留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sr掺杂羟基磷灰石负载Co3O4催化N2O分解

刘晓丽 王永钊 赵永祥

刘晓丽, 王永钊, 赵永祥. Sr掺杂羟基磷灰石负载Co3O4催化N2O分解[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2021047
引用本文: 刘晓丽, 王永钊, 赵永祥. Sr掺杂羟基磷灰石负载Co3O4催化N2O分解[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2021047
LIU Xiao-li, WANG Yong-zhao, ZHAO Yong-xiang. Co3O4 supported on Sr doped hydroxyapatite as catalysts for N2O catalytic decomposition[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2021047
Citation: LIU Xiao-li, WANG Yong-zhao, ZHAO Yong-xiang. Co3O4 supported on Sr doped hydroxyapatite as catalysts for N2O catalytic decomposition[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2021047

Sr掺杂羟基磷灰石负载Co3O4催化N2O分解

doi: 10.19906/j.cnki.JFCT.2021047
基金项目: 国家自然科学基金(U1710221)和山西省自然科学基金(201801D121043)项目资助
详细信息
    通讯作者:

    E-mail:catalyst@sxu.edu.cn. Tel:0351-7010588

  • 中图分类号: O643

Co3O4 supported on Sr doped hydroxyapatite as catalysts for N2O catalytic decomposition

Funds: The project was supported by the National Natural Science Foundation of China (U1710221) and Natural Science Foundation of Shanxi Province (201801D121043)
  • 摘要: 通过共沉淀法合成了羟基磷灰石(HAP)和一系列Sr掺杂羟基磷灰石载体(Ca9Sr1,Ca8Sr2和Ca7Sr3),以浸渍法制备负载型Co3O4催化剂。采用XRD、N2-physisorption、Raman、FT-IR、H2-TPR、XPS、O2-TPD和CO2-TPD对所制备的样品进行表征,使用连续流动微反应装置研究了其N2O分解性能。实验结果表明,催化活性顺序为Co/Ca8Sr2 > Co/Ca9Sr1 > Co/HAP > Co/Ca7Sr3。当Sr/Ca比为1∶9和2∶8时较好地保持了HAP载体的结构,适量Sr的掺杂不仅促进了Co3O4分散,增加了催化剂中Co2+和表面氧空位的数量,同时提高了催化剂的表面碱量和碱性位密度,从而更加有利于N2O活化和O2脱附。
  • 图  1  载体(a)和催化剂(b)的XRD谱图

    Figure  1.  XRD patterns of supports (a) and catalysts (b)

    图  2  载体(a)和催化剂(b)的N2-物理吸脱附曲线和孔径分布图

    Figure  2.  N2-physisorption isotherms and pore size distribution of supports (a) and catalysts (b)

    图  3  催化剂的拉曼光谱

    Figure  3.  Raman spectra of catalysts

    图  4  载体和催化剂的红外图

    Figure  4.  FT-IR spectra of supports and catalysts

    图  5  载体和催化剂的TEM图

    Figure  5.  TEM images of supports and catalysts

    图  6  催化剂的XPS图

    Figure  6.  XPS spectra of catalysts

    图  7  载体和催化剂的H2-TPR图

    Figure  7.  H2-TPR profiles of supports and catalysts

    图  8  催化剂的O2-TPD图

    Figure  8.  O2-TPD profiles of catalysts

    图  9  催化剂CO2-TPD图

    Figure  9.  CO2-TPD profiles of catalysts

    图  10  载体和催化剂的N2O催化分解性能

    Figure  10.  N2O conversion over the supports and catalysts

    Feed gas: 1000 ppm N2O/Ar, GHSV = 10,000 h−1

    表  1  载体和催化剂的织构性质以及Co3O4的晶体尺寸

    Table  1.   Textural properties of the supports and catalysts as well as crystal size of Co3O4

    SamplesBET
    surface
    area
    [m2 g−1]
    Total
    pore
    volume
    [cm3 g−1]
    Average
    pore
    diameter
    [nm]
    Crystal
    size of
    Co3O4 [nm]
    HAP440.2018--
    Ca9Sr1330.1012--
    Ca8Sr2270.1116--
    Ca7Sr370.0213--
    Co/HAP340.182219.6
    Co/Ca9Sr1220.091616.9
    Co/Ca8Sr2260.101614.7
    Co/Ca7Sr350.021219.8
    下载: 导出CSV

    表  2  催化剂的XPS结果

    Table  2.   XPS results of catalysts

    CatalystsBinding energy/eVBinding energy/eV
    Co3+Co2+Ex Co2+satelliteCo2+/Co3+Oα1Oα2Oα3Oα2/(Oα1+Oα2+Oα3)
    Co/HAP779.5782.4781.1787.61.25530.4531.4532.90.31
    Co/Ca9Sr1779.4782.4781.1787.21.40530.4531.2532.50.34
    Co/Ca8Sr2779.3782.4781.1787.21.69530.3531.1532.40.45
    Co/Ca7Sr3779.7782.4781.2787.20.96530.3531.4532.30.28
    下载: 导出CSV

    表  3  催化剂的H2-TPR结果

    Table  3.   H2-TPR results of catalysts

    Peak temperature/°CH2 uptake/μmol·g
    CatalystCo3+
    1)
    Co2+
    2)
    Ex Co2+
    (β)
    Co3+
    1)
    Co2+
    2)
    Ex Co2+
    (β)
    Co/HAP33644261783.5227.098.1
    Co/Ca9Sr135541863462.4186.699.0
    Co/Ca8Sr233345063280.0232.3106.2
    Co/Ca7Sr335630057719.080.09.1
    下载: 导出CSV

    表  4  催化剂表面上不同碱性位点的数量和碱性位点密度

    Table  4.   The amount of different basic sites and basic site density on the catalyst surface

    Sampleweak basic sites(μmol·g)strong basic sites(μmol·g)basic site density(μmol·m2)
    Co/HAP122.110.90.39
    Co/Ca9Sr185.47.00.42
    Co/Ca8Sr2131.09.20.54
    Co/Ca7Sr313.21.10.29
    下载: 导出CSV
  • [1] XU M X, HE F, WANG H X, OUYANG, HAO D, ZHAO L, LU Q. Direct catalytic decomposition of N2O over bismuth modified NiO catalysts[J]. J hazard mater,2021,401:123334. doi: 10.1016/j.jhazmat.2020.123334
    [2] 魏旭辉. 骨源羟基磷灰石负载Co3O4催化N2O直接分解[D]. 太原: 山西大学, 2020.

    WEI Xu-hui. Co3O4 supported on bone-derived hydroxyapatite as catalysts for N2O catalytic decomposition[D]. Tai yuan: University of Shan Xi, 2020.
    [3] 郑珂. Y2O3助剂对Co3O4结构及其催化N2O分解性能的影响[D]. 太原: 山西大学, 2019.

    ZHENG Ke. Effect of Y2O3 Promoter on the Structure of Co3O4 and Catalytic Performance for N2O Decomposition[D]. Tai yuan: University of Shan Xi, 2019.
    [4] SATOSHI H, TAKESHI I, YOSHIHIRO K, TETSUYA T, KAZUHIKO S. N2O decomposition properties of Ru catalysts supported on various oxide materials and SnO2[J]. Sci rep-uk,2020,10(1):21605. doi: 10.1038/s41598-020-78744-x
    [5] 徐晓玲, 徐秀峰, 张国涛, 牛宪军. 钴铝复合氧化物负载金催化剂的制备及催化分解N2O[J]. 燃料化学学报,2009,37(5):595−600. doi: 10.1016/S1872-5813(10)60012-6

    XU Xiao-ling, XU Xiu-feng, ZHANG Guo-tao, NIU Xian-Jun. Preparation of Co-Al mixed oxide supported gold catalysts and their catalytic activity for N2O decomposition[J]. Journal of Fuel Chemistry and Technology,2009,37(5):595−600. doi: 10.1016/S1872-5813(10)60012-6
    [6] CAMPA M C, INDOVINA V, PIETROGIACOMI D. The selective catalytic reduction of N2O with CH4 on Na-MOR and Na-MFI exchanged with copper, cobalt or manganese[J]. Appl Catal B,2012,111-112:90−95. doi: 10.1016/j.apcatb.2011.09.021
    [7] KIM M J, KIM Y J, LEE S J, RYU I S, KIM H J, KIM Y J, KO C H, JEON S G. Enhanced catalytic activity of the Rh/γ-Al2O3 pelletcatalyst for N2O decomposition using high Rhdispersion induced by citric acid[J]. Chem Eng Res Des,2019,141:455−463. doi: 10.1016/j.cherd.2018.11.016
    [8] HUANG C Y, MA Z, MIAO C X, YUE Y H, HUA W M, GAO Z. Catalytic decomposition of N2O over Rh/Zn-Al2O3 catalysts[J]. Rsc Adv,2017,7(8):4243−4252. doi: 10.1039/C6RA25388A
    [9] LIU S, TANG N F, SHANG Q G, WU C T, XU G L, CONG Y. Superior performance of iridium supported on rutile titania for the catalytic decomposition of N2O propellants[J]. Chinese J Catal,2018,39(7):1189−1193. doi: 10.1016/S1872-2067(18)63077-3
    [10] ABU-ZIED B M, SOLIMAN S A, ASIRI A M. Role of rubidium promotion on the nitrous oxide decomposition activity of nanocrystalline Co3O4-CeO2 catalyst[J]. Appl Surf Sci,2019,479:148−157. doi: 10.1016/j.apsusc.2019.01.200
    [11] WANG Y Z, WEI X H, HU X B, ZHOU W, ZHAO Y X. Effect of Formic Acid Treatment on the Structure and Catalytic Activity of Co3O4 for N2O Decomposition[J]. Catal Lett,2019,149(4):1026−1036. doi: 10.1007/s10562-019-02681-2
    [12] 郑丽, 吴藏藏, 徐秀峰. N2O 在Mg-Co 和Mg-Mn-Co 复合氧化物上的催化分解[J]. 燃料化学学报,2016,44(12):1494−1501. doi: 10.1016/S1872-5813(17)30005-1

    ZHENG Li, WU Cang-cang, XU Xiu-feng. Catalytic decomposition of N2O over Mg-Co and Mg-Mn-Co composite oxides[J]. J Fuel Chemi Technol,2016,44(12):1494−1501. doi: 10.1016/S1872-5813(17)30005-1
    [13] GHAHRI A, GOLBABAEI F, VAFAJOO L, MIRESKANDARI S M, YASERI M, SHAHTAHERI S J. Removal of Greenhouse Gas (N2O) by Catalytic Decomposition on Natural Clinoptilolite Zeolites Impregnated with Cobalt[J]. Int J Environ Res,2017,11(3):327−337. doi: 10.1007/s41742-017-0030-6
    [14] 徐 冰, 高春光, 王永钊, 赵永祥. Fe/beta 分子筛催化N2O分解[J]. 工业催化,2018,26(1):36−41.

    XU Bing, GAO Chun-guang, WANG Yong-zhao, ZHAO Yong-xiang. Study of Fe/beta zeolite in catalytic N2O decomposition[J]. Ind Catal,2018,26(1):36−41.
    [15] PACHATOURIDOU E, PAPISTA E, DELIMITIS A, VASILIADES M A, EFSTATHIOU A M, AMIRIDIS M D, ALEXEEVl O S, BLOOM D, MARNELLOS G E, KONSOLAKIS M, ILIOPOULOU E. N2O decomposition over ceria-promoted Ir/Al2O3 catalysts: The role of ceria[J]. Appl Catal B,2016,187:259−268. doi: 10.1016/j.apcatb.2016.01.049
    [16] LIU N, ZHANG R D, LIY P, CHEN B H. Local Electric Field Effect of TMI (Fe, Co, Cu)-BEA on N2O Direct Dissociation[J]. J Phys Chem C,2014,118(20):10944−10956. doi: 10.1021/jp5023949
    [17] FRANKEN T, PALKOVITS R. Investigation of potassium doped mixed spinels CuxCo3-xO4 as catalysts for an efficient N2O decomposition in real reaction conditions[J]. Appl Catal B,2015,176-177:298−305. doi: 10.1016/j.apcatb.2015.04.002
    [18] 郑珂, 王永钊, 胡晓波, 武瑞芳, 刘晓丽, 赵永祥. 还原-氧化预处理对Co3O4催化分解N2O性能的影响[J]. 燃料化学学报,2019,47(4):455−463.

    ZHENG Ke, WANG Yong-zhao, HU Xiao-bo, WU Rui-fang, LIU Xiao-li, ZHAO Yong-xiang. Effect of reduction-oxidation pretreatment on the catalytic performance of Co3O4 catalyst in N2O decomposition[J]. J Fuel Chem Technol,2019,47(4):455−463.
    [19] LIU C, WANG W H, XU Y, LI Z H, WANG B W, MA X B. Effect of zirconia morphology on sulfur-resistant methanation performance of MoO3/ZrO2 catalyst[J]. Appl Surf Sci,2018,441:482−490. doi: 10.1016/j.apsusc.2018.02.019
    [20] ZHAO T Q, GAO Q, LIAO W P, XU X F. Effect of Nd-incorporation and K-modification on catalytic performance of Co3O4 for N2O decomposition[J]. Journal of Fuel Chemistry and Technology,2019,47(9):1120−1128. doi: 10.1016/S1872-5813(19)30046-5
    [21] ASANO K, OHNISHI C, IWAMOTO S. Potassium-doped Co3O4 catalyst for direct decomposition of N2O[J]. Appl Catal B,2008,78(3):242−249.
    [22] TIAN M, WANG A Q, WANG X D, ZHU Y Y, ZHANG T. Effect of large cations (La3+ and Ba2+) on the catalytic performance of Mn-substituted hexaaluminates for N2O decomposition[J]. Appl Catal B,2009,92(3-4):437−444. doi: 10.1016/j.apcatb.2009.09.002
    [23] ZHU Y Y, WANG X D, WANG A Q, WU G T, WANG J H, ZHANG T. Identification of the chemical state of Fe in barium hexaaluminate using Rietveld refinement and 57Fe Mössbauer spectroscopy[J]. J. C.,2011,283(2):149−160. doi: 10.1016/j.jcat.2011.08.001
    [24] 朱燕燕, 岳宗洋, 边文, 刘瑞林, 马晓迅, 王晓东. 六铝酸盐结构及其在高温反应中的应用[J]. 化学进展,2018,30(12):1992−2002.

    ZHU Yan-yan, YUE Zong-yang, BIAN Wen, LIU Rui-lin, MA Xiao-xun, WANG Xiao-dong. The structure of Hexaaluminate and Application in High-Temperature Reaction[J]. Progress in Chenistry,2018,30(12):1992−2002.
    [25] ZHANG Y, WANG X D, ZHU Y Y, ZHANG T. Stabilization mechanism and crystallographic sites of Ru in Fe-promoted barium hexaaluminate under high-temperature condition for N2O decomposition[J]. Appl Catal B,2013,129:382−393. doi: 10.1016/j.apcatb.2012.10.001
    [26] SHEN Q, LI L D, LI J J, TIAN H, HAO Z P. A study on N2O catalytic decomposition over Co/MgO catalysts[J]. J Hazard Mater,2009,163(2-3):1332−1337. doi: 10.1016/j.jhazmat.2008.07.104
    [27] HU X B, WANG Y Z, WU R F, ZHAO L L, WEI X H, ZHAO Y X. Effects of zirconia crystal phases on the catalytic decomposition of N2O over Co3O4/ZrO2 catalysts[J]. App Surf Sci,2020,514:145892. doi: 10.1016/j.apsusc.2020.145892
    [28] DOBOSZ J, MAECKA M, ZAWADZKI M. Hydrogen generation via ethanol steam reforming over Co/HAP catalysts[J]. J Energy Inst,2018,91(3):411−423. doi: 10.1016/j.joei.2017.02.001
    [29] 张三兵, 李作鹏, 鲁润华, 王晓来. 羟基磷灰石负载Ni 催化剂中Ni含量对 催化甲烷二氧化碳重整制合成气性能的影响[J]. 燃料化学学报,2014,42(4):461−466.

    ZHANG San-bing, Li Zuo-peng, LU Run-hua, WANG Xiao-lai. Effects of Ni content of Ni/hydroxyapatite catalysts on catalytic properties for carbon dioxide reforming of methane[J]. J Fuel Chem Technol,2014,42(4):461−466.
    [30] SHANTHI R V, MAHALAKSHMY R, THIRUNAVUKKARASU K, SIVASANKER S. Hydrogenolysis of sorbitol over Ni supported on Ca- and Ca(Sr)-hydroxyapatites[J]. Mol Catal,2018,451:170−177. doi: 10.1016/j.mcat.2017.12.031
    [31] OGO S, ONDA A, IWASA Y, HARA K, FUKUOK A, YANAGISAWA K. 1-Butanol synthesis from ethanol over strontium phosphate hydroxyapatite catalysts with various Sr/P ratios[J]. J Catal,2012,296:24−30. doi: 10.1016/j.jcat.2012.08.019
    [32] CHRISTOPHER R H, ZHENG S, SANKARANARAYANAPILLAI, ALEXIS T B. The mechanism and kinetics of methyl isobutyl ketone synthesis from acetone over ion-exchanged hydroxyapatite[J]. J Catal,2018,365:174−183. doi: 10.1016/j.jcat.2018.07.005
    [33] LI G M, CHEN M Z, OUYANG Y, YAO D, LU L, WANG L, XIA X F, LEI W, CHEN S M, MANDLER D, HAO Q L. Manganese doped Co3O4 mesoporous nanoneedle array for long cycle-stable supercapacitors[J]. Appl Surf Sci,2019,469:941−950. doi: 10.1016/j.apsusc.2018.11.099
    [34] AMADINE O, ESSAMLALI Y, AMEDLOUS A, ZAHOUILY M. Iron oxide encapsulated by copper-apatite: an efficient magnetic nanocatalyst for N-arylation of imidazole with boronic acid[J]. Rsc Adv,2019,9:36471. doi: 10.1039/C9RA06991G
    [35] WANG Y Z, HU X B, ZHENG K, ZHANG H, ZHAO Y X. Effect of precipitants on the catalytic activity of Co-Ce composite oxide for N2O catalytic decomposition[J]. React Kinet Mech Cat,2018,123(2):707−721. doi: 10.1007/s11144-017-1293-9
    [36] SUN Y H, QU Z P, CHEN D, WANG H, ZHANG F, FU Q. Formaldehyde catalytic oxidation over hydroxyapatite modified with various organic molecules[J]. Chinese J Catal,2014,35(12):1927−1936. doi: 10.1016/S1872-2067(14)60129-7
    [37] JAWORSKI J W, CHO S, KIM Y Y, JUNG J H, JEON H S, MIN B K, KWON K Y. Hydroxyapatite supported cobalt catalysts for hydrogen generation[J]. J Colloid Interf Sci,2013,394:401−408. doi: 10.1016/j.jcis.2012.11.036
    [38] MAHAMMADUNNISA S K, AKANKSHA T, KRUSHNAMURTY K, SUBRAHMANYAM C. Catalytic decomposition of N2O over CeO2 supported Co3O4 catalysts[J]. J Chem Sci,2016,128(11):1795−1804. doi: 10.1007/s12039-016-1180-3
    [39] TSUCHIDA T, KUBO J, YOSHIOKA T, SAKUMA S, TAKEGUCHI T, UEDA W. Reaction of ethanol over hydroxyapatite affected by Ca/P ratio of catalyst[J]. J Catal,2008,259(2):183−189. doi: 10.1016/j.jcat.2008.08.005
    [40] WEI X H, WANG Y Z, LI X, WU R F, ZHAO Y X. Co3O4 supported on bone-derived hydroxyapatite as potential catalysts for N2O catalytic decomposition[J]. Mol Catal,2020,491:111005. doi: 10.1016/j.mcat.2020.111005
    [41] ZHANG C, ZHANG Z P, SUI C, YUAN F L, NIU X Y, ZHU Y J. Catalytic Decomposition of N2O over Co-Ti Oxide Catalysts: Interaction between Co and Ti Oxide[J]. ChemCatChem,2016,8(12):2155−2164. doi: 10.1002/cctc.201600231
    [42] WANG Y Z, ZHENG K, HU X B, ZHOU W, WEI X H, ZHAO Y X. Y2O3 promoted Co3O4 catalyst for catalytic decomposition of N2O[J]. Mol Catal,2019,470:104−111. doi: 10.1016/j.mcat.2019.04.002
    [43] WANG X Y, LIU Y, ZHANG T H, LUO Y J, LAN Z X, ZHANG K, ZUO J C, JIANG L L, WANG R H. Geometrical-site-dependent catalytic activity of ordered mesoporous Co-based spinel for benzene oxidation: in situ DRIFTS study coupled with raman and XAFS spectroscopy[J]. Acs Catal,2017,7(3):1626−1636. doi: 10.1021/acscatal.6b03547
    [44] XUE L, ZHANG C B, HE H, TERAOKA Y. Catalytic decomposition of N2O over CeO2 promoted Co3O4 spinel catalyst[J]. Appl Catal B,2007,75:167−174. doi: 10.1016/j.apcatb.2007.04.013
    [45] YU H B, TURSUN M, WANG X P, WU X X. Pb0.04Co catalyst for N2O decomposition in presence of impurity gases[J]. Appl Catal B,2016,185:110−118. doi: 10.1016/j.apcatb.2015.12.011
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  8
  • HTML全文浏览量:  7
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-03-16

目录

    /

    返回文章
    返回