留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

砷/氢/氧体系中均相反应机理的研究

熊中朴 于洋 陈文洋 陈娟

熊中朴, 于洋, 陈文洋, 陈娟. 砷/氢/氧体系中均相反应机理的研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2021046
引用本文: 熊中朴, 于洋, 陈文洋, 陈娟. 砷/氢/氧体系中均相反应机理的研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2021046
XIONG Zhong-pu, YU Yang, CHEN Wen-yang, CHEN Juan. Homogeneous reaction mechanism in arsenic/hydrogen/oxygen system[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2021046
Citation: XIONG Zhong-pu, YU Yang, CHEN Wen-yang, CHEN Juan. Homogeneous reaction mechanism in arsenic/hydrogen/oxygen system[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2021046

砷/氢/氧体系中均相反应机理的研究

doi: 10.19906/j.cnki.JFCT.2021046
基金项目: 国家自然科学基金(51776112)和山东省重点研发计划项目(2018GGX104019)资助
详细信息
    作者简介:

    于洋:202014473@mail.sdu.edu.cn

    通讯作者:

    E-mail: juanchen@sdu.edu.cn

  • 中图分类号: X511

Homogeneous reaction mechanism in arsenic/hydrogen/oxygen system

Funds: The project was supported by National Natural Science Foundation of China (51776112) and the Shandong Provincial Natural Science Foundation, China (2018GGX104019)
  • 摘要: 采用量子化学的方法,利用量子化学软件Gaussian09和GaussView,在B3LYP/6-311G(3df, 3pd)理论水平下,对砷/氢/氧体系燃烧反应的微观机理进行研究。优化了13个基元反应的反应物、中间体、过渡态以及产物的构型,并通过振动频率和内禀反应坐标验证反应真实性。最后采用KiSThelP软件包基于传统过渡态理论拟合计算出动力学参数。本研究对砷燃烧体系中部分重要基元反应进行研究,便于后续建立砷的燃烧动力学模型。
  • 图  1  优化后的AsO, O2, As2O3(D3H)和As2O3(GAMCHE)

    Figure  1.  Optimized AsO, O2, As2O3 (D3H) and As2O3 (GAMCHE)

    图  2  AsO2OH+H2O = H3AsO4反应物、过渡态以及生成物构型

    Figure  2.  Geometries of intermediate,transition state and product of AsO2OH+H2O = H3AsO4

    图  3  AsO2OH+H2O = H3AsO4反应过程图

    Figure  3.  Reactant process analysis of AsO2OH+H2O = H3AsO4

    图  4  AsO2OH+H2O = H3AsO4内禀反应坐标

    Figure  4.  Intrinsic reaction coordinate diagram of AsO2OH+H2O = H3AsO4

    图  5  AsO2OH+H2O = H3AsO4反应过程能量变化

    Figure  5.  Gibbs energy change in AsO2OH+H2O = H3AsO4 reaction process

    图  6  KiSThelP拟合阿伦尼乌斯曲线图

    Figure  6.  KiSThelP fitting Arrhenius curve

    表  1  计算值与文献值对比

    Table  1.   Comparison of calculated values and literature values

    SpeciesBond length(r/ Å)
    and angles(α/°)
    Calculated
    result
    Referenced
    value[17]
    O2r(O-O)1.202551.239
    AsOr(As-O)1.624011.624
    As2O3(D3H)r(As-O)1.843761.836
    r(As-As)2.389402.375
    α(As-O-As)80.7776980.6
    As2O3(GAUCHE)r(As-O)1.619491.610
    r(O-As)1.782841.794
    α(As-O-As)105.77862106.3
    α(O-As-O)129.64809133.8
    下载: 导出CSV

    表  2  砷参与的基元反应

    Table  2.   Elementary reactions of Arsenic

    No.Elementary reactions
    1As+AsO2 = 2AsO
    2As+H2O = AsOH+H
    3AsO+H2O = AsOOH+H
    4AsOOH+H = AsO2+H2
    5AsO2+H2O = AsO2OH+H
    6AsO2OH+H = AsO(OH)2
    7AsOOH+H2O = As(OH)3
    8AsOOH+H = As(OH)2
    9As(OH)3+H = AsO(OH)2+H2
    10AsOH+H2O = As(OH)2
    11As(OH)2+H2O = As(OH)3+H
    12H3AsO4+H = AsO(OH)2+H2O
    13AsO2OH+H2O = H3AsO4
    下载: 导出CSV

    表  3  AsO2OH+H2O = H3AsO4反应各稳定点振动频率

    Table  3.   Frequencies of stable points of AsO2OH+H2O = H3AsO4

    No.Vibrations frequencies/cm−1
    AsO2OH245.63, 281.93, 301.64, 459.23, 726.01, 947.36, 1018.14, 1073.63, 3771.60
    H2O1641.28, 3819.58, 3912.16
    TS−1358.59, 165.93, 255.41, 266.03, 293.69, 370.60, 433.77, 553.71, 689.49,763.14, 806.75, 873.86, 1011.59, 1059.90, 1362.22, 1962.70, 3786.56, 3788.99
    H3AsO4123.08,142.48,208.18,220.49,281.94,289.95,300.96,416.02,548.75,617.39,718.8,936.82,1014.39,1064.23,1610.44,3738.20,3790.15, 3835.85
    下载: 导出CSV

    表  4  AsO2OH+H2O = H3AsO4反应过程能量变化

    Table  4.   Energy change in AsO2OH+H2O = H3AsO4 reaction process

    B3LYP/(a.u.)ZEP/(a.u.)Etot/(a.u.)Erel/(kcal/mol)
    AsO2OH+ H2O−2538.6571270.041458−2538.6156690
    Initermediate−2538.6795960.045239−2538.634357−14.2883
    TS−2538.6608150.041958−2538.618857−2.0000
    H3AsO4−2538.7232550.044405−2538.678850−39.6467
    Ea,for(kcal/mol)12.2883
    Ea,rev(kcal/mol)37.6467
    下载: 导出CSV

    表  5  砷参与的各基元反应反应动力学参数

    Table  5.   Kinetic parameters of each elementary reaction of Arsenic

    No.Elementary reactionsAnEa/cal·mol-1
    1As+AsO2 = 2AsO3.312E+120.01990
    2As+H2O = AsOH+H5.74E+052.539548
    3AsO2OH+H2 = AsOOH+H2O8.07E+022.8143100
    4AsOOH+H = AsO2+H25.06E+071.857303
    5AsO2+H2O = AsO2OH+H5.00E-023.9548637
    6AsO2OH+H = AsO(OH)21.38E+091.57382
    7AsOOH+H2O = As(OH)31.09E+090.537330
    8AsOOH+H = As(OH)26.56E+081.57119
    9As(OH)3+H = AsO(OH)2+H26.62E+071.95403
    10AsOH+H2O = As(OH)23.991E-014.0440720
    11As(OH)2+H2O = As(OH)3+H3.22E-024.0434765
    12H3AsO4+H = AsO(OH)2+H2O2.97E+081.6710179
    13AsO2OH+H2O = H3AsO49.80E+090.527982
    下载: 导出CSV
  • [1] CHEN J, LIU G, KANG Y, WU B, SUN R, ZHOU C, WU D. Coal utilization in China: environmental impacts and human health[J]. Environmental Geochemistry and Health.,2014,36(4):735−753. doi: 10.1007/s10653-013-9592-1
    [2] 田贺忠, 曲益萍. 2005年中国燃煤大气砷排放清单[J]. 环境科学,2014,36(4):735−753.

    TIAN He-zhong, QU Yi-ping. Inventories of Atmospheric Arsenic Emissions from Coal Combustion in China, 2005[J]. Environmental Science,2014,36(4):735−753.
    [3] 黄秋婵, 韦友欢, 吴颖珍. 砷污染对人体健康的危害效应研究[J]. 微量元素与健康研究,2009,26(04):65−67.

    HUANG Qiu-chan, WEI You-huan, WU Ying-zhen. Research on the harmful effects of arsenic pollution on human health[J]. Studies of Trace Elements and Health,2009,26(04):65−67.
    [4] 肖雨亭. 脱硝催化剂的砷中毒[J]. 电力科技与环保,2019,35(05):6−10. doi: 10.3969/j.issn.1674-8069.2019.05.002

    XIAO Yu-ting. Arsenic poisoning in SCR catalyst[J]. Electric Power Technology and Environmental Protection,2019,35(05):6−10. doi: 10.3969/j.issn.1674-8069.2019.05.002
    [5] 刘迎晖, 郑楚光, 游小清, 郭欣. 燃煤过程中易挥发有毒痕量元素的相互作用[J]. 燃烧科学与技术,2001,(04):243−247. doi: 10.3321/j.issn:1006-8740.2001.04.007

    LIU Ying-hui, ZHENG Chu-guang, YOU Xiao-qing, GUO xin. Interaction between most volatile toxic trace elements during coal combustion[J]. Journal of Combustion Science and Technology,2001,(04):243−247. doi: 10.3321/j.issn:1006-8740.2001.04.007
    [6] DUKER A A, CARRANZA E J M, HALE M. Arsenic geochemistry and health[J]. Environment International.,2005,31(5):631−641. doi: 10.1016/j.envint.2004.10.020
    [7] 王臣, 徐明厚, 刘晶, 郑楚光. 基于量子化学的燃煤过程痕量元素反应机理研究及其进展[J]. 热力发电,2005,(04):15−19+40-63. doi: 10.3969/j.issn.1002-3364.2005.04.004

    WANG Chen, XU Ming-hou, LIU Jing, ZHENG Chu-guang. Study on reaction mechanisms of trace elements during process of coal combustion based on quantum and advancement thereof[J]. Thermal Power Generation,2005,(04):15−19+40-63. doi: 10.3969/j.issn.1002-3364.2005.04.004
    [8] 吕雪峰, 于溯源. 铬/氢/空气焚烧动力学模型机理分析及反应速率常数计算[J]. 热科学与技术,2011,10(04):356−359. doi: 10.3969/j.issn.1671-8097.2011.04.015

    LV Xue-feng, YU Su-yuan. Reaction mechanisms and rate constants in Cr/H/Air incineration kinetic model[J]. Journal of Thermal Science and Technology,2011,10(04):356−359. doi: 10.3969/j.issn.1671-8097.2011.04.015
    [9] 刘晶. 燃烧过程中痕量元素释放与反应机理的研究[D]: 华中科技大学; 2007.

    LIU Jing. Study on Trace Elements Release and Reaction Mechanism during Coal Combustion[D]. Huazhong University of Science and Technology: 2007.
    [10] SLIGER R N, KRAMLICH J C, MARINOV N M. Towards the development of a chemical kinetic model for the homogeneous oxidation of mercury by chlorine species[J]. Fuel Processing Technology.,2000,65:423−438.
    [11] 陈嵩涛. 燃煤烟气中铅的反应机理研究[D]: 华北电力大学; 2015.

    CHEN Song-tao. Reaction Mechanism Study on Trace Elements of Pb in the Coal Flue Gas[D]: North China Electric Power University;2015.
    [12] NIKSA S, HELBLE J J, FUJIWARA N. Kinetic modeling of homogeneous mercury oxidation: The importance of NO and H2O in predicting oxidation in coal-derived systems[J]. Environmental Science & Technology.,2001,35(18):3701−3706.
    [13] 周素芹, 谷亚昕, 固旭. 煤炭燃烧过程中N2O消除反应机理的密度泛函理论研究(英文)[J]. 无机化学学报,2011,27(06):1202−1206.

    ZHOU Su-qin, GU Ya-xin, GU Xu. Mechanism of N2O Destruction under coal combustion conditions: Density functional theory study[J]. Chinese Journal of Inorganic Chemistry,2011,27(06):1202−1206.
    [14] 邹潺, 王春波, 邢佳颖. 煤燃烧过程中砷与氮氧化物的反应机理[J]. 燃料化学学报,2019,47(02):138−143. doi: 10.3969/j.issn.0253-2409.2019.02.002

    ZOU Chan, WANG Chun-bo, XING Jia-ying. Reaction mechanism of arsenic and nitrous oxides during coal combustion[J]. Journal of Fuel Chemistry and Technology,2019,47(02):138−143. doi: 10.3969/j.issn.0253-2409.2019.02.002
    [15] URBAN D R, WILCOX J. Theoretical Study of the Kinetics of the Reactions Se + O2 → Se + O and As + HCl → AsCl + H[J]. The Journal of Physical Chemistry A.,2006,110(28):8797−8801. doi: 10.1021/jp0628986
    [16] MONAHAN-PENDERGAST M, PRZYBYLEK M, LINDBLAD M, WILCOX J. Theoretical predictions of arsenic and selenium species under atmospheric conditions[J]. Atmospheric Environment.,2008,42(10):2349−2357. doi: 10.1016/j.atmosenv.2007.12.028
    [17] 闫傲, 张月, 王春波, 白涛, 赵斌. O2对燃煤烟气中As2O3均相反应生成途径影响研究[J]. 燃料化学学报,2020,48(01):11−17. doi: 10.3969/j.issn.0253-2409.2020.01.002

    YAN Ao, ZHANG Yue, WANG Chun-bo, BAI Tao, ZHAO Bin. Influence of O2 on the formation of As2O3 by homogeneous reaction with As and AsO in the coal-fired flue gas[J]. Journal of Fuel Chemistry and Technology,2020,48(01):11−17. doi: 10.3969/j.issn.0253-2409.2020.01.002
    [18] SÉBASTIEN C, FRÉDÉRIC B, ERIC H. KiSThelP: a program to predict thermodynamic properties and rate constants from quantum chemistry results[J]. Journal of computational chemistry.,2014,35(1):82−93. doi: 10.1002/jcc.23470
    [19] TIAN Lu. 使用KiSThelP结合Gaussian基于过渡态理论计算反应速率常数[EB/OL]. http://sobereva.com/246, 2018-2-16/2020-10-7.

    TIAN Lu. Using KiSThelP combined with Gaussian to calculate the reaction rate constant based on transition state theory[EB/OL]. http://sobereva.com/246, 2018-2-16/2020-10-7.
    [20] ZHENG J AIM, LYNCH B J, ZHAO Y. TRUHLAR D G. Database of frequency scale factors for electronic model chemistries[EB/OL]. https://comp.chem.umn.edu/freqscale/version3b1.htm.
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  1
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-03-30

目录

    /

    返回文章
    返回