留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

淖毛湖次烟煤的热溶及热溶物的催化加氢转化

吴法鹏 赵云鹏 宋庆露 司兴刚 康国俊 曹景沛 魏贤勇

吴法鹏, 赵云鹏, 宋庆露, 司兴刚, 康国俊, 曹景沛, 魏贤勇. 淖毛湖次烟煤的热溶及热溶物的催化加氢转化[J]. 燃料化学学报, 2021, 49(4): 422-430. doi: 10.19906/j.cnki.JFCT.2021040
引用本文: 吴法鹏, 赵云鹏, 宋庆露, 司兴刚, 康国俊, 曹景沛, 魏贤勇. 淖毛湖次烟煤的热溶及热溶物的催化加氢转化[J]. 燃料化学学报, 2021, 49(4): 422-430. doi: 10.19906/j.cnki.JFCT.2021040
WU Fa-peng, ZHAO Yun-peng, SONG Qing-lu, SI Xing-gang, KANG Guo-jun, CAO Jing-pei, WEI Xian-yong. Thermal dissolution of Naomaohu sub-bituminous coal and catalytic hydroconversion of its soluble portions[J]. Journal of Fuel Chemistry and Technology, 2021, 49(4): 422-430. doi: 10.19906/j.cnki.JFCT.2021040
Citation: WU Fa-peng, ZHAO Yun-peng, SONG Qing-lu, SI Xing-gang, KANG Guo-jun, CAO Jing-pei, WEI Xian-yong. Thermal dissolution of Naomaohu sub-bituminous coal and catalytic hydroconversion of its soluble portions[J]. Journal of Fuel Chemistry and Technology, 2021, 49(4): 422-430. doi: 10.19906/j.cnki.JFCT.2021040

淖毛湖次烟煤的热溶及热溶物的催化加氢转化

doi: 10.19906/j.cnki.JFCT.2021040
基金项目: 国家自然科学基金(21878325),国家重点研发计划资助项目课题(2016YFB0600303)和江苏省高校优势学科项目资助
详细信息
    作者简介:

    吴法鹏:wufapeng1115@qq.com

    通讯作者:

    Email:zhaoyp@cumt.edu.cn

    caojingpei@cumt.edu.cn

  • 中图分类号: TQ530

Thermal dissolution of Naomaohu sub-bituminous coal and catalytic hydroconversion of its soluble portions

Funds: The project was supported by the National Natural Science Foundation of China (21878325), National Key Research and Development Program of China (2016YFB0600303) and the Priority Academic Program Development of Jiangsu Higher Education Institutions
  • 摘要: 采用等体积甲醇/甲苯混合溶剂对淖毛湖次烟煤(NMH)进行热溶得到热溶物和热溶残渣(RTD),利用Co/C@N-700催化剂催化320 ℃热溶物(SP320)加氢转化得到CSP320。利用气相色谱质谱联用仪(GC/MS)分析了SP320催化加氢前后的组成和结构特征,利用傅里叶变换红外光谱(FT-IR)、热重以及固体 13C核磁共振(13C NMR)分析了NMH和RTD的热解反应性和结构特征。热溶物收率随温度升高而增加,320 ℃达到最大值(36.46%)。GC/MS分析表明,烷烃、芳烃和酚类是SP320中的主要族组分,相对含量分别为45.45%、18.03%和24.75%;经催化加氢后芳烃和酚类相对含量分别降低至3.86%和13.6%,烷烃和醇类含量分别提高至66.99%和9.36%,其中,环烷烃由8种增加至24种,这说明Co/C@N-700对SP320中芳烃和酚类加氢转化具有较高活性。与NMH相比,RTD具有较高的热稳定性,骨架结构中芳香碳含量较高,而羰基碳含量较低;RTD的FT-IR谱图中O−H、−CH2−、C=O以及C−O−C对应的吸收峰强度显著减弱,芳香C=C的吸收峰强度明显增强。
  • FIG. 605.  FIG. 605.

    FIG. 605..  FIG. 605.

    图  1  NMH的热溶及热溶物的催化加氢转化

    Figure  1.  Procedure for thermal dissolution of NMH and catalytic hydroconversion of SP320

    图  2  不同温度下可溶物的收率

    Figure  2.  Yield of the soluble portion under different temperatures

    图  3  (a) TG曲线和(b) DTG曲线

    Figure  3.  (a) TG curves and (b) DTG curves

    图  4  NMH和RTD13C NMR谱图和拟合曲线

    Figure  4.  13C NMR spectra and their fitting curves of NMH and RTD

    图  5  NMH和RTD的FT-IR谱图

    Figure  5.  FT-IR spectra of NMH and RTD

    图  6  SP320和CSP320的族组分分布

    Figure  6.  Distributions of group components of SP320 and CSP320

    表  1  NMH的工业分析和元素分析

    Table  1.   Proximate and ultimate analyses of NMH

    SampleProxiamte analysis w/%Ultimate analysis wdaf/%
    MadAdVdafCHNSOdiff
    NMH7.655.6850.8068.555.340.910.2624.94
    diff: by difference
    下载: 导出CSV

    表  2  NMH和RTD的TG/DTG曲线特征参数

    Table  2.   Characteristic parameters of NMH and RTD from TG/DTG curves

    SampleW110−900 /%W110−330 /%W330−600 /%W600−900 /%tp /℃
    NMH46.497.1429.1910.16450
    RTD34.294.4419.7210.13463
    W110−900:total weight loss; W110−330: weight loss assigned to release of bonded water and decarboxylation; W330−600: weight loss ascribed to cleavage of covalent bonds; W600−900: weight loss attributed to decomposition of carbonates and condensation of aromatic rings; tp: peak temperature of maximum weight loss rate
    下载: 导出CSV

    表  3  NMH和RTD中不同类型碳的相对含量

    Table  3.   Relative contents of different carbon types in NMH and RTD

    Carbon typeSymbolChemical shiftMolar content/%
    NMHRTD
    RCH3${f}_{{\rm{al}}}^{1}$16.1/15.30.665.06
    ArCH3${f}_{ {\rm{al}} }^{a}$19.8/19.92.785.33
    RCH2CH3${f}_{ {\rm{al}} }^{2}$25.8/25.15.884.25
    RCH2R${f}_{ {\rm{al}} }^{3}$32.6/31.610.536.10
    R3CH${f}_{{\rm{al}}}^{4}$37.1/37.13.631.39
    CR4${f}_{{\rm{al}}}^{5}$42.7/42.810.456.85
    RCH2OR${f}_{{\rm{al}}}^{{\rm{O}}1}$55.7/52.8−61.28.324.49
    R2CHOR${f}_{{\rm{al}}}^{{\rm{O}}2}$72.1−82.5/84.11.102.42
    R3COR${f}_{{\rm{al}}}^{{\rm{O}}3}$0.958.02
    ${f}_{{\rm{a}}}^{{\rm{O}}1}$105.7/105.20.624.35
    ${f}_{{\rm{a}}}^{{\rm{O}}2}$115.9/115.84.517.35
    ${f}_{{\rm{a}}}^{{\rm{H}}}$125.7/125.53.9915.95
    ${f}_{{\rm{a}}}^{{\rm{b}}}$132.7/132.110.1712.23
    ${f}_{{\rm{a}}}^{{\rm{s}}}$143.0/140.08.194.13
    ${f}_{{\rm{a}}}^{{\rm{O}}3}$158.9/152.416.109.66
    RCOOH/R${f}_{{\rm{a}}}^{{\rm{c}}1}$185.2/176.9−185.010.122.12
    RCOH/R/Ar${f}_{{\rm{a}}}^{{\rm{c}}2}$215.8/215.52.000.30
    下载: 导出CSV

    表  4  SP320和CSP320中GC/MS可检测芳烃

    Table  4.   Arenes identified by GC/MS in SP320 and CSP320

    CompoundRC/%CompoundRC/%
    SP320CSP320SP320CSP320
    Ethylbenzene6.732-ethyl-1,3-dimethylbenzene0.280.14
    p-xylene4.771,2,3,4-tetramethylbenzene0.210.17
    m-xylene1.540.38naphthalene0.11
    o-xylene0.33(1-methyl-but-1-enyl)benzene0.05
    1-ethyl-2-methylbenzene0.181,2,3,4,5-pentamethylbenzene0.18
    Propylbenzene0.621,1,3-trimethyl-1H-indene0.16
    1-ethyl-3-methylbenzene0.101-methylnaphthalene0.13
    Mesitylene0.12(1,4-dimethyl-pent-2-enyl)benzene0.20
    1,2,4-trimethylbenzene0.550.322,3-dimethylnaphthalene·0.24
    1-ethyl-2-methylbenzene0.271,4-dimethylnaphthalene0.06
    1-ethyl-4-methylbenzene0.470.321,2,4-triethylbenzene
    Isobutylbenzene0.071,4,6-trimethylnaphthalene0.430.38
    Allylbenzene0.141,4-diisopropyl-2,5-dimethylbenzene0.20
    1-ethyl-3,5-dimethylbenzene0.123,4-dimethylbiphenyl1.230.17
    1,2,3,5-tetramethylbenzene0.201-ethyl-3,5-diisopropylbenzene0.30
    下载: 导出CSV

    表  5  SP320和CSP320中GC/MS可检测酚类

    Table  5.   Phenols identified by GC/MS in SP320 and CSP320

    CompoundRC/%CompoundRC/%
    SP320CSP320SP320CSP320
    Phenol0.022,5-diethylphenol0.30
    o-cresol0.382-isopropyl-5-methylphenol1.130.67
    p-cresol0.055-isopropyl-2-methylphenol0.94
    2,6-dimethylphenol1.531.22,3,4,6-tetramethylphenol5.862.13
    2,4-dimethylphenol0.622,3,5,6-tetramethylphenol3.891.76
    2,5-dimethylphenol0.372-(tert-butyl)-5-methylphenol0.2
    2-isopropyl-5-methylphenol0.262,3,5-trimethylbenzene-1,
    4-diol
    1.05
    2,4,6-trimethylphenol2.892.72,5-di-tert-butylphenol0.71
    2,4,5-trimethylphenol6.232,6-di-tert-butyl-4-methylphenol1.07
    2,3,6-trimethylphenol1.172,3,5,6-teramethyl-benzene-1,
    4-diol
    0.11
    3,4,5-trimethylphenol0.495,7-dimethyl-naphthalen-1-ol0.04
    2-ethyl-4,5-dimethylphenol0.422,5,8-trimethyl-naphthalen-1-ol0.16
    下载: 导出CSV

    表  6  SP320和CSP320中GC/MS可检测醇类

    Table  6.   Alcohols identified by GC/MS in SP320 and CSP320

    CompoundRC/%CompoundRC/%
    SP320CSP320SP320CSP320
    4-isopropenyl-1-methylcyclohexanol0.322-isopropyl-5-methylcyclohexanol2.59
    (4-tert-butyl-phenyl)methanol1.211.362,4,5-trimethylcyclohexanol1.41
    1,2-dimethylcyclohexanol1.644-methyl-heptan-4-ol1.73
    Cyclohexanol0.283-phenyl-propan-1-ol0.35
    下载: 导出CSV

    表  7  SP320和CSP320中GC/MS可检测烷烃

    Table  7.   Alkanes identified by GC/MS in SP320 and CSP320

    CompoundRC/%CompoundRC/%
    SP320CSP320SP320CSP320
    Octane1.081.038-methylheptadecane0.30
    1,2,3-trimethylcyclohexane0.482.151,1,3-trimethylindan0.49
    1,2-dimethylcyclohexane0.444.64tridecane1.86
    isopropylcyclopentane0.311,4,7-trimethylindan0.08
    1,4-dimethylcyclohexane0.554.172,3,6-trimethyldecane0.35
    2,4-dimethylheptane0.380.32tetradecane0.710.98
    1-ethyl-2-methylcyclopentane2.144,5,7-trimethylindan0.13
    2-methyl-bicycloheptane0.51pentadecane1.681.08
    2,5-dimethylheptane0.17hexadecane2.732.46
    ethylcyclohexane0.123-methyltridecane0.60
    propylcyclopentane0.042,6,10-trimethylpentadecane0.140.04
    nonane0.220.42heptadecane3.894.01
    1-ethyl-4-methylcyclohexane1.012-methylnonadecane0.10
    1,1-dimethylcyclopentane0.583,6-dimethyldecane0.31
    methylcycloheptane0.360.482,6,10-trimethyltetradecane0.17
    cycloheptane0.06octadecane7.255.96
    decane0.179-methylnonadecane0.46
    2,2,3-trimethylbicycloheptane0.083-methylheptadecane2.23
    4-methyldecane0.08nonadecane0.603.84
    cyclooctane0.082-methylheptadecane0.48
    indan0.10icosane9.3612.85
    4-ethyldecane0.81henicosane2.181.94
    1-methylindan0.300.322-methylhexadecane1.62
    undecane0.240.573-methylhexadecane0.150.12
    1,2-dimethylindan0.15docosane0.41
    1,3-dimethylindan0.553-methylhenicosane0.46
    1,6-dimethylindan0.350.43tetracosane0.845.85
    5-methylindan0.252-methyloctadecane0.22
    4-methylindan0.480.64pentacosane0.30
    dodecane0.560.78heptacosane0.552.53
    4,7-dimethylindan0.192,6,11-trimethyldodecane0.24
    2,4-dimethylundecane0.30octacosane0.80
    下载: 导出CSV
  • [1] LIU F J, WEI X Y, FAN N H, ZONG Z M. Separation and structural characterization of the value-added chemicals from mild degradation of lignites: A review[J]. Appl Energy,2016,170:415−436. doi: 10.1016/j.apenergy.2016.02.131
    [2] ZHANG L P, HU S, CHEN Q D, XIAO L F, Hassan S S, JIANG L, WANG Y, SU S, XIANG J. Molecular structure characterization of the tetrahydrofuran-microwave-extracted portions from three Chinese low-rank coals[J]. Fuel,2017,189:178−185. doi: 10.1016/j.fuel.2016.10.082
    [3] SHUI H F, ZHOU Y, LI H P, WANG Z C, LEI Z P, REN S B, PAN C X, WANG W W. Thermal dissolution of Shenfu coal in different solvents[J]. Fuel,2013,108:385−390. doi: 10.1016/j.fuel.2012.11.005
    [4] 潘春秀, 刘华龙, 祝婉婉, 李海平, 刘锦润, 魏贤勇, 水恒福, 王知彩. 神府次烟煤在不同温度下的热溶产物表征[J]. 燃料化学学报,2015,43(4):416−421.

    PAN Chun-xiu, LIU Hua-long, ZHU Wan-wan, LI Hai-ping, LIU Jin-run, WEI Xian-yong, SHUI Heng-fu, WANG Zhi-cai. Characterization of the thermal dissolution products of a subbituminous coal at different temperature[J]. J Fuel Chem Technol,2015,43(4):416−421.
    [5] HAO P, BAI Z Q, HOU R R, XU J L, BAI J, GUO Z X, KONG L X, LI W. Effect of solvent and atmosphere on product distribution, hydrogen consumption and coal structural change during preheating stage in direct coal liquefaction[J]. Fuel,2018,211:783−788. doi: 10.1016/j.fuel.2017.09.122
    [6] VASIREDDY S, MORREALE B, CUGINI A, SONG C S, SPIVEY J J. Clean liquid fuels from direct coal liquefaction: chemistry, catalysis, technological status and challenges[J]. Energy Environ Sci,2011,4:311−345. doi: 10.1039/C0EE00097C
    [7] MOCHIDA I, OKUMA O, YOON S H. Chemicals from direct coal liquefaction[J]. Chem Rev,2014,114:1637−1672. doi: 10.1021/cr4002885
    [8] LIU G H, ZONG Z M, LIU F J, MENG X L, ZHANG Y Y, WANG S K, LI S, ZHU C, WEI X Y, MA F Y, LIU J M. Deep hydroconversion of ethanol-soluble portion from the ethanolysis of Dahuangshan lignite to clean liquid fuel over a mordenite supported nickel catalyst[J]. J Anal Appl Pyrolysis,2019,139:13−21. doi: 10.1016/j.jaap.2019.01.002
    [9] ZHANG W, CHEN J Z, LIU R L, WANG S P, CHEN L M, LI K G. Hydrodeoxygenation of lignin-derived phenolic monomers and dimers to alkane fuels over bifunctional zeolite-supported metal catalysts[J]. ACS Sustainable Chem Eng,2014,2(4):683−691. doi: 10.1021/sc400401n
    [10] YAO G, WU G J, DAI W L, GUAN N J, LI L D. Hydrodeoxygenation of lignin-derived phenolic compounds over bi-functional Ru/H-Beta under mild conditions[J]. Fuel,2015,150:175−183. doi: 10.1016/j.fuel.2015.02.035
    [11] GUAN W X, CHEN X, JIN S H, LI C, TSANG C W, LIANG C H. Highly Stable Nb2O5−Al2O3 composites supported Pt catalysts for hydrodeoxygenation of diphenyl Ether[J]. Ind Eng Chem Res,2017,56(47):14034−14042. doi: 10.1021/acs.iecr.7b03736
    [12] LIU Z Q, WEI X Y, WU H H, LI W T, ZHANG Y Y, ZONG Z M MA F Y, LIU J M. Difunctional nickelmicrofiber attapulgite modified with an acidic ionic liquid for catalytic hydroconversion of lignite-related model compounds[J]. Fuel,2017,204:236−242. doi: 10.1016/j.fuel.2017.05.039
    [13] KIM J K, LEE J W, KANG K H, SONG J C, SONG I K. Selective cleavage of C-O bond in benzyl phenyl ether to aromatics over Pd–Fe bimetallic catalyst supported on ordered mesoporous carbon[J]. Appl Catal A: Gen,2015,498:142−149. doi: 10.1016/j.apcata.2015.03.034
    [14] LIU X H, JIA W D, XU G Y, ZHANG Y, FU Y. Selective hydrodeoxygenation of lignin-derived phenols to cyclohexanols over Co-based catalysts[J]. ACS Sustainable Chem Eng,2017,5(10):8594−8601. doi: 10.1021/acssuschemeng.7b01047
    [15] HU Y H, JIANG G C, XU G Q, MU X D. Hydrogenolysis of lignin model compounds into aromatics with bimetallic Ru-Ni supported onto nitrogen-doped activated carbon catalyst[J]. Mol Catal,2018,445:316−326. doi: 10.1016/j.mcat.2017.12.009
    [16] 宋庆露. Co/C@N催化淖毛湖 热溶物及其模型化合物的加氢转化[D]. 徐州: 中国矿业大学, 2020.

    SONG Qing-lu, Catalytic Hydroconversion of Naomaohu Soluble Portion and its Model Compounds over Co/C@N[D]. Xuzhou: China university of mining and technology, 2020.
    [17] SONG Q L, ZHAO Y P, WU F P, LI G S, FAN X, WANG R Y, CAO J P, WEI X Y. Selective hydrogenolysis of lignin-derived aryl ethers over CoC@N catalysts[J]. Renewable Energy,2020,148:729−738. doi: 10.1016/j.renene.2019.10.160
    [18] ZHAO Y P, XIAO J, DING M, EDDINGS E G, WEI X Y, FAN X, ZONG Z M. Sequential extraction and thermal dissolution of Baiyinhua lignite in isometric CS2/Acetone and toluene/methanol binary solvents[J]. Energy Fuels,2016,30(1):47−53. doi: 10.1021/acs.energyfuels.5b01775
    [19] GIVEN P H, MARZEC A, BARTON W A, LYNCH L J, GERSTEIN B C. The concept of a mobile or molecular phase within the macromolecular network of coal: A debate[J]. Fuel,1986,65(2):155−163. doi: 10.1016/0016-2361(86)90001-3
    [20] SHI L, LIU Q Y, GUO X J, WU W Z, LIU Z Y. Pyrolysis behavior and bonding information of coal — A TGA study[J]. Fuel Process Technol,2013,108:125−132. doi: 10.1016/j.fuproc.2012.06.023
    [21] LI Z K, WEI X Y, YAN H L, ZONG Z M. Insight into the structural features of Zhaotong lignite using multiple technique[J]. Fuel,2015,153:176−182. doi: 10.1016/j.fuel.2015.02.117
    [22] SONG H J, LIU G R, ZHANG J, WU J H. Pyrolysis characteristics and kinetics of low rank coals by TG-FTIR method[J]. Fuel Process Technol,2017,156:454−460. doi: 10.1016/j.fuproc.2016.10.008
  • 加载中
图(7) / 表(7)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  14
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-23
  • 修回日期:  2021-01-03
  • 网络出版日期:  2021-03-08
  • 刊出日期:  2021-04-10

目录

    /

    返回文章
    返回