留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZrO2改性对Ni/SBA-15催化二苯并呋喃加氢脱氧的促进作用研究

郭良 刘迪 杜朕屹 冯杰 李文英

郭良, 刘迪, 杜朕屹, 冯杰, 李文英. ZrO2改性对Ni/SBA-15催化二苯并呋喃加氢脱氧的促进作用研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2021045
引用本文: 郭良, 刘迪, 杜朕屹, 冯杰, 李文英. ZrO2改性对Ni/SBA-15催化二苯并呋喃加氢脱氧的促进作用研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2021045
GUO Liang, LIU Di, DU Zhen-yi, FENG Jie, LI Wen-ying. Promoting effects of ZrO2 modification on Ni/SBA-15 catalysts for dibenzofuran hydrodeoxygenation[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2021045
Citation: GUO Liang, LIU Di, DU Zhen-yi, FENG Jie, LI Wen-ying. Promoting effects of ZrO2 modification on Ni/SBA-15 catalysts for dibenzofuran hydrodeoxygenation[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2021045

ZrO2改性对Ni/SBA-15催化二苯并呋喃加氢脱氧的促进作用研究

doi: 10.19906/j.cnki.JFCT.2021045
基金项目: 国家重点研发计划项目(2016YFB0600305)和国家自然科学基金(22078220)资助
详细信息
    作者简介:

    郭良:guoliang0434@link.tyut.edu.cn

    通讯作者:

    Tel & Fax:+86-0351-6018453, E-mail:duzhenyi@tyut.edu.cn

  • 中图分类号: TQ032

Promoting effects of ZrO2 modification on Ni/SBA-15 catalysts for dibenzofuran hydrodeoxygenation

Funds: The project was supported by National Key Research and Development Program of China (2016YFB0600305) and National Natural Science Foundation of China (22078220)
  • 摘要: 以二苯并呋喃为煤焦油中含氧组分的模型化合物,在280 ℃、氢气压力6.5 MPa条件下于反应釜中考察了Ni/Zr-SBA-15催化剂的加氢脱氧性能,分析了ZrO2改性对Ni/SBA-15催化剂结构特性与反应活性的影响。结果表明,ZrO2的添加会增强活性金属Ni与载体间相互作用,促进Ni颗粒的分散,同时会在催化剂中引入氧空位,氧空位与活性金属Ni的协同作用可以促进含氧中间产物的转化,提高目标产物联环己烷的收率。但过量ZrO2(30%)的添加会降低催化剂的比表面积、孔容,不利于Ni颗粒分散,不利于反应的进行。研究发现,当ZrO2添加量为10%时,二苯并呋喃反应速率最高,为9.21 mmol/(min·g);当ZrO2添加量为20%时联环己烷生成速率最高,为3.74 mmol/(min·g);两者均高于未改性的Ni/SBA-15催化剂。
  • 图  1  SBA-15载体与Zr-SBA-15载体的小角XRD谱图

    Figure  1.  Small-angle XRD patterns of SBA-15 and Zr-SBA-15 supports

    图  2  还原态催化剂的XRD谱图

    Figure  2.  XRD patterns of reduced catalysts

    图  3  催化剂的氮气物理吸附-脱附曲线(a)及孔径分布(b)

    Figure  3.  Nitrogen adsorption-desorption isotherms (a) and pore size distribution (b) of catalysts

    图  4  催化剂的吡啶红外光谱谱图

    Figure  4.  Py-FTIR profiles of catalysts

    图  5  催化剂的H2-TPR (a)及H2-TPD(b)谱图

    Figure  5.  H2-TPR (a) and H2-TPD (b) profiles of catalysts

    图  6  Ni/Zr-SBA-15催化剂Zr 3d轨道(a)及Ni/SBA-15、Ni/ZrO2催化剂O 1s轨道能谱图(b)

    Figure  6.  XPS profiles of Ni/Zr-SBA-15 catalysts: Zr 3d(a) and Ni/SBA-15、Ni/ZrO2 catalysts: O 1s(b)

    图  7  二苯并呋喃在Ni/SBA-15催化剂上转化率(a)及产物收率(b)随时间的变化

    Figure  7.  DBF conversion (a) and product yields (b) over Ni/SBA-15 catalysts as a function of time

    图  8  二苯并呋喃在Ni基催化剂上加氢脱氧反应路径图

    Figure  8.  Reaction pathways for HDO of DBF over Ni-based catalysts

    图  9  Ni/SBA-15、Ni/10Zr-SBA-15、Ni/ZrO2催化剂上DBF转化率(a)及主要产物收率(b)随时间的变化

    Figure  9.  DBF conversion rate (a) and product yields (b) over Ni/SBA-15, Ni/10Zr-SBA-15, Ni/ZrO2 catalysts as a function of time

    图  10  Ni/Zr-SBA-15催化剂上DBF反应速率、BCHs生成速率随ZrO2含量的变化

    Figure  10.  DBF reaction rate and BCHs formation rate over Ni/Zr-SBA-15 catalysts

    图  11  Ni/Zr-SBA-15催化剂上产物选择性与ZrO2含量、Ni分散度、氧空位浓度的变化

    Figure  11.  The selectivity of products on Ni/Zr-SBA-15 catalyst varies with ZrO2 content, Ni dispersion, and oxygen vacancy concentration

    表  1  催化剂的化学性质

    Table  1.   Chemical properties of catalysts

    SampleCrystallite
    size/nm a
    H2 consumption
    amount/(μmol·g−1) b
    Ni dispersion/% cO2 consumption
    amount/(μmol·g−1) d
    ZrO213.1
    Ni/SBA-159.715.93.0206.7
    Ni/2.5Zr-SBA-158.229.37.7210.9
    Ni/5Zr-SBA-158.030.09.6222.4
    Ni/10Zr-SBA-157.531.413.4236.2
    Ni/20Zr-SBA-157.333.216.8260.2
    Ni/30Zr-SBA-156.734.417.0286.7
    Ni/ZrO26.843.56.6288.1
    a: calculated from the (1 1 1) reflections using the Scherrer equation; b: H2 consumption amount in H2-TPR; c: determined by H2-TPD; d: determined by O2-Pulse chemisorption
    下载: 导出CSV

    表  2  催化剂的物理吸附性质

    Table  2.   Physical adsorption properties of catalysts

    SampleSurface
    area/a(m2·g−1)
    Pore volumeb/
    (cm3·g−1)
    Most probable
    pore sizec/nm
    SBA-15498.81.417.8
    Ni/SBA-15493.61.117.8
    Ni2.5Zr/SBA-15464.21.087.8
    Ni5Zr/SBA-15450.20.967.8
    Ni10Zr/SBA-15414.90.947.8
    Ni20Zr/SBA-15390.60.897.8
    Ni30Zr/SBA-15360.00.777.8
    Ni/ZrO246.90.13
    a: calculated in the range of relative pressure (p/p0) = 0.05−0.30; b: total pore volume measured at p/p0 = 0.99; c: calculated from the desorption branch with BJH method
    下载: 导出CSV

    表  3  催化剂的酸量

    Table  3.   The acid amount of catalysts

    CatalystLewis acid amount/(μmol·g−1)Proportion of medium strong acid in total acid
    150 ℃300 ℃
    Ni/SBA-158.23.80.46
    Ni/2.5Zr-SBA-1543.120.10.46
    Ni/5Zr-SBA-1560.126.70.44
    Ni/10Zr-SBA-1584.530.50.36
    Ni/20Zr-SBA-1571.918.50.25
    Ni/30Zr-SBA-1568.314.20.20
    Ni/ZrO252.821.40.40
    下载: 导出CSV
  • [1] 赵振新, 朱书全, 马名杰. 中国褐煤的综合优化利用[J]. 洁净煤技术,2008,14(1):28−31. doi: 10.3969/j.issn.1006-6772.2008.01.008

    ZHAO Zhen-xin, ZHU Shu-quan, MA Ming-Jie. Comprehensive and optimal utilization of lignite in China[J]. Clean Coal Technol,2008,14(1):28−31. doi: 10.3969/j.issn.1006-6772.2008.01.008
    [2] HUBER G W, CORMA A. Synergies between bio- and oil refineries for the production of fuels from biomass[J]. Angew Chem Int Ed,2007,38(50):7184−7201.
    [3] 任洪凯, 邓文安, 李传, 崔文龙. 中/低温煤焦油酚类化合物的组成研究[J]. 煤炭转化,2013,36(2):67−70. doi: 10.3969/j.issn.1004-4248.2013.02.017

    REN Hong-kai, DENG Wen-an, LI Chuan, CUI Wen-long. Study on the composition of phenolic compounds in middle/low temperature coal tar[J]. Coal Convers,2013,36(2):67−70. doi: 10.3969/j.issn.1004-4248.2013.02.017
    [4] 孙鸣, 陈静, 代晓敏, 马晓迅, 赵香龙, 刘科. 陕北中低温煤焦油减压馏分的GC-MS分析[J]. 煤炭转化,2015,38(1):58−63. doi: 10.3969/j.issn.1004-4248.2015.01.012

    SUN Ning, CHEN Jing, DAI Xiao-min, MA Xiao-xun, ZHAO Xiang-long, LIU Ke. Vacuum distillates and GC-MS Analysis of low temperature coal tar from northern Shaanxi[J]. Coal Convers,2015,38(1):58−63. doi: 10.3969/j.issn.1004-4248.2015.01.012
    [5] WANG H, MALE J, WANG Y J A C. Recent advances in hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds[J]. ACS Catal,2013,3(5):1047−1070. doi: 10.1021/cs400069z
    [6] HONGXING, CHUNMING, WA NG, R UI, G UO, XIAOFEN, LO NG, YINHUA, CH AO, Y AN. Composition and transformation of sulfur-, oxygen-, and nitrogen-containing compounds in the hydrotreating process of a low-temperature coal tar[J]. Energy Fuels,2018,32(3):3077−3084. doi: 10.1021/acs.energyfuels.7b03659
    [7] 彭华伟. 负载Ni金属/有序介孔SiO2-Al2O3催化二苯并呋喃加氢脱氧反应研究[D]. 太原: 太原理工大学, 2018.

    PENG Hua-wei. Hydrodeoxygenation of dibenzofuran over Ni/ordered mesoporous SiO2-Al2O3 catalysts[D]. Taiyuan: Taiyuan University of Technology, 2018.
    [8] 王铷. Ni-Fe双金属催化剂用于二苯并呋喃加氢脱氧反应研究[D]. 太原: 太原理工大学, 2019.

    WANG Ru. Hydrodeoxygenation of Dibenzofuran over Bimetallic Ni-Fe Catalysts[D]. Taiyuan: Taiyuan University of Technology, 2019.
    [9] WANG L, WAN H, JIN S, CHEN X, LI C, LIANG C. Hydrodeoxygenation of dibenzofuran over SiO2, Al2O3/SiO2 and ZrO2/SiO2 supported Pt catalysts[J]. Catal Sci Technol,2015,5(1):465−474. doi: 10.1039/C4CY00859F
    [10] WANG Y, FANG Y, HE T, HU H, WU J. Hydrodeoxygenation of dibenzofuran over noble metal supported on mesoporous zeolite[J]. Catal Commun,2011,12(13):1201−1205. doi: 10.1016/j.catcom.2011.04.010
    [11] WANG L, LI C, JIN S, LI W, LIANG C. Hydrodeoxygenation of dibenzofuran over SBA-15 supported Pt, Pd, and Ru catalysts[J]. Catal Lett,2014,144(5):809−816. doi: 10.1007/s10562-014-1236-2
    [12] DONG P, LU G, CAI C. Effective hydrodeoxygenation of dibenzofuran by a bimetallic catalyst in water[J]. New J Chem,2016,40(2):1605−1609. doi: 10.1039/C5NJ02164B
    [13] DE SOUZA P M, RABELO-NETO R C, BORGES L E P, JACOBS G, DAVIS B H, RESASCO D E, NORONHA F B. Hydrodeoxygenation of phenol over Pd catalysts. effect of support on reaction mechanism and catalyst deactivation[J]. ACS Catal,2017,7(3):2058−2073. doi: 10.1021/acscatal.6b02022
    [14] ZHAO L, ZHAO J, WU T, ZHAO M, YAN W, ZHANG Y, LI H, WANG Y, XIAO T, ZHAO Y. Synergistic effect of oxygen vacancies and Ni species on tuning selectivity of Ni/ZrO2 catalyst for hydrogenation of maleic anhydride into succinic anhydride and gamma-butyrolacetone[J]. Nanomaterials-Basel,2019,9(3):2079−4991.
    [15] KRUK M, JARONIEC M, KO C H, RYOO R. Characterization of the porous structure of SBA-15[J]. Chem Mater,2000,12(7):1961−1968. doi: 10.1021/cm000164e
    [16] GUTIERREZ O, VALENCIA D, FUENTES G, KLIMOVA T. Mo and NiMo catalysts supported on SBA-15 modified by grafted ZrO2 species: Synthesis, characterization and evaluation in 4, 6-dimethyldibenzothiophene hydrodesulfurization[J]. J Catal,2007,249(2):140−153. doi: 10.1016/j.jcat.2007.04.014
    [17] LINDO M, VIZCAíNO A J, CALLES J A, CARRERO A. Ethanol steam reforming on Ni/Al-SBA-15 catalysts: Effect of the aluminium content[J]. Int J Hydrogen Energy,2010,35(11):5895−5901. doi: 10.1016/j.ijhydene.2009.12.120
    [18] OCHOA-HERNáNDEZ C, YANG Y, PIZARRO P, DE LA PEñA O'SHEA V A, CORONADO J M, SERRANO D P. Hydrocarbons production through hydrotreating of methyl esters over Ni and Co supported on SBA-15 and Al-SBA-15[J]. Catal Today,2013,210:81−88. doi: 10.1016/j.cattod.2012.12.002
    [19] EMEIS C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. J Catal,1993,141(2):347−354. doi: 10.1006/jcat.1993.1145
    [20] LIU C, WANG W, XU Y, LI Z, WANG B, MA X. Effect of zirconia morphology on sulfur-resistant methanation performance of MoO3/ZrO2 catalyst[J]. Appl Surf Sci,2018,441:482−490. doi: 10.1016/j.apsusc.2018.02.019
    [21] CAMPA M C, FERRARIS G, GAZZOLI D, PETTITI I, PIETROGIACOMI D. Rhodium supported on tetragonal or monoclinic ZrO2 as catalyst for the partial oxidation of methane[J]. Appl Catal B: Environ,2013,142−143(5):423−431.
    [22] LI H, REN J, QIN X, QIN Z, LIN J, LI Z. Ni/SBA-15 catalysts for CO methanation: Effects of V, Ce, and Zr promoters[J]. RSC Adv,2015,5(117):96504−96517. doi: 10.1039/C5RA15990C
    [23] JIA X, ZHANG X, RUI N, HU X, LIU C-J. Structural effect of Ni/ZrO2 catalyst on CO2 methanation with enhanced activity[J]. Appl Catal B: Environ,2019,244:159−169. doi: 10.1016/j.apcatb.2018.11.024
    [24] NI J, LENG W, MAO J, WANG J, LIN J, JIANG D, LI X. Tuning electron density of metal nickel by support defects in Ni/ZrO2 for selective hydrogenation of fatty acids to alkanes and alcohols[J]. Appl Catal B: Environ,2019,253:170−178. doi: 10.1016/j.apcatb.2019.04.043
    [25] SHUTTHANANDAN V, NANDASIRI M, ZHENG J, ENGELHARD M H, XU W, THEVUTHASAN S, MURUGESAN V. Applications of XPS in the characterization of Battery materials[J]. J Electron Spectrosc,2019,231:2−10. doi: 10.1016/j.elspec.2018.05.005
    [26] BETTINELLI M, SPEGHINI A, FALCOMER D, DALDOSSO M, DALLACASA V, ROMANò L. Photocatalytic, spectroscopic and transport properties of lanthanide-doped TiO2 nanocrystals[J]. J Phys-Condens Mat,2006,18(33):2149−2160. doi: 10.1088/0953-8984/18/33/S30
    [27] LIU B, LI C, ZHANG G, YAO X, CHUANG S S C, LI Z. Oxygen vacancy promoting dimethyl carbonate synthesis from CO2 and methanol over Zr-Doped CeO2 nanorods[J]. ACS Catal,2018,8(11):10446−10456. doi: 10.1021/acscatal.8b00415
    [28] WANG Y, CAI J, WU M, CHEN J, ZHAO W, TIAN Y, DING T, ZHANG J, JIANG Z, LI X. Rational construction of oxygen vacancies onto tungsten trioxide to improve visible light photocatalytic water oxidation reaction[J]. Appl Catal B: Environ,2018,239:398−407. doi: 10.1016/j.apcatb.2018.08.029
    [29] 谢子铮. 二苯并呋喃加氢脱氧反应中Pt、Ni基催化剂的理论设计与实验[D]. 太原: 太原理工大学, 2020.

    XIE Zi-zheng. Theoretical design and experiments of dibenzofuran hydrodeoxygenation over Pt and Ni-based catalysts[D]. Taiyuan: Taiyuan University of Technology, 2020.
    [30] WANG X B, XIE Z Z, GUO L, DU Z Y, LI W Y J C T. Mechanism of dibenzofuran hydrodeoxygenation on the surface of Pt(111): A DFT study[J]. Catal Today,2021,36(4):220−228. doi: 10.1016/j.cattod.2020.04.044
    [31] BITTER J H, SESHAN K, LERCHER J A. On the contribution of X-ray absorption spectroscopy to explore structure and activity relations of Pt/ZrO2 catalysts for CO2/CH4 reforming[J]. Top Catal,2000,10(3/4):295−305.
    [32] ZHU X, XIE Y, LIU C J, ZHANG Y P. Stability of Pt particles on ZrO2 support during partial oxidation of methane: DRIFT studies of adsorbed CO[J]. J Mol Catal A: Chem,2008,282(1/2):67−73. doi: 10.1016/j.molcata.2007.11.020
    [33] PENG B, YUAN X, ZHAO C, LERCHER J A. Stabilizing catalytic pathways via redundancy: selective reduction of microalgae oil to alkanes[J]. J Am Chem Soc,2012,134(22):9400−9405. doi: 10.1021/ja302436q
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  8
  • HTML全文浏览量:  0
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-28
  • 修回日期:  2021-01-25
  • 网络出版日期:  2021-03-30

目录

    /

    返回文章
    返回