure  9.  The H2 selectivity in catalysts with different Ni/CO ratios

    图  10  催化剂的H2-TPR谱图

    Figure  10.  H2-TPR profiles of catalysts

    图  11  反应后催化剂的表观形貌照片

    Figure  11.  SEM images of used catalysts

    (a): used Ni/Al2O3; (b): used Ni-0.5Co/Al2O3; (c): used Co/Al2O3

    图  12  不同液时空速、不同温度和不同镍钴比催化剂的含炭量

    Figure  12.  Carbon content of catalysts with different LHSV, temperatures and Ni/CO ratios

    图  13  GC-MS色谱图上各组分的总面积和数量

    Figure  13.  Total area and number of components in GC-MS chromatograms

    表  1  木醋液的主要成分统计

    Table  1.   Statistical result on the main components of wood vinegar

    NoRTNameMol.formulaArea/%
    14.297waterH2O23.95
    24.958acetic acid, methyl esterC3H6O21.73
    37.474acetic acidC2H4O216.63
    48.4962-propanone, 1-hydroxy-C3H6O26.71
    510.026propanoic acidC3H6O21.81
    611.1521-hydroxy-2-butanoneC4H8O21.41
    712.591butanoic acidC4H8O20.54
    813.053-cyclopentene-1-acetaldehyde, 2-oxo-C7H8O21.17
    914.7882-cyclopenten-1-one, 2-methyl-C6H8O0.68
    1017.8492-cyclopenten-1-one, 3-methyl-C6H8O0.68
    1117.989butyrolactoneC4H6O20.98
    1219.5322-cyclopenten-1-one, 2-hydroxy-3-methyl-C6H8O22.49
    1320.377phenolC6H6O4.99
    1420.983phenol, 2-methoxy-C7H8O21.54
    1521.797phenol, 2-methyl-C7H8O0.94
    1622.28nonane, 5-butyl-C13H280.95
    1722.819phenol, 4-methyl-C7H8O0.58
    1822.874phenol, 3-methyl-C7H8O0.84
    1923.143propanoic acid, 2-methyl-, anhydrideC8H14O32.23
    2023.939phenol, 2-methoxy-4-methyl-C8H10O20.84
    2124.196cyclopropyl carbinolC4H8O5.77
    2226.3933(2H)-furanone, dihydro-5-isopropyl-C7H12O20.95
    2327.2141,4:3,6-dianhydro-α-D-glucopyranoseC6H8O41.16
    2429.142phenol, 2,6-dimethoxy-C8H10O32.07
    2531.419phenol, 4-methoxy-3-(methoxymethyl)-C9H12O30.65
    2631.713hydroquinoneC6H6O20.71
    2737.0871,6-anhydro-α-D-glucopyranose (levoglucosan)C6H10O54.04
    note: only the components with relative peak area percentage greater than 0.5% were counted in the table
    下载: 导出CSV

    表  2  催化剂的组成

    Table  2.   Component content of catalysts

    Componentsabcde
    Ni/%3.952.783.121.870.00
    Co/ %0.001.752.473.243.31
    下载: 导出CSV

    表  3  木醋液催化重整制氢反应的实验方案

    Table  3.   Experimental scheme of hydrogen production by catalytic reforming of wood vinegar

    FactorsLevels
    LHSV/h−1 10 20 30 40 50 60 70 80
    Temperature/°C 500 600 700 800 900
    Ni/Co ratio 1:0 1:0.5 1:1 0.5:1 0:1
    下载: 导出CSV
  • [1] SHARMA S, GHOSHAL S K. Hydrogen the future transportation fuel: From production to applications[J]. Renewable Sustainable Energy Rev,2015,43:1151−1158. doi: 10.1016/j.rser.2014.11.093
    [2] WU Q, ZHANG S, HOU B. Study on the preparation of wood vinegar from biomass residues by carbonization process[J]. Bioresour Technol,2015,179:98−103. doi: 10.1016/j.biortech.2014.12.026
    [3] 王海英, 杨国亭, 周丹. 木醋液研究现状及其综合利用[J]. 东北林业大学学报,2004,9(5):55−57. doi: 10.3969/j.issn.1000-5382.2004.05.020

    WANG Hai-ying, YANG Guo-ting, ZHOU Dan. Research situation and comprehensive utilization of wood vinegar[J]. J Northeast For Univ,2004,9(5):55−57. doi: 10.3969/j.issn.1000-5382.2004.05.020
    [4] ORAMAHI H A, YOSHIMURA T. Antifungal and antitermitic activities of wood vinegar from Vitex pubescens Vahl[J]. J Wood Sci,2013,59(4):344−350. doi: 10.1007/s10086-013-1340-8
    [5] MUNGKUNKAMCHAO T, KESMALA T, PIMRATCH S, TOOMSAN B, JOTHITYANGKOON D. Wood vinegar and fermented bioextracts: Natural products to enhance growth and yield of tomato (Solanum lycopersicum L.)[J]. Sci Hortic,2013,154:66−72. doi: 10.1016/j.scienta.2013.02.020
    [6] 卢辛成, 蒋剑春, 孙康, 孙云娟. 木醋液的精制与应用研究进展[J]. 林产化学与工业,2017,37(3):1−9. doi: 10.3969/j.issn.0253-2417.2017.03.001

    LU Xin-cheng, JIANG Jian-chun, SUN Kang, SUN Yun-juan. Review on preparation and application of wood vinegar[J]. Chem Ind Forest Prod,2017,37(3):1−9. doi: 10.3969/j.issn.0253-2417.2017.03.001
    [7] 蒋恩臣, 赵晨希, 秦丽元, 陈爱慧. 松子壳连续热解制备木醋液试验[J]. 农业工程学报,2014,30(5):262−269. doi: 10.3969/j.issn.1002-6819.2014.05.033

    JIANG En-chen, ZHAO Chen-xi, QIN Li-yuan, CHEN Ai-hui. Experiment of wood vinegar produced from pine nut shell continuous pyrolysis[J]. Trans CSAE,2014,30(5):262−269. doi: 10.3969/j.issn.1002-6819.2014.05.033
    [8] XU X, JIANG E, LI B, WANG M. Hydrogen production from wood vinegar of camellia oleifera shell by Ni/M/γ-A12O3 catalyst[J]. Catal Commun,2013,39:106−114. doi: 10.1016/j.catcom.2013.04.024
    [9] MEDRANO J A, OLIVA M, RUIZ J. Hydrogen from aqueous fraction of biomass pyrolysis liquids by catalytic steam reforming in fluidized bed[J]. Energy,2011,36:2215−2224. doi: 10.1016/j.energy.2010.03.059
    [10] XU X, JIANG E, SUN Y, LI Z. Influence of mixed supports on the steam catalytic reforming of wood vinegar[J]. Energy Fuels,2017,31(2):1678−1688. doi: 10.1021/acs.energyfuels.6b03000
    [11] FU P, ZHANG A, LUO S, YI W, HU S, ZHANG Y. Catalytic steam reforming of biomass-derived acetic acid over two supported Ni catalysts for hydrogen-rich syngas production[J]. ACS Omega,2019,4(8):13585−13593. doi: 10.1021/acsomega.9b01985
    [12] ZHANG A, LI Z, YI W, FU P, WANG L, LIANG C, LUO S. Study the reaction mechanism of catalytic reforming of acetic acid through the instantaneous gas production[J]. Int J Hydrogen Energy,2019,44(39):21279−21289. doi: 10.1016/j.ijhydene.2019.06.060
    [13] LI L, JIANG B, TANG D, ZHANG Q, ZHEG Z. Hydrogen generation by acetic acid steam reforming over Ni-based catalysts derived from La1−x CexNiO3 perovskite[J]. Int J Hydrogen Energy,2018,43(14):6795−6803. doi: 10.1016/j.ijhydene.2018.02.128
    [14] SIANG J, LEE C, WANG C. Hydrogen production from steam reforming of ethanol using a ceria-supported iridium catalyst: effect of different ceria supports[J]. Int J Hydrogen Energy,2010,35(8):3456−3462. doi: 10.1016/j.ijhydene.2010.01.067
    [15] ZHANG B, TANG X, LI Y. Steam reforming of bio-ethanol for the production of hydrogen over ceria-supported Co, Ir and Ni catalysts[J]. Catal Commun,2006,7(6):367−372. doi: 10.1016/j.catcom.2005.12.014
    [16] HE S, MEI Z, LIU N. Ni/SBA-15 catalysts for hydrogen production by ethanol steam reforming: Effect of nickel precursor[J]. Int J Hydrogen Energy,2017,42(21):14429−14438. doi: 10.1016/j.ijhydene.2017.02.115
    [17] XIE H Q, YU Q B, YAO X. Hydrogen production via steam reforming of bio-oil model compounds over supported nickel catalysts[J]. J Energy Chem,2015,24(3):299−308. doi: 10.1016/S2095-4956(15)60315-1
    [18] CONSTANTINOU D A, EFSTATHIOU A M. Low-temperature purification of gas streams from phenol by steam reforming over novel supported-Rh catalysts[J]. Appl Catal B: Environ,2010,96(3/4):276−289. doi: 10.1016/j.apcatb.2010.02.007
    [19] ARTETXE M, NAHIL M A, OLAZAR M, WILLIAMSP T. Steam reforming of phenol as biomass tar model compound over Ni/Al2O3 catalyst[J]. Fuel,2016,184:629−636. doi: 10.1016/j.fuel.2016.07.036
    [20] 王一双, 陈明强, 刘少敏, 杨忠连, 沈朝萍, 刘珂. 负载NiO-Fe2O3的凹凸棒石对生物油模型物催化重整制氢性能的影响[J]. 燃料化学学报,2015,43(12):1470−1475. doi: 10.3969/j.issn.0253-2409.2015.12.010

    WANG Yi-shuang, CHEN Ming-qiang, LlU Shao-min, YANG Zhong-lian, SHEN Chao-ping, LIU Ke. Hydrogen production via cataylic steam reforming of bio-oil model compounds over NiO-Fe2O3-loaded palygouskite[J]. J Fuel Chem Technol,2015,43(12):1470−1475. doi: 10.3969/j.issn.0253-2409.2015.12.010
    [21] NOGUEIRA F, ASSAF P, CARVALHO H, ASSAF E. Catalytic steam reforming of acetic acid as a model compound of bio-oil[J]. Appl Catal B: Environ,2014,160(7):188−199.
    [22] HE Z, YANG M, WANG X, ZHAO Z, DUAN A. Effect of the transition metal oxide supports on hydrogen production from bio-ethanol reforming[J]. Catal Today,2012,194(1):2−8. doi: 10.1016/j.cattod.2012.05.004
    [23] XU X, ZHANG C, LIU Y, ZHAI Y, ZHANG R, TANG X. Catalytic reforming of acetic acid as a model compound of bio-oil for hydrogen production over Ni-CeO2-MgO/olivine catalysts[J]. Environ Prog Sustainable Energy,2015,34(3):915−922. doi: 10.1002/ep.12062
    [24] NABGAN W, ABDULLAH T A T, MAT R. Production of hydrogen via steam reforming of acetic acid over Ni and Co supported on La2O3 catalyst[J]. Int J Hydrogen Energy,2017,42(14):8975−8985. doi: 10.1016/j.ijhydene.2016.04.176
    [25] ZHANG F, WANG M, ZHU L. A comparative research on the catalytic activity of La2O3 and γ-Al2O3 supported catalysts for acetic acid steam reforming[J]. Int J Hydrogen Energy,2017,42(6):3667−3675. doi: 10.1016/j.ijhydene.2016.06.264
    [26] WURZLER G T, RABELO-ETO R C, MATTOS L V. Steam reforming of ethanol for hydrogen production over MgO-supported Ni-based catalysts[J]. Appl Catal A: Gen,2016,518:115−128. doi: 10.1016/j.apcata.2015.11.020
    [27] 吕衍安, 赵星岭, 索掌怀, 廖卫平, 金明善. 负载Ni催化剂上低温甘油蒸汽重整制氢[J]. 燃料化学学报,2015,43(6):684−691. doi: 10.3969/j.issn.0253-2409.2015.06.007

    LV Yan-an, ZHAO Xing-ling, SUO Zhang-huai, LIAO Wei-ping, JIN Ming-shan. Low-temperature steam reforming of glycerol for hydrogen production over supported nickel catalysts[J]. J Fuel Chem Technol,2015,43(6):684−691. doi: 10.3969/j.issn.0253-2409.2015.06.007
    [28] MORAES T S, NETO R C R, RIBEIRO M C, MATTOS L V, KOURTELESIS M, LADAS S, VERYKIOS X, BELLOT NORONHA F. The study of the performance of PtNi/CeO2-nanocube catalysts for low temperature steam reforming of ethanol[J]. Catal Today,2015,242:35−49. doi: 10.1016/j.cattod.2014.05.045
    [29] ZHANG Z M, WANG Y R, SUN K. Steam reforming of acetic acid over Ni-Ba/Al2O3 catalysts: Impacts of barium addition on coking behaviors and formation of reaction intermediates[J]. J Energy Chem,2020,43:208−219. doi: 10.1016/j.jechem.2019.08.023
    [30] VICENTE J, MONTERO C, EREÑA J, AZKOITI M J, BILBAO J, GAYUBO A G. Coke deactivation of Ni and Co catalysts in ethanol steam reforming at mild temperatures in a fluidized bed reactor[J]. Int J Hydrogen Energy,2014,39(24):12586−12596. doi: 10.1016/j.ijhydene.2014.06.093
    [31] ZHANG A, LIANG C, WANG L, LI Z, YI W, FU P, WANG S. Study on the trigger mechanism and carbon behavior of catalytic reforming of wood vinegar[J]. Int J Hydrogen Energy,2020,45(29):14669−14678. doi: 10.1016/j.ijhydene.2020.03.196
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  2
  • HTML全文浏览量:  1
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-15
  • 修回日期:  2020-11-20
  • 刊出日期:  2021-02-08

目录

    /

    返回文章
    返回