留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甲醇制芳烃反应过程中纳米ZSM-5分子筛催化剂性能演变与结构性质的关系研究

李晗 付廷俊 张亮亮 马倩 崔丽萍 李忠

李晗, 付廷俊, 张亮亮, 马倩, 崔丽萍, 李忠. 甲醇制芳烃反应过程中纳米ZSM-5分子筛催化剂性能演变与结构性质的关系研究[J]. 燃料化学学报(中英文), 2021, 49(4): 483-494. doi: 10.19906/j.cnki.JFCT.2021022
引用本文: 李晗, 付廷俊, 张亮亮, 马倩, 崔丽萍, 李忠. 甲醇制芳烃反应过程中纳米ZSM-5分子筛催化剂性能演变与结构性质的关系研究[J]. 燃料化学学报(中英文), 2021, 49(4): 483-494. doi: 10.19906/j.cnki.JFCT.2021022
LI Han, FU Ting-jun, ZHANG Liang-liang, MA Qian, CUI Li-ping, LI Zhong. Variance in the catalytic performance of nano-ZSM-5 zeolites during the reaction process of methanol to aromatics and its relation to the structural properties[J]. Journal of Fuel Chemistry and Technology, 2021, 49(4): 483-494. doi: 10.19906/j.cnki.JFCT.2021022
Citation: LI Han, FU Ting-jun, ZHANG Liang-liang, MA Qian, CUI Li-ping, LI Zhong. Variance in the catalytic performance of nano-ZSM-5 zeolites during the reaction process of methanol to aromatics and its relation to the structural properties[J]. Journal of Fuel Chemistry and Technology, 2021, 49(4): 483-494. doi: 10.19906/j.cnki.JFCT.2021022

甲醇制芳烃反应过程中纳米ZSM-5分子筛催化剂性能演变与结构性质的关系研究

doi: 10.19906/j.cnki.JFCT.2021022
基金项目: 国家重点研发计划(2018YFB0604901)和国家自然科学基金(21978191, 21878207)资助
详细信息
    通讯作者:

    Tel: 15234107713, E-mail: futingjun@tyut.edu.cn

    Tel: 13935153738, E-mail: lizhong@tyut.edu.cn

  • 中图分类号: O643.3

Variance in the catalytic performance of nano-ZSM-5 zeolites during the reaction process of methanol to aromatics and its relation to the structural properties

Funds: The project was supported by the National Key R&D Program of China (2018YFB0604901) and National Nature Science Foundation of China (21978191, 21878207)
More Information
    Corresponding author: Ting-jun. Tel: 15234107713, E-mail: futingjun@tyut.edu.cnTel: 13935153738, E-mail: lizhong@tyut.edu.cn
  • 摘要: ZSM-5分子筛催化甲醇制芳烃反应中,存在产品选择性低和催化稳定性差等问题。本研究通过XRD、物理吸附、NH3-TPD、TEM、TG及27Al MAS NMR等手段表征分析反应过程中ZSM-5的结构变化,结合催化性能演变,探讨不同反应阶段影响其结构与性能的关键因素。结果表明,反应初期19 h内高温水热对铝结构的破坏使酸量由0.41 mmol/g明显降至0.17 mmol/g,低碳烯烃选择性显著增加,液烃收率由14.7%快速增至19.3%。稍后的24 h稳定反应阶段中,积炭速率增加,催化剂比表面积由340 m2/g显著降至275 m2/g,酸量继续下降至0.10 mmol/g;液烃收率仍维持在19.5%,说明该反应仅需少量酸即可维持。之后31 h内积炭不断累积,虽然积炭速率明显降低,但催化剂逐渐失活;外表面积炭显著增加,比表面积和酸量继续缓慢减小,液烃收率降至17.3%,芳烃选择性也随之降低。反应末期的7 h里,积炭严重覆盖了ZSM-5酸位并堵塞孔道,液烃收率突降至12.2%,CH4选择性由13.2%骤增至24.2%;积炭对外表面酸的覆盖减少了表面异构化,对二甲苯在二甲苯中选择性由24.4%增至33.1%。考虑到积炭对失活后团聚晶粒的整体包裹,应设法减少晶粒外表面间的接触,以提升分子对反应活性位的可接近性和催化剂的容碳能力。该研究为芳构化催化剂制备时酸性和形貌的控制提供了依据。
  • FIG. 612.  FIG. 612.

    FIG. 612.  FIG. 612.

    图  1  MTA反应固定床评价装置示意图

    Figure  1  Diagram of fixed bed reactor of MTA reaction

    1-pressure gauge;2-pressure reducing value;3-globe value;4-gas flowmeter;5-stock tank;6-filter;7-micro tube pump;8-preheater;9-reactor;10-condensate recirculating tank;11-condensator;12-liquid storage tank;13-wet gas flowmeter;14-gas chromatograph;15-computer

    图  2  甲醇转化率和液烃收率随时间的变化

    Figure  2  Change in the methanol conversion and yield of liquid hydrocarbon along the time on stream for MTA over ZSM-5 zeolite at 430 °C, 0.5 MPa, and WHSV = 8 h−1

    图  3  (a) 芳烃和BTX选择性, (b) B、T和X选择性, (c) PX/X选择性, (d) Mesitylene和Durene 选择性随时间的变化

    Figure  3  Change in the selectivity of aromatics and BTX (a), B, T and X (b), PX/X (c), Mesitylene and Durene (d) along the time on stream for MTA over ZSM-5 zeolite

    图  4  不同反应时间下的 (a) 烯烃选择性, (b) 烷烃选择性, (c) 甲烷选择性, (d) 氢转移指数

    Figure  4  Selectivity of alkene (a), alkane (b), CH4 (c), and hydrogen transfer index (d) along the time on stream for MTA over ZSM-5 zeolite

    图  5  反应前9 h (a) 烯烃和 (b) 烷烃选择性变化;失活前7 h (c) 烯烃和 (d) 烷烃选择性;失活后 (e) 烯烃和 (f) 烷烃选择性

    Figure  5  Changes in (a) alkene selectivity and (b) alkane selectivity within first 9 h; the changes in (c) alkene selectivity and (d) alkane selectivity within 7 h before the catalyst deactivation; the change in (e) alkene selectivity and (f) alkane selectivity after catalyst deactivation

    图  6  不同反应时间后ZSM-5分子筛的 (a) XRD谱图, (b) 相对结晶度图, (c) 铝核磁图, (d) 铝分布定量计算

    Figure  6  (a) XRD patterns, (b) relative crystallinity, (c) 27Al MAS NMR spectra, (d) quantitative calculation result of 27Al MAS NMR of ZSM-5 after different reaction times

    图  7  不同反应时间后ZSM-5的TEM照片

    Figure  7  TEM images of ZSM-5 zeolites after different

    reaction times: (a) NZ-0; (b) NZ-19; (c) NZ-43; (d) NZ-74

    图  8  不同反应时间后ZSM-5分子筛的 (a) NH3-TPD 谱图 (b) 酸量变化

    Figure  8  (a) NH3-TPD profiles (b) acid change of the ZSM-5 after different reaction time

    图  9  不同反应时间后ZSM-5分子筛 (a) N2物理吸附-脱附等温线 (b) 比表面积对比

    Figure  9  (a) N2 adsorption/desorption isotherms, (b) the comparison of BET surface area of the ZSM-5 zeolites after different reaction times

    图  10  (a) 不同反应时间后ZSM-5的 TG 曲线(b) 不同反应阶段ZSM-5的积炭速率

    Figure  10  (a) TG profiles of the ZSM-5 after different reaction times and (b) the rate of coke formation after different reaction stages

    表  1  不同反应时间ZSM-5分子筛的织构性质

    Table  1  Textural properties of the ZSM-5 after different reaction times

    SampleSBET
    (m2·g−1)
    SMicro/
    (m2·g−1)
    SExter/
    (m2·g−1)
    vTotal/
    (cm3·g−1)
    vMicro/
    (cm3·g−1)
    vMeso/
    (cm3·g−1)
    NZ-0389294950.540.1380.402
    NZ-9355288670.480.1370.343
    NZ-19340277630.460.1320.329
    NZ-43275218570.400.1020.298
    NZ-74265212530.380.0950.285
    NZ-81245197480.340.0860.254
    SBET=BET surface area, calculated by the BET model
    Smicro=micropore area, SExter=external surface surface area, determined by the t-plot method
    vtotal=total pore volume, determined from the absorbed amount at p/p0=0.99
    vmicro=micropore volume, calculate by the t-plot method
    下载: 导出CSV
  • [1] GAO P, XU J, QI G D, WANG C, WANG Q, ZHAO Y X, ZHANG Y H, FENG N D, ZHAO X L, LI J L, DENG F. A Mechanistic study of methanol-to-aromatics reaction over Ga-modified ZSM-5 zeolites: Understanding the dehydrogenation process[J]. ACS Catal,2018,8(10):9809−9820. doi: 10.1021/acscatal.8b03076
    [2] PAN D H, SONG X H, YANG X H, GAO L J, WEI R P, ZHANG J, XIAO G M. Efficient and selective conversion of methanol to para-xylene over stable H[Zn, Al]ZSM-5/SiO2 composite catalyst[J]. Appl Catal A: Gen,2018,557:15−24. doi: 10.1016/j.apcata.2018.03.006
    [3] QIAO J, WANG J Q, FRENKEL A I, TENG J W, CHEN X Q, XIAO J X, ZHANG T Z, WANG Z D, YUAN Z Q, YANG, W M. Methanol to aromatics: Isolated zinc phosphate groups on HZSM-5 zeolite enhance BTX selectivity and catalytic stability[J]. RSC Adv,2020,10:5961−5971. doi: 10.1039/C9RA09657D
    [4] 郭淑佳, 王森, 罗耀亚, 罗莉, 董梅, 秦张峰, 樊卫斌, 王建国. H-ZSM-5分子筛形貌对ZnCr2O4/H-ZSM-5双功能催化剂合成气制芳烃催化性能的影响[J]. 燃料化学学报,2020,48(8):970−979. doi: 10.3969/j.issn.0253-2409.2020.08.009

    GUO Shu-jia, WANG Sen, LUO Yao-ya, LUO Li, DONG Mei, QIN Zhang-feng, FAN Wei-bin, WANG Jian-guo. Effect of H-ZSM-5 zeolite morphology on the performance of bifuctional ZnCr2O4/H-ZSM-5 catalysts in the direct conversion of syngas into aromatics[J]. J Fuel Chem Technol,2020,48(8):970−979. doi: 10.3969/j.issn.0253-2409.2020.08.009
    [5] INUI T, MAKINO Y, OKAZUMI F, NAGANO S, MIYAMOTO A. Selective aromatization of light paraffins on platinum-ion-exchanged gallium-silicate bifunctional catalysts[J]. Chem Inform,1987,26(4):647−652.
    [6] ZHAO J J, WANG Y Q, SUN C, ZHAO A J, WANG C, ZHANG X, WANG Z Y, ZHAO T T, LIU W R, LU J X. Synthesis of hierarchical ZSM-5 aggregates by an alkali-treated seeds method with cetyltrimethylammonium bromide for the methanol to gasoline reaction[J]. React Kinet Mech Catal,2019,128:1079−1096. doi: 10.1007/s11144-019-01671-0
    [7] JAVDANI A, AHMADPOUR J, YARIPOUR F. Nano-sized ZSM-5 zeolite synthesized via seeding technique for methanol conversions: A review[J]. Microporous Mesoporous Mater,2019,284:443−458. doi: 10.1016/j.micromeso.2019.04.063
    [8] NI Y M, ZHU W L. Formaldehyde intermediate participating in the conversion of methanol to aromatics over zinc modified H-ZSM-5[J]. J Energy Chem,2021,54:174−178. doi: 10.1016/j.jechem.2020.05.063
    [9] TREPS L, GOMEZ A, BRUIN T D, CHIZALLET C. Environment, stability and acidity of external surface sites of silicalite-1 and ZSM-5 micro and nano slabs, sheets, and crystals[J]. ACS Catal,2020,10(5):3297−3312. doi: 10.1021/acscatal.9b05103
    [10] 邵娟, 付廷俊, 常江伟, 万威利, 齐瑞岳, 李忠. ZSM-5分子筛催化甲醇制汽油反应中的晶粒粒径效应研究[J]. 燃料化学学报,2017,45(1):75−83. doi: 10.3969/j.issn.0253-2409.2017.01.011

    SHAO Juan, FU Ting-jun, CHANG Jiang-wei, WAN Wei-li, QI Rui-yue, LI Zhong. Effect of ZSM-5 crystal size on its catalytic properties for conversion of methanol to gasoline[J]. J Fuel Chem Technol,2017,45(1):75−83. doi: 10.3969/j.issn.0253-2409.2017.01.011
    [11] XU Y F, WANG J, MA G Y, LIN J H, DING M Y. Designing of hollow ZSM-5 with controlled mesopore sizes to boost gasoline production from syngas[J]. ACS Sustainable Chem Eng,2019,7(21):18125−18132.
    [12] BARBERA K, BONINO F, BORDIGA S, JANSSENS T V W, BEATO P. Structure-deactivation relationship for ZSM-5 catalysts governed by framework defects[J]. J Catal,2011,280(2):196−205. doi: 10.1016/j.jcat.2011.03.016
    [13] FU T J, MA Z, WANG Y J, SHAO J, MA Q, ZHANG C M, CUI L P, LI Z. Si/Al ratio induced structure evolution during desilication-recrystallization of silicalite-1 to synthesize nano-ZSM-5 catalyst for MTH reaction[J]. Fuel Process Technol,2019,194:106122. doi: 10.1016/j.fuproc.2019.106122
    [14] YANG C G, QIU M H, HU S W, CHEN X Q, ZENG G F, LIU Z Y, SUN Y H. Stable and efficient aromatic yield from methanol over alkali treated hierarchical Zn-containing HZSM-5 zeolites[J]. Microporous Mesoporous Mater,2016,231:110−116. doi: 10.1016/j.micromeso.2016.05.021
    [15] ROWNAGHI A A, REZAEI F, HEDLUND J. Selective formation of light olefin by n-hexane cracking over HZSM-5: Influence of crystal size and acid sites of nano- and micrometer-sized crystals[J]. Chem Eng J,2012,191:528−533. doi: 10.1016/j.cej.2012.03.023
    [16] SHEN K, WANG N, CHEN X D, CHEN Z H, LI Y W, CHEN J Y, QIAN W Z. Seed-induced and additive-free synthesis of oriented nanorod-assembled meso/macroporous zeolites: Toward efficient and cost-effective catalysts for the MTA reaction[J]. Catal Sci Technol,2017,7(21):5143−5153. doi: 10.1039/C7CY01647F
    [17] CHOI M, NA K, KIM J, SAKAMOTO Y, TERASAKI O, RYOO R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts[J]. Chem Inform,2009,461(828):246−249.
    [18] SHEN K, QIAN W Z, WANG N, SU C, WEI F. Fabrication of c-axis oriented ZSM-5 hollow fibers based on an in situ solid-solid transformation mechanism[J]. J Am Chem Soc,2013,135(41):15322−15325. doi: 10.1021/ja408624x
    [19] YANG L Z, LIU Z Y, LIU Z, PENG W Y, LIU Y Q, LIU C Q, LIU C G. Correlation between H-ZSM-5 crystal size and catalytic performance in the methanol-to-aromatics reaction[J]. Chin J Catal,2017,38(4):683−690. doi: 10.1016/S1872-2067(17)62791-8
    [20] WAN Z J, LI G K, WANG C F, TANG H, ZHANG D K. Relating coke formation and characteristics to deactivation of ZSM-5 zeolite in methanol to gasoline conversion[J]. Appl Catal A: Gen,2018,519:141−151.
    [21] SUN L Y, WANG Y Q, CHEN H B, SUN C, MENG F J, GAO F, WANG X. Direct synthesis of hierarchical ZnZSM-5 with addition of CTAB in a seeding method and improved catalytic performance in methanol to aromatics reaction[J]. Catal Today,2018,316:91−98. doi: 10.1016/j.cattod.2018.01.015
    [22] FENG W, GAO X F, DING C M, JIA Y M, LIU P. Effect of weak base modification on ZSM-5 catalyst for methanol to aromatics[J]. Appl Organomet Chem,2016,31(6):1−7.
    [23] WAN Z J, WU W, LI G, WANG C F, YANG H, ZHANG D K. Effect of SiO2/Al2O3 Ratio on the Performance of Nanocrystal ZSM-5 Zeolite Catalysts in Methanol to Gasoline Conversion[J]. Appl Catal A: Gen,2016,523:312−320. doi: 10.1016/j.apcata.2016.05.032
    [24] GAO Y, ZHENG B H, WU G, MA F W, LIU C T. Effect of the Si/Al ratio on the performance of hierarchical ZSM-5 zeolites for methanol aromatization[J]. RSC Adv,2016,6:83581−83588. doi: 10.1039/C6RA17084F
    [25] PINILLA-HERRERO I, BORFECCHIA E, HOLZINGER J, MENTZEL U V,. JOENSEN F, LOMACHENKO K A, BORDIGA S, LAMBERTI C, BERLIER G, OLSBYE U, SVELLE S, SKIBSTED J, BEATO P. High Zn/Al ratios enhance dehydrogenation vs hydrogen transfer reactions of Zn-ZSM-5 catalytic systems in methanol conversion to aromatics[J]. J Catal,2018,362:146−163. doi: 10.1016/j.jcat.2018.03.032
    [26] ZHANG G Q, BAI T, CHEN T F, FAN W T, ZHANG X. Conversion of methanol to light aromatics on Zn-modified nano-HZSM-5 zeolite catalysts[J]. Ind Eng Chem Res,2014,53:14932−14940. doi: 10.1021/ie5021156
    [27] ZHANG Y P, LI M G, XING E H, LUO Y B, SHU X T. Coke evolution on mesoporous ZSM-5 during methanol to propylene reaction[J]. Catal Commun,2019,119:67−70. doi: 10.1016/j.catcom.2018.10.009
    [28] DAI C Y, DU K, CHEN Z S, CHEN H Y, GUO X W, MA X X. Synergistic catalysis of multi-stage pore-Rich H-BZSM-5 and Zn-ZSM-5 for the production of aromatic hydrocarbons from methanol via lower olefins[J]. Ind Eng Chem Res,2020,59(47):20693−20700. doi: 10.1021/acs.iecr.0c05225
    [29] LIU B, SLOCOMBE D, ALKINANY M, WANG J, ARDEN J, VAI A, GONZALEZ-CORTES S, XIAO T, KUZNETSOV V, EDWARDS P P. Advances in the study of coke formation over zeolite catalysts in the methanol-to-hydrocarbon process[J]. Appl Petrochem Res,2016,6(3):1−7.
    [30] WANG N, HOU Y L, SUN W J, CAI D L, CHEN Z H, LIU L M, GE B, HU L, QIAN W Z, WEI F. Modulation of b-axis thickness within MFI zeolite: Correlation with variation of product diffusion and coke distribution in the methanol-to-hydrocarbons conversion[J]. Appl Catal B: Environ,2019,243:721−733. doi: 10.1016/j.apcatb.2018.11.023
    [31] CHOUDHARY V R, BANERJEE S, PANJALA D. Product distribution in the aromatization of dilute ethene over H-GaAlMFI zeolite: effect of space velocity[J]. Microporous Mesoporous Mater,2002,51(3):203−210. doi: 10.1016/S1387-1811(01)00483-8
    [32] CHEN H Y, YANG M F, SHANG W J, TONG Y, LIU B Y, HAN X L, ZHANG J B, HAO Q Q, SUN M, MA X X. Organosilane Surfactant-directed Synthesis of Hierarchical ZSM-5 Zeolites with Improved Catalytic Performance in MTP Reaction[J]. Ind Eng Chem Res,2018,57:10956−10966. doi: 10.1021/acs.iecr.8b00849
    [33] IBANEZ M, GAMERO M, RUIZ-MARTINE J, WECKHUYSEN B M, AGUAYO A T, BILBAO J, CASTANO P. Simultaneous coking and dealumination of zeolite H-ZSM-5 during the transformation of chloromethane into olefins[J]. Catal Sci Technol,2016,6:296−306. doi: 10.1039/C5CY00784D
    [34] GAYUBO A G, AGUAYO A T, OLAZAR M, VIVANCO R, BLBAO J. Kinetics of the irreversible deactivation of the HZSM-5 catalyst in the MTO process.[J]. Chem Eng Sci,2003,58(23/24):5239−5249. doi: 10.1016/j.ces.2003.08.020
    [35] YU Z W, LI S H, WANG Q, ZHENG A M, JUN X, CHEN L, DENG F. Brønsted/lewis acid synergy in H-ZSM-5 and H-MOR zeolites studied by 1H and 27Al DQ-MAS solid-state NMR spectroscopy[J]. J Phys Chem C,2011,115:22320−22327. doi: 10.1021/jp203923z
    [36] MA Q, FU T J, WANG Y J, LI H, CUI L P, LI Z. Development of mesoporous ZSM-5 zeolite with microporosity preservation through induced desilication[J]. J Mater Sci,2020,55:11870−11890. doi: 10.1007/s10853-020-04855-5
    [37] LI M R, ZHOU Y P, JU C, FANG Y M. Remarkable increasing of ZSM-5 lifetime in methanol to hydrocarbon reaction by post engineering in fluoride media[J]. Appl Catal A: Gen,2016,512:1−8. doi: 10.1016/j.apcata.2015.12.001
    [38] KIM J, CHOI M, RYOOR. Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process[J]. J Catal,2010,269(1):219−228. doi: 10.1016/j.jcat.2009.11.009
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  439
  • HTML全文浏览量:  127
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-05
  • 修回日期:  2020-12-07
  • 网络出版日期:  2021-03-30
  • 刊出日期:  2021-04-10

目录

    /

    返回文章
    返回