留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米涂层对钙钛矿基整体式催化剂催化燃烧VOCs性能的影响

吕春旺 陈鸿伟 胡明江 闫立强

吕春旺, 陈鸿伟, 胡明江, 闫立强. 纳米涂层对钙钛矿基整体式催化剂催化燃烧VOCs性能的影响[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2021052
引用本文: 吕春旺, 陈鸿伟, 胡明江, 闫立强. 纳米涂层对钙钛矿基整体式催化剂催化燃烧VOCs性能的影响[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2021052
LÜ Chun-wang, CHEN Hong-wei, HU Ming-jiang, YAN Li-qiang. Effect of nano-coating on the catalytic combustion performance of perovskite-based monolithic catalysts for VOCs[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2021052
Citation: LÜ Chun-wang, CHEN Hong-wei, HU Ming-jiang, YAN Li-qiang. Effect of nano-coating on the catalytic combustion performance of perovskite-based monolithic catalysts for VOCs[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2021052

纳米涂层对钙钛矿基整体式催化剂催化燃烧VOCs性能的影响

doi: 10.19906/j.cnki.JFCT.2021052
基金项目: 北京市自然科学基金(3214056),河南省科技攻关计划 项目(212102210199)和河南城建学院科研创新团队支持计划项目(20TNSHUUC19)资助
详细信息
    通讯作者:

    E-mail:hdchw66@126.com

  • 中图分类号: TQ630.9,X511

Effect of nano-coating on the catalytic combustion performance of perovskite-based monolithic catalysts for VOCs

Funds: The project was supported by the Natural Science Foundation of Beijing (3214056), the Science and Technology Foundation of Henan Province (212102210199) and the Scientific Research and Innovation Team Support Project of Henan University of Urban Construction (20TNSHUUC19)
  • 摘要: 以堇青石蜂窝陶瓷为基体,纳米氧化物(CeO2γ-Al2O3、SiO2)为涂层载体,通过悬浮涂渍法和溶胶-凝胶法两步制得LaCoO3/CeO2/堇青石、LaCoO3/γ-Al2O3/堇青石、LaCoO3/SiO2/堇青石三种整体式催化剂。通过XRD、SEM、XPS、H2-TPR、UT和N2 吸附-脱附等技术,对样品的物相、微观形貌、元素成分、氧化还原性、黏附强度、质构性能进行了表征分析。通过催化燃烧VOCs实验评价了整体式催化剂的催化活性、高温稳定性、停机/重启循环稳定性和水汽稳定性。实验结果表明,三种催化剂均显示出良好的催化活性和稳定性,涂层类型会造成催化性能的差异。其中,LaCoO3/CeO2/堇青石催化剂表现出最优的性能。当甲苯体积分数为0.1%、空速为18000 mL/(g·h)时,其达到50%和90%转化率时温度分别为158和214 ℃;在转化率为90%的温度下经历72 h的稳定性测试(高温、停启循环、水汽)后,甲苯转换率仅降低7%。表征结果显示,CeO2纳米涂层有助于形成多孔蓬松结构的催化层, 同时催化剂具有较高的吸附氧比例、较强的低温还原性以及良好的黏附性。
  • 图  1  催化活性测试实验示意图

    1: N2; 2: O2; 3: toluene; 4: mass flowmeter; 5: mixing cylinder; 6: triple valve; 7: reactor; 8: gas chromatograph (GC); 9: exit

    Figure  1  Experimental schematic of catalytic activity test

    图  2  不同样品的XRD谱图

    Figure  2  X-ray diffraction patterns of different samples

    a: powdered LaCoO3; b: blank cordierite; c: LaCoO3/cordierite; d: LaCoO3/γ-Al2O3/cordierite; e: LaCoO3/CeO2/cordierite; f: LaCoO3/SiO2/cordierite

    图  3  不同样品的N2吸附-脱附等温线(a)和孔径分布(b)

    Figure  3  N2 adsorption-desorption isotherms (a) and pore size distributions (b) of different samples

    图  4  不同样品的SEM照片

    Figure  4  SEM images of different samples (a): blank cordierite; (b): γ-Al2O3/cordierite; (c): CeO2/cordierite; (d): SiO2/cordierite; (e), (i): LaCoO3/cordierite; (f), (j): LaCoO3/γ-Al2O3/cordierite; (g), (k): LaCoO3/CeO2/cordierite; (h), (l): LaCoO3/SiO2/cordierite

    图  5  LaCoO3/γ-Al2O3、LaCoO3/CeO2、LaCoO3/SiO2和粉末状LaCoO3的XPS谱图

    Figure  5  XPS spectra of LaCoO3/γ-Al2O3, LaCoO3/CeO2, LaCoO3/SiO2 and powdered LaCoO3

    (a): full spectra; (b): La 3d; (c): Co 2p; (d): O 1s

    图  6  不同样品的H2-TPR谱图

    Figure  6  H2-TPR Profiles of different samples

    图  7  不同样品的脱落率

    Figure  7  Weight loss of different samples

    图  8  甲苯催化燃烧活性测试

    Figure  8  Activity test of toluene catalytic combustion

    图  9  甲苯催化燃烧稳定性测试

    Figure  9  Stability test of toluene catalytic combustion

    表  1  样品的质构性质

    Table  1  Textural properties of the samples

    Sample$S_{{\rm{BET}}}^{\rm{a}} $/(m2·g−1)$v_{ {\rm{p} } }^{\rm{b} }$/(cm3·g−1)$D_{{\rm{p}}}^{\rm{c}} $/nm
    Cordierite1.20.0137.2
    Al2O3138.10.77111.1
    γ-Al2O3/cordierite11.70.06813.9
    LaCoO3/γ-Al2O3/cordierite6.90.04216.9
    CeO248.70.19881.3
    CeO2/cordierite3.30.01610.0
    LaCoO3/CeO2/cordierite2.30.01613.4
    SiO2187.00.06050.0
    SiO2/cordierite11.90.08021.5
    LaCoO3/SiO2/cordierite5.70.03216.0
    a: surface area, calculated by BET method, b: total pore volume, determined from the amount adsorbed at p/p0 = 0.99, c: average pore diameter, determined by BJH method of the desorption branch
    下载: 导出CSV

    表  2  XPS表征参数

    Table  2  XPS characterization parameters

    SampleBinding energy/eVCo/LaOads/Ototal
    La 3d5/2La 3d3/2Co 2p3/2Co 2p1/2Oads 1sOlatt 1sCe 3d/Al 2p/Si 2p
    LaCoO3/γ-Al2O3834.4/838851.2/854.9780.3795.6529.3531.474.30.410.54
    LaCoO3/CeO2834.3/837.8850.9/854.8780.2795.4529.3531.4882.50.520.64
    LaCoO3/SiO2834.5/837.9851.1/854.9780.2795.4529.5531.0103.20.380.24
    LaCoO3833.7/837.5850.6/854.4779.9795.2529.0531.10.550.651
    下载: 导出CSV

    表  3  本研究与其他文献中催化剂的甲苯催化燃烧性能比较

    Table  3  Catalysts comparison of toluene catalytic combustion performance in this work and other literature

    CatalystTolueneGHSVT50/℃T90/℃Reference
    LaCoO3/CeO2/cordierite 0.1% 18000 mL/(g·h) 158 214 this work
    LaCoO3/γ-Al2O3/cordierite 180 219
    LaCoO3/SiO2/cordierite 176 230
    LaMnO3/TiO2 0.1% 18000 mL/(g·h) 278 303 [20]
    LaMnO3/YSZ 235 247
    Co/La-CeO2/cordierite 0.1% 12000 mL/(g·h) 253 286 [38]
    Co/La-CeO2 229 258
    0.05La-Co 0.1% 20000 mL/(g·h) 218 224 [39]
    LaMnO3-PL-2 0.1% 20000 mL/(g·h) 226 249 [40]
    3DOM-La0.8Ce0.2MnO3/cordierite (600 °C) 0.05% 6000 h−1 147 217 [19]
    3DOM-La0.8Ce0.2MnO3/cordierite (700 °C) 162 249
    3DOM-La0.8Ce0.2MnO3/cordierite (800 °C) 190 320
    La0.75Sr0.25CoO3 0.05% 30000 h−1 212 228 [41]
    LaZn0.3Fe0.7O3 0.2% 15000 h−1 222 310
    NiMnO3/Ce0.75Zr0.25O2/cordierit 500 mg/m3 15000 h−1 209 235 [42]
    20%La0.8Ce0.2MnO3/ZSM-5 3 mg/L 20000 h−1 206 285 [43]
    下载: 导出CSV
  • [1] HE C, CHENG J, ZHANG X, ZHANG X, DOUTHWAITE M, HAO Z. Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources[J]. Chem Rev,2019,119(7):4471−4568. doi: 10.1021/acs.chemrev.8b00408
    [2] MANISALIDIS I, STAVROPOULOU E, STAVROPOULOS A, BEZIRTZOGLOU E. Environmental and health impacts of air pollution: a review[J]. Front Public Health,2020,8:14. doi: 10.3389/fpubh.2020.00014
    [3] GRANGER P. Challenges and breakthroughs in post-combustion catalysis: how to match future stringent regulations[J]. Catal Sci Technol,2017,7(22):5195−5211. doi: 10.1039/C7CY00983F
    [4] ZHU J, LI H, ZHONG L, XIAO P, XU X, YANG X, ZHAO Z, LI J. Perovskite oxides: preparation, characterizations, and applications in heterogeneous catalysis[J]. ACS Catal,2014,4(9):2917−2940. doi: 10.1021/cs500606g
    [5] 胡明江, 吕春旺, 杨师斌, 王忠. La1-xAlxFeO3催化剂降低甲醇/柴油二元燃料发动机非常规排放研究[J]. 环境科学学报,2018,38(4):1437−1445.

    HU Ming-jiang, LV Chun-wang, YANG Shi-bin, WANG Zhong. Research of effects on irregular exhaust emissions control from methanol-diesel engine with La1−xAlxFeO3 catalysts[J]. Acta Sci Circum,2018,38(4):1437−1445.
    [6] ZANG M, ZHAO C, WANG Y, CHEN S. A review of recent advances in catalytic combustion of VOCs on perovskite-type catalysts[J]. J Saudi Chem Soc,2019,23(6):645−654. doi: 10.1016/j.jscs.2019.01.004
    [7] 胡明江, 刘海燕, 吕春旺, 赵丽霞, 张志远. 基于LaFe1−xPdxO3纳米纤维的三明治结构甲苯传感器研究[J]. 分析化学,2020,48(1):66−73.

    HU Ming-jiang, LIU Hai-yan, LV Chun-wang, ZAHO Li-xia, ZHANG Zhi-yuan. Study on Sandwich Structure Toluene Sensor Based on LaFe1−xPdxO3 Nanofibers[J]. Chin J Anal Chem,2020,48(1):66−73.
    [8] HOSSEINI S, MOGHADDAS H, MASOUDI SOLTANI S, KHEAWHOM S. Technological applications of honeycomb monoliths in environmental processes: A review[J]. Process Saf Environ,2020,133:286−300. doi: 10.1016/j.psep.2019.11.020
    [9] KEAV S, MATAM S, FERRI D, WEIDENKAFF A. Structured perovskite-based catalysts and their application as three-way catalytic converters-a review[J]. Catalysts,2014,4(3):226−255. doi: 10.3390/catal4030226
    [10] TOMAŠIĆ V, JOVIĆ F. State-of-the-art in the monolithic catalysts/reactors[J]. Appl Catal A: Gen,2006,311:112−121. doi: 10.1016/j.apcata.2006.06.013
    [11] YUAN J, ZHAO K, CAI T, GAO Z, YANG L, HE D. One-step dip-coating of uniform γ-Al2O3 layers on cordierite honeycombs and its environmental applications[J]. Ceram Int,2016,42(13):14384−14390. doi: 10.1016/j.ceramint.2016.06.003
    [12] ALMOHAMADI H, SMITH K J. Beneficial effect of adding γ-AlOOH to the γ-Al2O3 washcoat of a PdO catalyst for methane oxidation[J]. Can J Chem Eng,2019,98(1):281−293.
    [13] ZHOU T, LI L, CHENG J, HAO Z. Preparation of binary washcoat deposited on cordierite substrate for catalytic applications[J]. Ceram Int,2010,36(2):529−534. doi: 10.1016/j.ceramint.2009.09.027
    [14] SOLOVIEV S O, KYRIIENKO P I, POPOVYCH N O. Effect of CeO2 and Al2O3 on the activity of Pd/Co3O4/cordierite catalyst in the three-way catalysis reactions (CO/NO/CnHm)[J]. J Environ Sci,2012,24(7):1327−1333. doi: 10.1016/S1001-0742(11)60930-3
    [15] NIKOOFAR K, SHAHEDI Y, CHENARBOO F J J M-R I O C. Nano alumina catalytic applications in organic transformations[J]. Mini-Rev Org Chem, 2019, 16(2): 102−110.
    [16] 李淑婵. 定—转子反应器中制备Ce0.5Zr0.5O2催化剂载体[D]. 北京: 北京化工大学, 2016.

    LI Shu-can. Preparation of Ce0.5Zr0.5O2 nano-support in rotor-stator reactor[D]. Beijing: Beijing University of Chemical Technology, 2016.
    [17] 张庆, 张洪泉, 白涛. 基于γ-A12O3-ZrO2-ThO2的Pd基催化剂载体制备及应用[J]. 实验技术与管理,2020,37(1):56−58+70.

    ZHANG Qing, ZHANG Hong-quan, BAI Tao. Preparation and application experiment for Pd catalyst carrier based on γ-A12O3-ZrO2-ThO2[J]. Exp Technol Manage,2020,37(1):56−58+70.
    [18] PRIETO G, TUYSUZ H, DUYCKAERTS N, KNOSSALLA J, WANG G, SCHÜTH F. Hollow nano- and microstructures as catalysts[J]. Chem Rev,2016,116(22):14056−14119. doi: 10.1021/acs.chemrev.6b00374
    [19] TANG L, ZHAO Z, WEI Y, LIU J, PENG Y, LI K. Study on the coating of nano-particle and 3DOM LaCoO3 perovskite-type complex oxide on cordierite monolith and the catalytic performances for soot oxidation: The effect of washcoat materials of alumina, silica and titania[J]. Catal Today,2017,297:131−142. doi: 10.1016/j.cattod.2017.06.016
    [20] GIROIR-FENDLER A, ALVES-FORTUNATO M, RICHARD M, WANG C, ANTONIODÍAZA J, GIL S, ZHANG C, CAN F, BION N, GUO Y. Synthesis of oxide supported LaMnO3 perovskites to enhance yields in toluene combustion[J]. Appl Catal B: Environ,2016,180:29−37. doi: 10.1016/j.apcatb.2015.06.005
    [21] VILLORIA J A, ALVAREZ-GALVAN M C, AL-ZAHRANI S M, PALMISANOC P, SPECCHIA S, SPECCHIA V, FIERROA J L G, NAVARRO R M. Oxidative reforming of diesel fuel over LaCoO3 perovskite derived catalysts: Influence of perovskite synthesis method on catalyst properties and performance[J]. Appl Catal B-Environ,2011,105(3/4):276−288. doi: 10.1016/j.apcatb.2011.04.010
    [22] GUIOTTO M, PACELLA M, PERIN G, IOVINO A, MICHELON N, NATILE M M, GLISENTI A, CANU P. Washcoating vs. direct synthesis of LaCoO3 on monoliths for environmental applications[J]. Appl Catal A: Gen,2015,499:146−157. doi: 10.1016/j.apcata.2015.04.013
    [23] HAGELIN-WEAVER H A E, HOFLUND G B, MINAHAN D M, SALAITA G N. Electron energy loss spectroscopic investigation of Co metal, CoO, and Co3O4 before and after Ar+ bombardment[J]. Appl Surf Sci,2004,235(4):420−448. doi: 10.1016/j.apsusc.2004.02.062
    [24] CARLEY A F, ROBERTS M W, SANTRA A K. Interaction of oxygen and carbon monoxide with csau surfaces[J]. J Phys Chem B,1997,101(48):9978−9983. doi: 10.1021/jp971780+
    [25] KALIAGUINE S, NESTE A V, SZABO V, GALLOT J E, MUZYCHUK R. Perovskite-type oxides synthesized by reactive grinding: Part I. Preparation and characterization[J], Appl Catal A-Gen, 2001, 209(1–2): 345-358.
    [26] ASHOK J, DAS S, DEWANGAN N, KAWI S. H2S and NOx tolerance capability of CeO2 doped La1−xCexCo0.5Ti0.5O3−δ perovskites for steam reforming of biomass tar model reaction[J]. Energ Convers Manage,2019,1:10003.
    [27] LI Y, WU L, WANG Y, KE P, GUAN B. γ-Al2O3 doped with cerium to enhance electron transfer in catalytic ozonation of phenol[J]. J Water Process Eng,2020,36:101313.
    [28] WANG L, CHEN M, YU X, ZHAO Z, FAN X,WEI Y, LIU J. Preparation, characterization and catalytic performance of ordered macroporous-mesoporous SiO2-supported MnMOx catalysts for soot combustion[J]. Catal Today,2020,364:21−34.
    [29] TIAN M, HE C, YU Y, PAN H, SMITH L, JIANG Z, GAO N, JIAN Y, HAO Z, ZHU Q. Catalytic oxidation of 1, 2-dichloroethane over three-dimensional ordered meso-macroporous Co3O4/La0.7Sr0.3Fe0.5Co0.5O3: Destruction route and mechanism[J]. Appl Catal A: Gen,2018,553:1−14. doi: 10.1016/j.apcata.2018.01.013
    [30] ROYER S, BÉRUBÉ F, KALIAGUINE S. Effect of the synthesis conditions on the redox and catalytic properties in oxidation reactions of LaCo1−xFexO3[J]. Appl Catal A: Gen,2005,282(1/2):273−284. doi: 10.1016/j.apcata.2004.12.018
    [31] BRACKMANN R, PEREZ C A, SCHMAL M. LaCoO3 perovskite on ceramic monoliths – Pre and post reaction analyzes of the partial oxidation of methane[J]. Int J Hydrogen Energy,2014,39(26):13991−14007. doi: 10.1016/j.ijhydene.2014.07.027
    [32] LIANG H, HONG Y, ZHU C, LI S, CHEN Y, LIU Z, YE D. Influence of partial Mn-substitution on surface oxygen species of LaCoO3 catalysts[J]. Catal Today,2013,201:98−102. doi: 10.1016/j.cattod.2012.04.036
    [33] ZHENG Y, LI K, WANG H, TIAN D, WANG Y, ZHU X, WEI Y, ZHENG M, LUO Y. Designed oxygen carriers from macroporous LaFeO3 supported CeO2 for chemical-looping reforming of methane[J]. Appl Catal B: Environ,2017,202:51−63. doi: 10.1016/j.apcatb.2016.08.024
    [34] HWANG J, HA H J, RYU J H, CHOI J J, AHN C W, KIM J W, HAHN D B, YOON W H, LEE H, CHOI J J. Enhancement of washcoat adhesion for SCR catalysts to convert nitrogen oxide using powder spray coating of TiO2 on metallic honeycomb substrate[J]. Catal Commun,2017,94:1−4. doi: 10.1016/j.catcom.2017.02.002
    [35] TARJOMANNEJAD A, FARZI A, NIAEI A, SALARI D. An experimental and kinetic study of toluene oxidation over LaMn1−xBxO3 and La0.8A0.2Mn0.3B0.7O3 (A=Sr, Ce and B=Cu, Fe) nano-perovskite catalysts[J]. Korean J Chem Eng,2016,33(9):2628−2637. doi: 10.1007/s11814-016-0108-4
    [36] 张巍, 汤云灏, 尹艳山, 龚蔚成, 宋健, 马英, 阮敏, 徐慧芳, 陈冬林. 改性镧系钙钛矿催化剂强化挥发性有机物催化氧化的研究进展[J]. 化工进展,2021,40(3):1425−1437.

    ZHANG Wei, TANG Yun-hao, YIN Yan-shan, GONG Wei-cheng, SONG Jian, MA Ying, RUAN Min, XU Hui-fang, CHEN Dong-lin. Research progress in enhanced catalytic oxidation of VOCs by modified La-based perocskite catalyst[J]. Chem Ind Eng Process,2021,40(3):1425−1437.
    [37] 刘晓刚, 闫梦雪, 许茹雯, 孙巾茹, 王虹, 迟姚玲, 李翠清, 宋永吉. La1−xRbxMnO3钙钛矿催化剂同时消除NO和碳烟的催化性能[J]. 燃料化学学报,2019,47(9):1053−1066. doi: 10.3969/j.issn.0253-2409.2019.09.004

    LIU Xiao-gang, YAN Meng-xue, XU Ru-wen, SUN Jin-ru, WANG Hong, CHI Yao-ling, LI Cui-qing, SONG Yong-ji. Catalytic performance of La1−xRbxMnO3 perovskite in the simultaneous removal of NO and soot[J]. J Fuel Chem Technol,2019,47(9):1053−1066. doi: 10.3969/j.issn.0253-2409.2019.09.004
    [38] GÓMEZ D M, GATICA J M, HERNáNDEZ-GARRIDO J C, CIFREDO G, MONTES M, SANZ O, REBLED J M, VIDAL H. A novel CoOx/La-modified-CeO2 formulation for powdered and washcoated onto cordierite honeycomb catalysts with application in VOCs oxidation[J]. Appl Catal B: Environ,2014,144:425−434. doi: 10.1016/j.apcatb.2013.07.045
    [39] WU M, CHEN S, SOOMRO A, MA S, ZHU M, HUA X, XIANG W. Investigation of synergistic effects and high performance of La-Co composite oxides for toluene catalytic oxidation at low temperature[J]. Environ Sci Pollut Res,2019,26(12):12123−12135.
    [40] ZHANG C, GUO Y, GUO Y, LU G, BOREAVE A, RETAILLEAU L, BAYLET A, GIROIR-FENDLER A. LaMnO3 perovskite oxides prepared by different methods for catalytic oxidation of toluene[J]. Appl Catal B: Environ,2014,148−149.
    [41] PEREÑÍGUEZ R, HUESO J L, GAILLARD F, HOLGADO J, CABALLERO A. Study of oxygen reactivity in La1−xSrxCoO3−δ perovskites for total oxidation of toluene[J]. Catal Lett,2012,142(4):408−416. doi: 10.1007/s10562-012-0799-z
    [42] DENG L, HUANG C, KAN J, LI B, CHEN Y, ZHU S, SHEN S. Effect of coating modification of cordierite carrier on catalytic performance of supported NiMnO3 catalysts for VOCs combustion[J]. J Rare Earths,2018,36(3):265−272. doi: 10.1016/j.jre.2017.07.015
    [43] WANG Y, XIAO L, ZHAO CC, LIU F, LI S. Catalytic combustion of toluene with Pd/La0.8Ce0.2MnO3 supported on different zeolites[J]. Environ Prog Sustainable Energy,2018,37(1):101313.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  35
  • HTML全文浏览量:  26
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-01
  • 修回日期:  2021-04-05
  • 网络出版日期:  2021-04-15

目录

    /

    返回文章
    返回