留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用煤矸石制备负载Fe3O4的陶瓷复合材料及微波吸收性能研究

田君儒 王晓敏 梁丽萍 力国民

田君儒, 王晓敏, 梁丽萍, 力国民. 利用煤矸石制备负载Fe3O4的陶瓷复合材料及微波吸收性能研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2021049
引用本文: 田君儒, 王晓敏, 梁丽萍, 力国民. 利用煤矸石制备负载Fe3O4的陶瓷复合材料及微波吸收性能研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2021049
TIAN Jun-ru, WANG Xiao-min, LIANG Li-ping, LI Guo-min. Preparation and microwave absorption of Fe3O4 loaded ceramic composite by recycling of coal gangue[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2021049
Citation: TIAN Jun-ru, WANG Xiao-min, LIANG Li-ping, LI Guo-min. Preparation and microwave absorption of Fe3O4 loaded ceramic composite by recycling of coal gangue[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2021049

利用煤矸石制备负载Fe3O4的陶瓷复合材料及微波吸收性能研究

doi: 10.19906/j.cnki.JFCT.2021049
基金项目: 国家自然科学基金(52072256,U1710256,51802212)资助
详细信息
    通讯作者:

    E-mail: wangxiaomin@tyut.edu.cn

    ligm@tyust.edu.cn

  • 中图分类号: TB34

Preparation and microwave absorption of Fe3O4 loaded ceramic composite by recycling of coal gangue

Funds: The project was supported by the National Natural Science Foundation of China (52072256, U1710256, 51802212)
  • 摘要: 本研究以固废煤矸石为主要原料,通过对其进行破碎、球磨、酸洗处理、造粒成球和煅烧得到煤矸石载体,经液相负载与原位碳热还原制得Fe3O4负载的陶瓷复合微波吸收材料,并且研究了Fe3O4负载量对复合材料结构及电磁性能的影响规律。结果表明,当焙烧温度为600 °C、前驱体溶液浓度为1.25−1.5 mol/L时,复合材料的微波吸收性能最佳,涂层厚度为2.0 mm时的最低反射损耗值和有效吸收带宽分别可达−20.1 dB和4.7 GHz,主要归因于复合材料良好的阻抗匹配与衰减特性。本实验制备流程简单,为固废煤矸石的回收利用提供了新思路,同时也可以降低微波吸收材料的生产成本。
  • 图  1  复合材料在不同温度下的XRD谱图(a)和Raman光谱谱图(b)

    Figure  1  XRD patterns (a) and Raman spectra (b) of composites annealed at different temperatures

    图  2  FeG600在不同负载浓度1 mol/L (a)、1.25 mol/L (b)、1.5 mol/L (c)、1.75 mol/L (d) 的SEM照片

    Figure  2  SEM images for FeG600 under different concentration 1 mol/L (a), 1.25 mol/L (b), 1.5 mol/L (c), 1.75 mol/L (d) of precursor solution

    图  3  FeG600在不同负载浓度下的磁滞曲线

    Figure  3  Magnetic hysteresis loops for FeG600 under different concentration of precursor solution

    图  4  FeG600在不同负载浓度下1 mol/L (a)、1.25 mol/L (b)、1.5 mol/L (c)、1.75 mol/L (d)的反射损耗三维图

    Figure  4  Three-dimensional diagram of reflection loss for FeG600 under different concentration 1 mol/L (a), 1.25 mol/L (b), 1.5 mol/L (c), 1.75 mol/L (d)

    图  5  FeG600在不同负载浓度下的复介电常数实部(a)和虚部(b)以及复磁导率实部(c)和虚部(d)随频率的变化

    Figure  5  Frequency dependence of ε′ (a), ε″ (b), μ′ (c) and μ″ (d) for FeG600 under different concentration of precursor solution

    图  6  FeG600在不同负载浓度下的阻抗匹配特性曲线:1 mol/L (a)、1.25 mol/L(b)、1.5 mol/L(c)、1.75 mol/L (d)

    Figure  6  Impedance matching characteristic curves for FeG600 under different concentration 1 mol/L (a), 1.25 mol/L (b), 1.5 mol/L (c), 1.75 mol/L (d) of precursor solution

    图  7  FeG600在不同负载浓度下的损耗因子

    Figure  7  Loss tangents for FeG600 under different concentration of precursor solution

    表  1  文献报道的负载Fe3O4的复合吸波材料性能

    Table  1  Microwave absorption of some reported composites loaded with Fe3O4

    SampleEffective
    bandwidth/
    GHz
    RLmin/dBCoating
    thickness/
    mm
    Ref.
    Fe3O4@N/CNC5.0−14.15.0[21]
    Fe3O4/Fe/ C4.1−152.0[22]
    Fe3O4@C1.2−28.13.0[23]
    FeG600-1.254.7−20.12.0this work
    FeG600-1.54.1−20.11.5this work
    下载: 导出CSV
  • [1] SHAHZAD F, ALHABEB M, HATTER C B, ANASORI B, HONG M S, KOO C M, GOGOTSI Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science,2016,353(6304):1137−1140. doi: 10.1126/science.aag2421
    [2] ZHANG M, LI Z J, WANG T, DING S Q, SONG G Q, ZHAO J, MENG A, YU H Y, LI Q D. Preparation and electromagnetic wave absorption performance of Fe3Si/SiC@SiO2 nanocomposites[J]. Chem Eng J,2019,362:619−627. doi: 10.1016/j.cej.2019.01.039
    [3] CHENG Y, LI Z Y, LI Y, DAI S S, JI G B, ZHAO H Q, CAO, J M, DU Y W. Rationally regulating complex dielectric parameters of mesoporous carbon hollow spheres to carry out efficient microwave absorption[J]. Carbon,2018,127:643−652. doi: 10.1016/j.carbon.2017.11.055
    [4] ZHANG Y, HUANG Y, ZHANG T F, CHANG H C, XIAO P S, CHEN H H, HUANG Z Y, CHEN Y S. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam[J]. Adv Mater,2015,27:2049−2053. doi: 10.1002/adma.201405788
    [5] QUAN B, SHI W H, ONG S J H, LU X C, WANG L Y P, JI G B, GUO Y F, ZHENG L R, XU Z C J. Defect engineering in two common types of dielectric materials for electromagnetic absorption applications[J]. Adv Funct Mater,2019,28:1901236.
    [6] SINGH S K, AKHTAR M J, KAR K K. Hierarchical carbon nanotube-coated carbon fiber: Ultra-lightweight, thin, and highly efficient microwave absorber[J]. ACS Appl Mater Interfaces,2018,10:24816−24828. doi: 10.1021/acsami.8b06673
    [7] XIANG J, LI J L, ZHANG X H, YE Q, XU J H, SHEN X Q. Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers[J]. J Mater Chem A,2014,2:16905−16914. doi: 10.1039/C4TA03732D
    [8] CHE R C, PENG L M, DUAN X F, CHEN Q, LIANG X L. Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon Nanotubes[J]. Adv Mater,2004,16:401−405. doi: 10.1002/adma.200306460
    [9] WANG L N, JIA X L, LI Y F, YANG F, ZHANG L Q, LIU L P, REN X, YANG H T. Synthesis and microwave absorption property of flexible magnetic film based on graphene oxide/carbon nanotubes and Fe3O4 nanoparticles[J]. J Mater Chem A,2014,2:14940−14946. doi: 10.1039/C4TA02815E
    [10] LIU P B, HUANG Y, ZHANG X. Superparamagnetic Fe3O4 nanoparticles on graphene-golyaniline: Synthesis characterization and their excellent electromagnetic absorption properties[J]. J Alloy Compd,2014,596:25−31. doi: 10.1016/j.jallcom.2014.01.188
    [11] DU Y C, LIU W W, QING R, WANG Y, HAN X J, MA J. Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites[J]. ACS Appl Mater Interfaces,2014,6:12997−13006. doi: 10.1021/am502910d
    [12] WANG G Z, GAO Z, TANG S W, CHEN C Q, DUAN F F, ZHAO S C, LIN S W, FENG Y H, ZHOU L, QIN Y. Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition[J]. ACS Nano,2012,6:11009−11017. doi: 10.1021/nn304630h
    [13] WEN F S, ZHANG F, LIU Z Y. Investigation on microwave absorption properties for multiwalled carbon nanotubes/Fe/Co/Ni nanopowders as lightweight absorbers[J]. J Phys Chem C,2011,115:14025−14030. doi: 10.1021/jp202078p
    [14] CHEN D Z, WANG G S, HE S, LIU J, GUO L, CAO M S. Controllable fabrication of mono-dispersed RGO-hematite nanocomposites and their enhanced wave absorption properties[J]. J Mater Chem A,2013,1:5996−6003. doi: 10.1039/c3ta10664k
    [15] LI G M, WANG L C, LI W X, XU Y. Mesoporous Fe/C and core-shell Fe-Fe3C@C composites as efficient microwave absorbents[J]. Microporous Mesoporous Mater,2015,21:97−104.
    [16] 田玉明, 朱保顺, 力国民. 煤矸石掺量对陶粒支撑剂性能的影响[J]. 硅酸盐学报,2019,47(3):365−369.

    TIAN Yu-ming, ZHU Bao-shun, LI Guo-min. Influence of coal gangue amount on properties of ceramic proppants[J]. J Chin Ceram Soc,2019,47(3):365−369.
    [17] FERRARI A C, ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Phys Rev B,2000,61:14095. doi: 10.1103/PhysRevB.61.14095
    [18] LI G M, WANG L C, LI W X, DING R M, XU Y. CoFe2O4 and/or Co3Fe7 loaded porous activated carbon balls as a lightweight microwave absorbent[J]. Phys Chem Chem Phys,2014,16:12385−12392. doi: 10.1039/C4CP00647J
    [19] LIU J, ZHANG H B, SUN R, LIU Y, LIU Z, ZHOU A, YU Z Z. Hydrophobic, Flexible, and Lightweight MXene Foams for high-performance electromagnetic-interference shielding[J]. Adv Mater,2017,170:2367−2373.
    [20] LI G M, MAO L T, ZHU B S, CHANG X, WANG Y K, WANG G Z, ZHANG K W, TIAN Y M, LIANG L P. The novel ceramic-based microwave absorbents derived from gangue[J]. J Mater Chem C,2020,8:14283.
    [21] QIAO M T, LEI X F, MA Y, TIAN L D, HE X W, SU K H, ZHANG Q Y. Application of yolk-shell Fe3O4@N-doped carbon nanochains as highly effective microwave-absorption material[J]. Nano Res,2018,11:1500−1519. doi: 10.1007/s12274-017-1767-0
    [22] LIU Y, LI Y, JIANG K, TONG G, LV T, WU W. Controllable synthesis ofelliptical Fe3O4@C and Fe3O4/Fe@C nanorings for plasmon resonance-enhanced microwave absorption[J]. J Mater Chem C,2016,4:7316−7323. doi: 10.1039/C6TC01737A
    [23] JIAN X, XIAO X Y, DENG L J, TIAN W, WANG X, MAHMOOD N, DOU S X. Heterostructured nanorings of Fe-Fe3O4@C hybrid with enhanced microwave absorption performance[J]. ACS Appl Mater Interfaces,2018,10:9369−9378.
    [24] LI Y X, LIU R G, PANG X Y, ZHAO X N. Fe@C nanocapsules with substitutional sulfur heteroatoms in graphitic shells for improving microwave absorption atgigahertz frequencies[J]. Carbon,2018,162:372−381.
    [25] XU X F, WANG G Z, WAN G P, SHI S H, HAO C C, TANG Y L, WANG G L. Magnetic Ni/graphene connected with conductive carbon nano-onions or nanotubes by atomic layer deposition for lightweight and low-frequency microwave absorption[J]. Chem Eng J,2020,382:122980. doi: 10.1016/j.cej.2019.122980
    [26] GANGOPADHYAY S, HADJIPANAYIS G C, DALE B, SORENSEN C M, KLABUNDE K J, PAPAEFTHYMIOU V, KOSTIKAS A. Magnetic-properties of ultrafine iron particles[J]. Phys Rev B,1992,45(17):9778−9787. doi: 10.1103/PhysRevB.45.9778
    [27] AHARONI A. Exchange resonance modes in a ferromagnetic sphere[J] J Appl Phys, 1991, 69(11): 7762–7764.
    [28] LIU Q H, CAO H, BI C Y, LIANG K P, YUAN K P, SHE W, YANG Y J, CHE R C. CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption[J]. Adv Mater,2016,28:486−490. doi: 10.1002/adma.201503149
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  76
  • HTML全文浏览量:  22
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-15
  • 修回日期:  2021-03-04
  • 网络出版日期:  2021-03-24

目录

    /

    返回文章
    返回