留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原位同步辐射光电离质谱研究压力对3Mn10Fe/Ni催化剂上N2O形成途径的影响

许鸣皋 文武 朱宝忠 杨玖重 潘洋 孙运兰

许鸣皋, 文武, 朱宝忠, 杨玖重, 潘洋, 孙运兰. 原位同步辐射光电离质谱研究压力对3Mn10Fe/Ni催化剂上N2O形成途径的影响[J]. 燃料化学学报(中英文), 2021, 49(6): 853-860. doi: 10.19906/j.cnki.JFCT.2021042
引用本文: 许鸣皋, 文武, 朱宝忠, 杨玖重, 潘洋, 孙运兰. 原位同步辐射光电离质谱研究压力对3Mn10Fe/Ni催化剂上N2O形成途径的影响[J]. 燃料化学学报(中英文), 2021, 49(6): 853-860. doi: 10.19906/j.cnki.JFCT.2021042
XU Ming-gao, WEN Wu, ZHU Bao-zhong, YANG Jiu-zhong, PAN Yang, SUN Yun-nan. Effects of pressure on the formation of N2O over 3Mn10Fe/Ni catalyst by in-situ synchrotron radiation photoionization mass spectrometry[J]. Journal of Fuel Chemistry and Technology, 2021, 49(6): 853-860. doi: 10.19906/j.cnki.JFCT.2021042
Citation: XU Ming-gao, WEN Wu, ZHU Bao-zhong, YANG Jiu-zhong, PAN Yang, SUN Yun-nan. Effects of pressure on the formation of N2O over 3Mn10Fe/Ni catalyst by in-situ synchrotron radiation photoionization mass spectrometry[J]. Journal of Fuel Chemistry and Technology, 2021, 49(6): 853-860. doi: 10.19906/j.cnki.JFCT.2021042

原位同步辐射光电离质谱研究压力对3Mn10Fe/Ni催化剂上N2O形成途径的影响

doi: 10.19906/j.cnki.JFCT.2021042
基金项目: 国家自然科学基金(52076016)资助
详细信息
    作者简介:

    许鸣皋:15055176977@163.com

    通讯作者:

    E-mail: panyang@ustc.edu.cn

    ylsun@cczu.edu.cn

  • 中图分类号: TK09

Effects of pressure on the formation of N2O over 3Mn10Fe/Ni catalyst by in-situ synchrotron radiation photoionization mass spectrometry

Funds: The project was supported by the National Natural Science Foundation of China (52076016)
  • 摘要: 为了研究N2O在氨选择性催化还原脱硝(NH3-SCR)过程中的形成途径及其选择性受压力影响的变化规律,采用原位光电离质谱研究方法结合流动管反应器,对3Mn10Fe/Ni催化剂NH3-SCR反应体系中气相物种进行了原位检测并获得了各组分的质谱图,进一步分析了不同工况、温度和压力条件下N2O选择性以及NOx和NH3转化率的变化规律。研究结果表明,N2O形成主要来源于非选择性催化反应(NSCR)和吸附态NH3氧化(NSNO)反应,其中,100−250 ℃由NSCR占据生成N2O的主导地位,250−400 ℃两种形成途径贡献相当,400−500 ℃ NSNO成为主要来源。此外,低压降低了催化剂在低温区的脱硝活性,却促进了在高温区通过NSNO反应生成N2O的形成途径。
  • FIG. 724.  FIG. 724.

    FIG. 724.  FIG. 724.

    图  1  原位光电离质谱示意图

    Figure  1  Schematic diagram of in-situ synchrotron radiation photoionization mass spectrometry

    (Ⅰ: Atmospheric/high pressure reactor; Ⅱ: Low pressure reactor)

    图  2  光子能量为13 eV时fresh催化剂上SCR反应气相物种的光电离质谱图;插图为N2O的PIE图[36]

    Figure  2  Mass spectrum of the gas phase species in SCR reaction on fresh catalyst at the photon energy of 13 eV Inset is the PIE spectrum of the m/z = 44 species reaction conditions:101.325 kPa; 400 ℃; NH3+NO+O2+fresh; GHSV: 30000 h−1

    图  3  不同压力下N2O选择性随温度的变化

    Figure  3  Trend diagram of N2O selectivity with temperature under different pressures

    图  4  不同压力下NOx转换率随温度的变化

    Figure  4  Trend diagram of NOx conversion rates with temperature under different pressures

    图  5  不同压力下NH3转换率随温度的变化

    Figure  5  The trend diagram of NH3 conversion rates with temperature under different pressures

    表  1  不同工况下N2O的生成途径

    Table  1  Inlet gas composition for N2O formation pathway analysis

    Gas composition (mole fraction)CatalystPossible reaction
    400 × 10−6 NH3,400 × 10−6 NO,5% O2freshR1,R2,R3,R5,R5,R6
    400 × 10−6 NH3,400 × 10−6 NO,5% O2R3
    400 × 10−6 NH3,400 × 10−6 NOfreshR4,R5,R6
    下载: 导出CSV
  • [1] JOHNSON T, JOSHI A. Review of vehicle engine efficiency and emissions[J]. SAE Int J Engines,2018,11(6):1307−1330. doi: 10.4271/2018-01-0329
    [2] TRONCONI E, NOVA I, CIARDELLI C, CHATTERJEE D, WEIBEL M. Redox features in the catalytic mechanism of the “standard” and “fast” NH3-SCR of NOx over a V-based catalyst investigated by dynamic methods[J]. J Catal,2007,245(1):1−10. doi: 10.1016/j.jcat.2006.09.012
    [3] LEISTNER K, MIHAI O, WIJAYANTI K, KUMAR A, KAMASAMUDRAM K, CURRIER N W, YEZERETS A, OLSSON L. Comparison of Cu/BEA, Cu/SSZ-13 and Cu/SAPO-34 for ammonia-SCR reactions[J]. Catal Today,2015,258:49−55. doi: 10.1016/j.cattod.2015.04.004
    [4] JUNG Y, SHIN Y J, PYO Y D, CHO C P, JANG J, KIM G. NOx and N2O emissions over a Urea-SCR system containing both V2O5-WO3/TiO2 and Cu-zeolite catalysts in a diesel engine[J]. Chem Eng J,2017,326:853−862. doi: 10.1016/j.cej.2017.06.020
    [5] GARCÍA-CORTÉS J M, PÉREZ-RAMÍREZ J, ILLÁN-GÓMEZ M J, KAPTEIJN F, MOULIJN J A, SALINAS-MARTı́NEZ DE LECEA C. Comparative study of Pt-based catalysts on different supports in the low-temperature de-NOx-SCR with propene[J]. Appl Catal B: Environ,2001,30(3):399−408.
    [6] CHIN Y-H, ALVAREZ W E, RESASCO D E. Sulfated zirconia and tungstated zirconia as effective supports for Pd-based SCR catalysts[J]. Catal Today,2000,62(2):159−165.
    [7] SCHLATTER J C, TAYLOR K C. Platinum and palladium addition to supported rhodium catalysts for automotive emission control[J]. J Catal,1977,49(1):42−50. doi: 10.1016/0021-9517(77)90238-X
    [8] MORE P M, NGUYEN D L, GRANGER P, DUJARDIN C, DONGARE M K, UMBARKAR S B. Activation by pretreatment of Ag-Au/Al2O3 bimetallic catalyst to improve low temperature HC-SCR of NOx for lean burn engine exhaust[J]. Appl Catal B: Environ,2015,174−175:145−156. doi: 10.1016/j.apcatb.2015.02.035
    [9] ZHANG D, YANG R T. N2O formation pathways over zeolite-supported Cu and Fe catalysts in NH3-SCR[J]. Energy Fuels,2018,32(2):2170−2182.
    [10] YANG S J, WANG C Z, LI J H, YAN N Q, MA L, CHANG H Z. Low temperature selective catalytic reduction of NO with NH3 over Mn-Fe spinel: Performance, mechanism and kinetic study[J]. Appl Catal B: Environ,2011,110:71−80. doi: 10.1016/j.apcatb.2011.08.027
    [11] WU Z B, JIN R B, LIU Y, WANG H Q. Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature[J]. Catal Commun,2008,9(13):2217−20. doi: 10.1016/j.catcom.2008.05.001
    [12] QI G, YANG R T. Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania[J]. Appl Catal B: Environ,2003,44(3):217−25. doi: 10.1016/S0926-3373(03)00100-0
    [13] 王继封, 王慧敏, 张亚青, 张秋林, 宁平. WO3的引入对MnOx-Fe2O3催化剂上NH3-SCR反应中N2选择性的促进作用[J]. 燃料化学学报,2019,47(7):814−822. doi: 10.3969/j.issn.0253-2409.2019.07.006

    WANG Ji-feng, WANG Hui-min, ZHANG Ya-qing, ZHANG Qiu-lin, NING Ping. Promotion effect of tungsten addition on N2 selectivity of MnOx-Fe2O3 for NH3-SCR[J]. J Fuel Chem Technol,2019,47(7):814−822. doi: 10.3969/j.issn.0253-2409.2019.07.006
    [14] KROECHER O, ELSENER M. Chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils, and urea solution - I. Catalytic studies[J]. Appl Catal B: Environ,2008,77(3/4):215−27. doi: 10.1016/j.apcatb.2007.04.021
    [15] 张洪亮, 龙红明, 李家新, 董林. 铁基催化剂用于氨选择性催化还原氮氧化物研究进展[J]. 无机化学学报,2019,35(5):753−768.

    ZHANG Hong-Liang, LONG Hong-Ming, LI Jia-Xin, DONG Lin. Research progress in iron-based catalysts for the selective catalytic reduction of NOx by NH3[J]. Chin J Inorg Chem,2019,35(5):753−768.
    [16] YANG S J, XIONG S C, LIAO Y, XIAO X, QI F H, PENG Y, FU Y W, SHAN W P, LI J H. Mechanism of N2O formation during the low-temperature selective catalytic reduction of NO with NH3 over Mn-Fe spinel[J]. Environ Sci Technol,2014,48(17):10354−10362. doi: 10.1021/es502585s
    [17] YANG S J, FU Y W, LIAO Y, XIONG S C, QU Z, YAN N Q, LI J H. Competition of selective catalytic reduction and non selective catalytic reduction over MnOx/TiO2 for NO removal: the relationship between gaseous NO concentration and N2O selectivity[J]. Catal Sci Technol,2014,4(1):224−232. doi: 10.1039/C3CY00648D
    [18] ETTIREDDY P R, ETTIREDDY N, BONINGARI T, PARDEMANN R, SMIRNIOTIS P G. Investigation of the selective catalytic reduction of nitric oxide with ammonia over Mn/TiO2 catalysts through transient isotopic labeling and in situ FT-IR studies[J]. J Catal,2012,292:53−63. doi: 10.1016/j.jcat.2012.04.019
    [19] LIU B, YAO D W, WU F, WEI L, LI X W, WANG X L. Experimental investigation on N2O formation during the selective catalytic reduction of NOx with NH3 over Cu-SSZ-13[J]. Ind Eng Chem Res,2019,58(45):20516−20527. doi: 10.1021/acs.iecr.9b03294
    [20] 顾立军, 谢颖, 刘宝生, 陈小平, 王乐夫. 焙烧温度对CuO/γ-Al2O3和CeO2-CuO/γ-Al2O3催化剂NO还原活性的影响[J]. 燃料化学学报,2004,32(2):235−239. doi: 10.3969/j.issn.0253-2409.2004.02.022

    GU Li-jun, XIE-Ying, LIU Bao-sheng, CHEN Xiao-ping, WANG Le-fu. Effect of calcination temperature on C3H6-SCR of no over CuO/γ-Al2O3 and CeO2-Cuo/γ-Al2O3[J]. J Fuel Chem Technol,2004,32(2):235−239. doi: 10.3969/j.issn.0253-2409.2004.02.022
    [21] 周皞, 李梦雨, 赵辉爽, 伍士国, 叶必朝, 苏亚欣. 富氧条件下Fe-Mn/Beta选择性催化丙烯还原氮氧化物[J]. 燃料化学学报,2019,47(6):751−761. doi: 10.3969/j.issn.0253-2409.2019.06.013

    ZHOU Hao, LI Meng-yu, ZHAO Hui-shuang, WU Shi-guo, YE Bi-chao, SU Ya-xin. Selective catalytic reduction of nitric oxide with propylene in excess oxygen over Fe-Mn/Beta catalysts[J]. J Fuel Chem Technol,2019,47(6):751−761. doi: 10.3969/j.issn.0253-2409.2019.06.013
    [22] 周文波, 牛胜利, 王栋, 路春美, 韩奎华, 李英杰, 朱英. 钛改性对γ-Fe2O3选择催化还原脱硝性能强化机制的分子模拟研究[J]. 燃料化学学报,2020,48(10):1224−1235. doi: 10.3969/j.issn.0253-2409.2020.10.009

    ZHOU Wen-bo, NIU Sheng-li, WANG Dong, LU Chun-mei. Promoting effect of Ti in the Ti-modified γ-Fe2O3 catalyst on its performance in the selective catalytic reduction of NO with ammonia, a DFT calculation study[J]. J Fuel Chem Technol,2020,48(10):1224−1235. doi: 10.3969/j.issn.0253-2409.2020.10.009
    [23] CHOI C, SUNG Y, CHOI G M, KIM D J. Numerical analysis of NOx reduction for compact design in marine urea-SCR system[J]. Int J Nav Arch Ocean,2015,7(6):1020−1034. doi: 10.1515/ijnaoe-2015-0071
    [24] ZHU Y Q, ZHANG R P, ZHOU S, HUANG C A, FENG Y M, SHREKA M, ZHANG C L. Performance optimization of high-pressure SCR System in a marine diesel. Part II: Catalytic reduction and process[J]. Top Catal,2019,62(1):40−48.
    [25] UM H S, KIM D, KIM K H. Numerical study on the design of urea decomposition chamber in LP-SCR system[J]. Int J Nav Arch Ocean,2019,11(1):307−313. doi: 10.1016/j.ijnaoe.2018.06.005
    [26] 訾朝辉. Mn改性泡沫镍负载铁基催化剂低温SCR脱硝性能研究[D]. 马鞍山: 安徽工业大学; 2019.

    ZI, Zhao-hui. Low-temperature SCR DeNOx performance of Mn modified foamed Nickel supported iron-based catalysts[D]. Maanshan: Anhui University of Technology, 2019.
    [27] FANG Q L, ZHU B Z, SUN Y L, SONG W Y, XU M G. Effects of Mn, Fe, and Ce doping on the adsorption property of gas molecules and oxidation of SO2 on the NiO (100) surface[J]. Comput Mater Sci,2020,180:109717.
    [28] FANG Q L, ZHU B Z, SUN Y L, SONG W Y, XU M G. Effects of alkali metal poisoning and cobalt modification on the NH3 adsorption behavior on the MnxOy/Ni (111) surface: A DFT-D study[J]. Appl Surf Sci,2020,509:144901.
    [29] WEN W, YU S S, ZHOU C Q, MA H, ZHOU Z Y, CAO C C, YANG J Z, XU M G, QI F, ZHANG G B, PAN Y. Formation and fate of formaldehyde in methanol-to-hydrocarbon reaction: In situ synchrotron radiation photoionization mass spectrometry study[J]. Angew Chem Int Ed,2020,59(12):4873−4878. doi: 10.1002/anie.201914953
    [30] YOU R, YU S S, YANG J Z, PAN Y, HUANG W X. A high-pressure reactor coupled to synchrotron radiation photoionization mass spectrometry[J]. Rev Sci Instrum,2020,91(9):093102. doi: 10.1063/5.0014144
    [31] BUTCHER D J. Vacuum ultraviolet radiation for single-photoionization mass spectrometry: A review[J]. Microchem J,1999,62(3):354−362. doi: 10.1006/mchj.1999.1745
    [32] HUA L, WU Q H, HOU K Y, CUI H P, CHEN P, WANG W G, LI J H, LI H Y. Single photon ionization and chemical ionization combined ion source based on a vacuum ultraviolet lamp for orthogonal acceleration time-of-flight mass spectrometry[J]. Anal Chem,2011,83(13):5309−5316. doi: 10.1021/ac200742r
    [33] CAO F, SU S, XIANG J, WANG P Y, HU S, SUN L S, ZHANG A C. The activity and mechanism study of Fe–Mn–Ce/γ-Al2O3 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. Fuel,2015,139:232−239. doi: 10.1016/j.fuel.2014.08.060
    [34] ZHANG W, SHI Y, LI C Y, ZHAO Q D, LI X Y. Synthesis of bimetallic MOFs MIL-100(Fe-Mn) as an efficient catalyst for selective catalytic reduction of NOx with NH3[J]. Catal Lett,2016,146(10):1956−1964. doi: 10.1007/s10562-016-1840-4
    [35] COOL T A, WANG J, NAKAJIMA K, TAATJES C A, MCLLROY A. Photoionization cross sections for reaction intermediates in Hydrocarbon combustion[J]. Int J Mass Spectrom,2005,247(1):18−27.
    [36] KIMURA K, ACHIBA Y, KATSUMATA S, YAMAZAKI T, IWATA S. Photoionic states of organic molecules studied by HeI photoelectron spectroscopy[J]. J Photoch,1981,17(1):159−160.
    [37] TANG X F, LI J H, SUN L, HAO J M. Origination of N2O from NO reduction by NH3 over β-MnO2 and α-Mn2O3[J]. Appl Catal B: Environ,2010,99(1):156−162.
    [38] GAO W, LIU Q C, WU C Y, LI H L, LI Y, YANG J, WU G F. Kinetics of mercury oxidation in the presence of hydrochloric acid and oxygen over a commercial SCR catalyst[J]. Chem Eng J,2013,220:53−60. doi: 10.1016/j.cej.2013.01.062
    [39] ZHU M H, LAI J K, WACHS I E. Formation of N2O greenhouse gas during SCR of NO with NH3 by supported vanadium oxide catalysts[J]. Appl Catal B: Environ,2018,224:836−840. doi: 10.1016/j.apcatb.2017.11.029
    [40] WANG D H, YAO Q, HUI S, NIU Y Q. Source of N and O in N2O formation during selective catalytic reduction of NO with NH3 over MnOx/TiO2[J]. Fuel,2019,251:23−29. doi: 10.1016/j.fuel.2019.04.035
    [41] SUÁREZ S, JUNG S M, AVILA P, GRANGE P, BLANCO J. Influence of NH3 and NO oxidation on the SCR reaction mechanism on copper/nickel and vanadium oxide catalysts supported on alumina and titania[J]. Catal Today,2002,75(1):331−338.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  672
  • HTML全文浏览量:  178
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-18
  • 修回日期:  2021-01-20
  • 网络出版日期:  2021-03-30
  • 刊出日期:  2021-06-30

目录

    /

    返回文章
    返回