留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弥勒褐煤结构特征及其分子模型构建

张殿凯 李艳红 常丽萍 訾昌毓 张远琴 田国才 赵文波

张殿凯, 李艳红, 常丽萍, 訾昌毓, 张远琴, 田国才, 赵文波. 弥勒褐煤结构特征及其分子模型构建[J]. 燃料化学学报(中英文), 2021, 49(6): 727-734. doi: 10.19906/j.cnki.JFCT.2021026
引用本文: 张殿凯, 李艳红, 常丽萍, 訾昌毓, 张远琴, 田国才, 赵文波. 弥勒褐煤结构特征及其分子模型构建[J]. 燃料化学学报(中英文), 2021, 49(6): 727-734. doi: 10.19906/j.cnki.JFCT.2021026
ZHANG Dian-kai, LI Yan-hong, CHANG Li-ping, ZI Chang-yu, ZHANG Yuan-qin, TIAN Guo-cai, ZHAO Wen-bo. Structural characteristics of Mile lignite and its molecular model construction[J]. Journal of Fuel Chemistry and Technology, 2021, 49(6): 727-734. doi: 10.19906/j.cnki.JFCT.2021026
Citation: ZHANG Dian-kai, LI Yan-hong, CHANG Li-ping, ZI Chang-yu, ZHANG Yuan-qin, TIAN Guo-cai, ZHAO Wen-bo. Structural characteristics of Mile lignite and its molecular model construction[J]. Journal of Fuel Chemistry and Technology, 2021, 49(6): 727-734. doi: 10.19906/j.cnki.JFCT.2021026

弥勒褐煤结构特征及其分子模型构建

doi: 10.19906/j.cnki.JFCT.2021026
基金项目: 国家自然科学基金(21766013)和昆明理工大学分析测试基金(2020M20192208021)资助
详细信息
    通讯作者:

    E-mail: liyh_2004@163.com

  • 中图分类号: TQ531

Structural characteristics of Mile lignite and its molecular model construction

Funds: The project was supported by the Natural Science Foundation of China (21766013) and Analysis and Testing Foundation of Kunming University of Science and Technology (2020M20192208021)
More Information
  • 摘要: 以云南弥勒褐煤为研究对象,采用元素分析、傅里叶变换红外光谱、13C固体核磁共振波谱以及X射线光电子能谱等现代分析技术,获取了弥勒褐煤的结构参数信息。其中,芳香度为38.79%,芳香环取代基数量为3。芳香碳结构主要为苯和萘,脂肪碳结构以甲基、亚甲基为主;氧主要存在于醚氧、羧基和羰基中;氮主要以吡咯氮和吡啶氮的形式存在;硫主要为硫酚或硫醇。根据分析结果,构建出弥勒褐煤的分子结构模型,分子式为C147H148O36N2S。采用半经验法PM3基组和密度泛函理论M06-2X泛函对分子构型进行优化,优化后的模型立体构型显著,且芳香层片在空间上呈现不规则排列,各芳香环之间主要通过甲基、亚甲基、甲氧基以及脂肪环连接。模拟FT-IR光谱和模拟 13C NMR波谱均与实验谱图吻合良好,证明了弥勒褐煤分子模型的准确性和合理性。
  • FIG. 714.  FIG. 714.

    FIG. 714.  FIG. 714.

    图  1  分子模型构建流程图

    Figure  1  Procedure of model construction

    图  2  ML的 13C NMR分峰拟合谱图

    Figure  2  13C NMR peak fitting spectra of ML

    图  3  ML的红外光谱谱图

    Figure  3  FT-IR spectrum of ML

    图  4  ML的XPS分峰拟合图

    Figure  4  XPS peak fitting diagrams of ML

    图  5  ML的分子结构模型(C147H148O36N2S)

    Figure  5  Molecular structure model of ML (C147H148O36N2S)

    图  6  计算谱图与实验谱图对比:(a)FT-IR谱图;(b) 13C NMR谱图

    Figure  6  Comparison of the calculated spectra with the experimental spectra: (a) FT-IR spectra; (b) 13C NMR spectra

    表  1  ML的工业分析与元素分析

    Table  1  Proximate analysis and Ultimate analysis of ML

    Proximate analysis w/%Ultimate analysis wdaf/%
    MadAdVdafFCdafCHNStO
    7.229.5559.1840.8269.665.831.100.8322.58
    notes: Mad is the moisture mass fraction of sample on the air dry basis; Ad is the ash mass fraction of sample on the dry basis; Vdaf is the volatile matter mass fraction of sample on the dry ash-free basis; FCdaf is the fixed carbon mass fraction of sample on the dry ash-free basis; St is the total sulfur
    下载: 导出CSV

    表  2  ML 13C NMR分峰获得的含碳官能团的化学位移和含量

    Table  2  The chemical shifts and the contents of carbon-containing functional groups obtained from 13C NMR peaks of ML

    Carbon typeChemical
    shift δ
    SymbolMolar content/%
    Aliphaticaliphatic CH315fal13.40
    aromatic CH320fala11.20
    methylene25, 31fal222.60
    quaternary sp3C40, 47fal35.36
    oxygen aliphatic carbon55, 63, 74, 83falo11.62
    Aromaticaromatic protonated105, 115, 127faH23.95
    aromatic bridgehead137fab3.84
    alkylated aromatic146fas5.80
    oxygen aromatic carbon154fao25.20
    Carbonylcarboxyl carbon173faC14.00
    carbonyl carbon205faC23.03
    下载: 导出CSV

    表  3  ML的XPS分析

    Table  3  XPS analysis results of ML

    Functional groupBinding energy E/eVContent/%
    C 1sC−C/C−H284.8(± 0.2)77.22
    C−O286.3(± 0.2)15.61
    C=O/O−C−O287.5(± 0.2)4.51
    COOH289.0(± 0.2)2.66
    O 1sinorganic oxygen530.3(± 0.2)2.45
    C=O/O−C−O531.4(± 0.2)35.24
    C−O532.5(± 0.2)43.20
    COOH533.9(± 0.2)19.10
    N 1spyridine nitrogen399.5(± 0.2)39.45
    pyrrolic nitrogen 400.5(± 0.2)30.22
    quaternary nitrogen401.3(± 0.2)18.89
    oxidized nitrogen402.8(± 0.2)11.44
    S 2pmercaptan thiophenol163.8(± 0.2)48.82
    thiophene type sulfide165.7(± 0.2)8.62
    sulfoxide sulfur168.0(± 0.2)22.97
    sulfone type sulfur169.5(± 0.2)8.62
    inorganic sulfur171.1(± 0.2)10.97
    下载: 导出CSV

    表  4  ML分子结构中芳香结构的种类和数量

    Table  4  Types and quantities of aromatic structures in ML molecules

    TypeAromatic unit structureNumber
    Benzene3
    Naphthalene3
    Pyridine1
    Pyrrole1
    下载: 导出CSV
  • [1] 童国通, 吴荣生. 宝日希勒褐煤在合成气与复合溶剂系统下的液化性能研究[J]. 燃料化学学报,2019,47(6):661−667. doi: 10.3969/j.issn.0253-2409.2019.06.003

    TONG Guo-tong, WU Rong-sheng. Liquefaction characteristics of Baorixile lignite with syngas and complex solvent[J]. J Fuel Chem Technol,2019,47(6):661−667. doi: 10.3969/j.issn.0253-2409.2019.06.003
    [2] FENG L, ZHAO G Y, ZHAO Y Y, ZHAO M S, TANG J W. Construction of the molecular structure model of the Shengli lignite using TG-GC/MS and FTIR spectrometry data[J]. Fuel,2017,203:924−931. doi: 10.1016/j.fuel.2017.04.112
    [3] CONG X S, ZONG Z M, WEI Z H. Enrichment and identification of arylhopanes from Shengli lignite[J]. Energy Fuels,2014,28:6745−6748. doi: 10.1021/ef501105n
    [4] CONG X S, ZONG Z M, ZHOU Y, LI M, WANG W L, LI F G, ZHOU J, FAN X, ZHANG Y P, WEI X Y. Isolation and identification of 3-ethyl-8-methyl-2, 3-dihydro-1H-cyclopenta[a]chrysene from Shengli lignite[J]. Energy Fuels,2014,28(10):6694−6697. doi: 10.1021/ef402403y
    [5] MOCHIDA I, OKUMA O, YOON S H. Chemicals from direct coal liquefaction[J]. Chem Rev,2014,114(3):1637−72. doi: 10.1021/cr4002885
    [6] 冯炜, 高红凤, 王贵, 吴浪浪, 许靖钦, 李壮楣, 李平, 白红存, 郭庆杰. 枣泉煤分子模型构建及热解的分子模拟[J]. 化工学报,2019,70(4):1522−1531.

    FENG Wei, GAO Hong-feng, WANG Gui, XU Jing-qin, LI Zhuang-mei, LI Ping, BAI Hong-cun, GUO Qing-jie. Molecular model and pyrolysis simulation of Zaoquan coal[J]. J Chem Ind Eng,2019,70(4):1522−1531.
    [7] 葛涛, WANG Meng, 李芬, 闵凡飞, 张明旭. 高阳炼焦煤碳、氧结构研究与光谱学表征[J]. 煤炭学报,2021,46(3):1024−1031. doi: 10.13225/j.cnki.jccs.2019.1693

    GE Tao, WANG Meng, LI Fen, MIN Fan-fei, ZHANG Mingxu. Study and characterize of carbon & oxygen structure of Gaoyang coking coal[J]. J China Coal Soc,2021,46(3):1024−1031. doi: 10.13225/j.cnki.jccs.2019.1693
    [8] LI Z K, WEI X Y, YAN H L, ZONG Z M. Insight into the structural features of Zhaotong lignite using multiple techniques[J]. Fuel,2015,153(1):176−182.
    [9] 张帅, 马汝嘉, 刘路, 张浩, 刘钦甫. 扎鲁特地区无烟煤分子结构特征和模型构建[J]. 煤田地质与勘探,2020,48(1):62−69. doi: 10.3969/j.issn.1001-1986.2020.01.009

    ZHANG Shuai, MA Ru-jia, LIU Lu, ZHANG Hao, LIU Qin-fu. Molecular structure characteristics and model construction of anthracite in Jarud[J]. Coal Geol Explor,2020,48(1):62−69. doi: 10.3969/j.issn.1001-1986.2020.01.009
    [10] MATHEWS J P, CHAFFEE A L. The molecular representations of coal - A review[J]. Fuel,2012,96:1−14. doi: 10.1016/j.fuel.2011.11.025
    [11] LIN H L, LI K J, ZHANG X W, WANG H X. Structure characterization and model construction of Indonesian brown coal[J]. Energy Fuels,2016,30(5):3809−3814. doi: 10.1021/acs.energyfuels.5b02696
    [12] LIN H L, LIAN J, LIU Y P, XUE Y, YAN S, HAN S, WEI W. Comprehensive study of structure model, pyrolysis and liquefaction behaviour of Heidaigou lignite and its liquefied oil[J]. Fuel,2019,240(15):84−91.
    [13] 相建华, 曾凡桂, 李彬, 张莉, 李美芬, 梁虎珍. 成庄无烟煤大分子结构模型及其分子模拟[J]. 燃料化学学报,2013,41(4):391−399. doi: 10.3969/j.issn.0253-2409.2013.04.002

    XIANG Jian-hua, ZENG Fan-gui, LI Bin, ZHANG Li, LI Mei-fen, LIANG Hu-zhen. Construction of macromolecular structural model of anthracite from Chengzhuang coal mine and its molecular simulation[J]. J Fuel Chem Technol,2013,41(4):391−399. doi: 10.3969/j.issn.0253-2409.2013.04.002
    [14] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09[CP]. Wallingford CT: Gaussian Inc., 2009.
    [15] ZHAO Y, TRUHLAR D G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals[J]. Theor Chem Acc,2008,120:215−241. doi: 10.1007/s00214-007-0310-x
    [16] 王永刚, 周剑林, 陈艳巨, 胡秀秀, 张书, 林雄超. 13C固体核磁共振分析煤中含氧官能团的研究[J]. 燃料化学学报,2013,41(12):1422−1426.

    WANG Yong-gang, ZHOU Jian-lin, CHEN Yan-ju, HU Xiu-xiu, ZHANG Shu, LIN Xiong-chao. Contents of O-containing functional groups in coals by 13C NMR analysis[J]. J Fuel Chem Technol,2013,41(12):1422−1426.
    [17] 陈丽诗, 王岚岚, 潘铁英, 周扬, 张媛媛, 张德详. 固体核磁碳结构参数的修正及其在煤结构分析中的应用[J]. 燃料化学学报,2017,45(10):1153−1163. doi: 10.3969/j.issn.0253-2409.2017.10.001

    CHEN Li-shi, WANG Lan-lan, PAN Tie-ying, ZHOU Yang, ZHANG Yuan-yuan, ZHANG De-xiang. Calibration of solid state NMR carbon structural parameters and application in coal structure analysis[J]. J Fuel Chem Technol,2017,45(10):1153−1163. doi: 10.3969/j.issn.0253-2409.2017.10.001
    [18] DING D, LIU G, FU B. Influence of carbon type on carbon isotopic composition of coal from the perspective of solid-state 13C NMR[J]. Fuel,2019,245(1):174−180.
    [19] JING Z H, SANDRA R, EKATERINA S, LI M R, WOOD B. Use of FTIR, XPS, NMR to characterize oxidative effects of NaClO on coal molecular structures[J]. Int J Coal Geol,2019,201:1−13. doi: 10.1016/j.coal.2018.11.017
    [20] OKOLO G N, NEOMAGUS H W J P, EVERSON R C, ROBERTS M J, BUNT J R, SAKUROVS R, MATHEWS J P. Chemical-structural properties of South African bituminous coals: Insights from wide angle XRD-carbon fraction analysis, ATR-FTIR, solid state 13C NMR, and HRTEM techniques[J]. Fuel,2015,158(15):779−792.
    [21] WANG Y G, WEI X Y, WANG S K, LI Z K, LI P. Structural evaluation of Xiaolongtan lignite by direct chacracterization and pyrolytic analysis[J]. Fuel Process Technol,2016,144:248−254. doi: 10.1016/j.fuproc.2015.12.034
    [22] JIANG J Y, YANG W H, CHENG Y P, LIU Z D, ZHANG Q, ZHAO K. Molecular structure characterization of middle-high rank coal via XRD, Raman and FTIR spectroscopy: Implications for coalification[J]. Fuel,2019,239:559−572. doi: 10.1016/j.fuel.2018.11.057
    [23] TIAN B, QIAO Y Y, TIAN Y Y, XIE K C, LIU Q, ZHOU H F. FTIR study on structural changes of different-rank coals caused by single/multiple extraction with cyclohexanone and NMP/CS2 mixed solvent[J]. Fuel Process Technol,2016,154:210−218. doi: 10.1016/j.fuproc.2016.08.035
    [24] 梁虎珍, 王传格, 曾凡桂, 李美芬, 相建华. 应用红外光谱研究脱灰对伊敏褐煤结构的影响[J]. 燃料化学学报,2014,42(2):129−137.

    LIANG Hu-zhen, WANG Chuan-ge, ZENG Fan-gui, LI Mei-fen, XIANG Jian-hua. Effect of demineralization on lignite structure from Yinmin coalfield by FT-IR investigation[J]. J Fuel Chem Technol,2014,42(2):129−137.
    [25] WANG S Q, TANG Y G, SCHOBERT H H, GUO Y N, GAO W C, LIU X K. FTIR and simultaneous TG/MS/FTIR study of Late Permian coals from Southern China[J]. J Anal Appl Pyrolysis,2013,100:75−80. doi: 10.1016/j.jaap.2012.11.021
    [26] GENG W, NAKAJIMA T, TAKANASHI H, OHKI A. Analysis of carboxyl group in coal and coal aromaticity by Fourier transform infrared (FT-IR) spectrometry[J]. Fuel,2009,88(1):139−144. doi: 10.1016/j.fuel.2008.07.027
    [27] LIU F R, LI W, GUO H Q, LI B Q, BAI Z Q, HU R S. XPS study on the change of carbon-containing groups and sulfur transformation on coal surface[J]. J Fuel Chem Technol,2011,39(2):81−84. doi: 10.1016/S1872-5813(11)60011-X
    [28] 葛涛, 张明旭, 马祥梅. 新阳炼焦煤结构的FTIR和XPS谱学表征[J]. 光谱学与光谱分析,2017,37(8):2146−2152.

    GE Tao, ZHANG Ming-xu, MA Xiang-mei. XPS and FTIR spectroscopy characterization about the structure of coking coal in Xinyang[J]. Spectrosc Spect Anal,2017,37(8):2146−2152.
    [29] LIU F J, WEI X Y, GUI J, LI P, WANG Y G, LI W T, ZONG Z M, FAN X, ZHAO Y P. Characterization of organonitrogen species in Xianfeng lignite by sequential extraction and ruthenium ion-catalyzed oxidation[J]. Fuel Process Technol,2014,126:199−206. doi: 10.1016/j.fuproc.2014.05.004
    [30] BUCKLEY A N. Nitrogen functionality in coals and coal-tar pitch determined by X-ray photoelectron spectroscopy[J]. Fuel Process Technol,1994,38(3):165−179. doi: 10.1016/0378-3820(94)90046-9
    [31] KELEMEN S R, AFEWORKI M, GORBATY M L, COHEN A D. Characterization of organically bound oxygen forms in lignites, peats, and pyrolyzed peats by X-ray photoelectron spectroscopy (XPS) and solid-state 13C NMR methods[J]. Energy Fuels,2002,16(6):1450−1462. doi: 10.1021/ef020050k
    [32] KOZLOWSKI M. XPS study of reductively and non-reductively modified coals[J]. Fuel,2004,83:259−265. doi: 10.1016/j.fuel.2003.08.004
    [33] GENG W H, KUMABE Y, NAKAJIMA T, OHKI A. Analysis of hydrothermally-treated and weathered coals by X-ray photoelectron spectroscopy (XPS)[J]. Fuel,2009,88(4):644−649. doi: 10.1016/j.fuel.2008.09.025
    [34] YANG Y C, TAO X X, HE H, XU N, TANG L F, WANG S W, GUO J F, CHEN L, YANG Z. X-ray photoelectron spectroscopy study on the chemical forms of S, C and O in coal before and after microwave desulphurization[J]. Int J Oil Gas Coal Technol,2017,15(3):267−286. doi: 10.1504/IJOGCT.2017.084444
    [35] SHI K Y, GUI X H, TAO X X, LONG J, JI Y H. Macromolecular structural unit construction of Fushun nitric-acid-oxidized coal[J]. Energy Fuels,2015,29(6):3566−3572. doi: 10.1021/ef502859r
    [36] NOMURA M, ARTOK L, MURATA S, YAMAMOTO A, HAMA H, GAO H, KIDENA K. Structural evaluation of Zao Zhuang coal[J]. Energy Fuels,1998,12(3):512−23. doi: 10.1021/ef9701448
    [37] 秦志宏, 卜良辉, 李祥. 基于炼焦煤族组成和结构参数的焦炭质量预测模型及其成焦机理[J]. 燃料化学学报,2018,46(12):1409−1422.

    QIN Zhi-hong, BU Liang-hui, LI Xiang. Prediction model for coke quality and mechanism based on coking coal composition and structure parameters[J]. J Fuel Chem Technol,2018,46(12):1409−1422.
    [38] 葛涛, 李洋, WANG Meng, 李芬, 张明旭. 山西高硫气肥煤结构表征与分子模型构建[J]. 光谱学与光谱分析,2020,40(11):3373−3378.

    GE Tao, LI Yang, WANG Meng, LI Fen, ZHANG Ming-xu. Structural characterization and molecular model construction of gas-fat coal with high sulfur in Shanxi[J]. Spectrosc Spect Anal,2020,40(11):3373−3378.
    [39] 周星宇, 曾凡桂, 相建华, 邓小鹏, 相兴华. 马脊梁镜煤有机质大分子模型构建及分子模拟[J]. 化工学报,2020,71(4):1802−1811.

    ZHOU Xing-yu, ZENG Fan-gui, XIANG Jian-hua, DENG Xiao-peng, XIANG Xing-hua. Macromolecular model construction and molecular simulation of organic matter in Majiliang vitrain[J]. J Chem Ind Eng,2020,71(4):1802−1811.
    [40] 李壮楣, 王艳美, 李平, 李和平, 白红存, 郭庆杰. 宁东红石湾煤大分子模型构建及量子化学计算[J]. 化工学报,2018,69(5):2208−2216.

    LI Zhuang-mei, WANG Yan-mei, LI Ping, LI He-ping, BAI Hong-cun, GUO Qing-jie. Macromolecular model construction and quantum chemical calculation of Ningdong Hongshiwan coal[J]. J Chem Ind Eng,2018,69(5):2208−2216.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  845
  • HTML全文浏览量:  223
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-20
  • 修回日期:  2020-12-27
  • 网络出版日期:  2021-03-30
  • 刊出日期:  2021-06-15

目录

    /

    返回文章
    返回