留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

活性炭表面含氧官能团对二噁英吸附的影响机制研究

常康恺 曾泽泉 杨亚涛 丁肖肖 黄张根 侯亚芹

常康恺, 曾泽泉, 杨亚涛, 丁肖肖, 黄张根, 侯亚芹. 活性炭表面含氧官能团对二噁英吸附的影响机制研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2021029
引用本文: 常康恺, 曾泽泉, 杨亚涛, 丁肖肖, 黄张根, 侯亚芹. 活性炭表面含氧官能团对二噁英吸附的影响机制研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2021029
CHANG Kang-kai, ZENG Ze-quan, YANG Ya-tao, DING Xiao-xiao, HUANG Zhang-gen, HOU Ya-qin. Study on the mechanism of adsorption of dioxins by oxygen-containing functional groups on activated carbon surface[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2021029
Citation: CHANG Kang-kai, ZENG Ze-quan, YANG Ya-tao, DING Xiao-xiao, HUANG Zhang-gen, HOU Ya-qin. Study on the mechanism of adsorption of dioxins by oxygen-containing functional groups on activated carbon surface[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2021029

活性炭表面含氧官能团对二噁英吸附的影响机制研究

doi: 10.19906/j.cnki.JFCT.2021029
基金项目: 国家自然科学基金(21978314)项目资助
详细信息
    通讯作者:

    E-mail: zghuang@sxicc.ac.cn

  • 中图分类号: TQ09

Study on the mechanism of adsorption of dioxins by oxygen-containing functional groups on activated carbon surface

Funds: The project was financially supported by the National Natural Science Foundation of China (21978314)
  • 摘要: 以分子结构和大小与二噁英相似的二苯并呋喃为模型化合物,椰壳炭为吸附剂,在120 ℃条件下进行了吸附实验。将硝酸改性后的样品分别在300、500、800 ℃进行热处理,比较了原始样品和改性后的椰壳炭对二苯并呋喃的吸附能力。并用BET、TPD-MS、元素分析等手段对改性前后椰壳炭的物理化学性质进行了表征。结果表明,硝酸改性会抑制活性炭对二苯并呋喃的吸附,且椰壳炭对二苯并呋喃的吸附能力与其表面的含氧官能团有关,其中内酯基对二苯并呋喃的吸附的影响最大,通过热处理,减少含氧官能团的含量,可提高椰壳炭对二苯并呋喃的吸附容量。该研究可为炭基一体化脱除多污染物技术提供一定的理论指导。
  • 图  1  吸附剂吸附性能评价装置图

    Figure  1.  Experimental apparatus for adsorption

    图  2  (a)不同样品的氮气吸附脱附曲线 (b)不同样品的孔径分布曲线

    Figure  2.  (a) N2 adsorption-desorption isotherms,and (b) the pore size distribution of different samples

    图  3  改性前后活性炭的吸附容量

    Figure  3.  Adsorption capacity of activated carbon before and after modification

    图  4  CO2峰曲线拟合结果

    Figure  4.  Peak of CO2 curve fitting results

    图  5  CO峰曲线拟合结果

    Figure  5.  Peak of CO curve fitting results

    图  6  改性样品的静态接触角测量

    Figure  6.  Contact angle analysis of modified samples

    表  1  不同样品的孔结构参数

    Table  1.   Textural properties of different samples

    SampleSSA (m2/g)Pore volume (cm3/g)Micropore volume (cm3/g)Average pore Diameter
    AC-9501033.90.5590.3432.162
    AC-O-12 h1021.20.5470.3422.141
    AC-O-3001025.30.5510.3522.143
    AC-O-5001028.60.5590.3382.174
    AC-O-8001057.80.590.3642.137
    下载: 导出CSV

    表  2  改性前后样品的元素组成

    Table  2.   Elemental composition of the sample before and after modification

    SampleC(%)O(%)N(%)H(%)
    AC-95096.41.720.421.46
    AC-O-12 h85.8711.021.002.11
    AC-O-30087.529.780.901.80
    AC-O-50090.207.50.781.52
    AC-O-80094.613.440.871.08
    Note: Oxygen element is obtained by difference subtraction
    下载: 导出CSV

    表  3  不同样品表面的含氧官能团的含量

    Table  3.   The content of oxygen-containing functional groups on the surface of different samples

    SampleAdsorption Capacity(mg/g)Functional group types
    carboxylLactoneanhydridephenolic hydroxylQuinone and carbonyl
    AC-950235.300000.11
    AC-O-12 h129.20.710.570.221.530.67
    AC-O-300148.700.560.231.580.7
    AC-O-500185.9000.221.560.68
    AC-O-800229.400000.08
    Note: Contents of various functional groups (mmol)
    下载: 导出CSV
  • [1] GUO Y, Li Y, Zhu T, WANG J, YE M. Modeling of dioxin adsorption on activated carbon[J]. Chem Eng J,2016,283:1210−1215. doi: 10.1016/j.cej.2015.08.067
    [2] 周旭建. 多孔碳材料对二噁英吸附特性的机理研究[D]. 杭州: 浙江大学, 2016.

    ZHOU Xu-jian. Study on the adsorption mechanism of porous carbon materials to dioxins.[D]. Zhejiang: Zhejiang University, 2016.
    [3] 唐娜, 罗伟铿, 石运刚, 王美欢, 郑佳. 废物焚烧及工业金属冶炼烟气中二噁英的排放水平及同系物分布[J]. 环境安全学报,2018,04:1496−1502.

    TANG Na, LUO Wei-keng, SHI Yun-gang, WANG Mei-huan, ZHENG Jia. Emission levels and homologous distribution of dioxins from waste incineration and industrial metal smelting fume[J]. J Environ Safety,2018,04:1496−1502.
    [4] EVERAERT K, BAEYENS J, CREEMERS C. Adsorption of dioxins and furans from flue gases in an entrained flow or fixed/moving bed reactor[J]. J Chem Technol & Biotechnol,2003,78(2-3):213−219.
    [5] LI H W, LEE W J, TSAI P J, MOU JL, CHANG GP, YANG KT. A novel method to enhance polychlorinated dibenzo-p-dioxins and dibenzofurans removal by adding bio-solution in EAF dust treatment plant[J]. J Hazard Mater,2008,150(1):83−91. doi: 10.1016/j.jhazmat.2007.04.077
    [6] JAHANDAR LASHAKI M, ATKINSON J D, HASHISHO Z. The role of beaded activated carbon's surface oxygen groups on irreversible adsorption of organic vapors[J]. J Hazard Mater,2016,317:284−294. doi: 10.1016/j.jhazmat.2016.05.087
    [7] ZHANG X, GAO B, CREAMER A E, CAO C, LI Y. Adsorption of VOCs onto engineered carbon materials: A review[J]. J Hazard Mater,2017,338:102−123. doi: 10.1016/j.jhazmat.2017.05.013
    [8] SU W, ZHOU Y, WEI L, SUN Y, ZHOU L. Effect of microstructure and surface modification on the hydrogen adsorption capacity of active carbons[J]. New Carbon Mater,2007,22(2):135−140. doi: 10.1016/S1872-5805(07)60014-6
    [9] WENMING QIAO, YOZO KORAI, ISAO MOCHIDA, YUUICHI HORI, TAKESHI MAEDA. Preparation of an activated carbon artifact: oxidative modification of coconut shell-based carbon to improve the strength[J]. Carbon,2002,40(3):351−358. doi: 10.1016/S0008-6223(01)00110-5
    [10] FRANCISCO VILLACAÑAS, MANUEL FERNANDO R. PEREIRA*, JOSÉ J. M. ÓRFÃO, JOSÉ L. FIGUEIREDO. Adsorption of simple aromatic compounds on activated carbons[J]. J Coll Inter Sci,2006,293(1):128−136. doi: 10.1016/j.jcis.2005.06.032
    [11] SHEN W, LI Z, LIU Y. Surface Chemical Functional Groups Modification of Porous Carbon[J]. Re Paten Chem Eng,2008,1(1):27−40. doi: 10.2174/2211334710801010027
    [12] FIGUEIREDO J L, PEREIRA M F R, FREITAS M M A, ORFAO J. J. M. Modification of the surface chemistry of activated carbons[J]. Carbon,1999,37(9):1379−1389. doi: 10.1016/S0008-6223(98)00333-9
    [13] CHIANG H-L, HUANG C P, CHIANG P C. The surface characteristics of activated carbon as affected by ozone and alkaline treatment[J]. Chemosphere,2002,47(3):257−265. doi: 10.1016/S0045-6535(01)00215-6
    [14] HUNG-LUNG CHIANG, P. C. CHIANG, C. P. HUANG. Ozonation of activated carbon and its effects on the adsorption of VOCs exemplified by methylethylketone and benzene[J]. Chemosphere,2002,47(3):267−275. doi: 10.1016/S0045-6535(01)00216-8
    [15] LI L, LIU S, LIU J. Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal[J]. J Hazard Mater,2011,192(2):683−690. doi: 10.1016/j.jhazmat.2011.05.069
    [16] KI-JOONG KIM, CHAN-SOON KANG, YOUNG-JAE YOU, MIN-CHUL CHUNG. Adsorption–desorption characteristics of VOCs over impregnated activated carbons[J]. Catal Today,2006,111(3):223−228.
    [17] J. JARAMILLO, P. M. A’ LVAREZ, V. GO’MEZ-SERRANO. Preparation and ozone-surface modification of activated carbon. Thermal stability of oxygen surface groups[J]. Appl Surf Sci,2010,256(17):5232−5236. doi: 10.1016/j.apsusc.2009.12.109
    [18] M. A. LILLO-RO’DENAS, D. CAZORLA-AMORO’S, A. LINARES-SOLANO. Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations[J]. Carbon,2005,43(8):1758−1767. doi: 10.1016/j.carbon.2005.02.023
    [19] GUO Q, JING W, HOU Y, HUANG Z, MA G, HAN X, SUN D. On the nature of oxygen groups for NH3-SCR of NO over carbon at low temperatures[J]. Chem Eng J,2015,270:41−49. doi: 10.1016/j.cej.2015.01.086
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  8
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-03-30

目录

    /

    返回文章
    返回