留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

燃煤电厂脱硫浆液中汞迁移转化及添加剂对石膏中汞稳定性影响

苏银皎 滕阳 张锴 李丽锋 王鹏程 李圳

苏银皎, 滕阳, 张锴, 李丽锋, 王鹏程, 李圳. 燃煤电厂脱硫浆液中汞迁移转化及添加剂对石膏中汞稳定性影响[J]. 燃料化学学报(中英文), 2021, 49(7): 1022-1033. doi: 10.19906/j.cnki.JFCT.2021055
引用本文: 苏银皎, 滕阳, 张锴, 李丽锋, 王鹏程, 李圳. 燃煤电厂脱硫浆液中汞迁移转化及添加剂对石膏中汞稳定性影响[J]. 燃料化学学报(中英文), 2021, 49(7): 1022-1033. doi: 10.19906/j.cnki.JFCT.2021055
SU Yin-jiao, TENG Yang, ZHANG Kai, LI Li-feng, WANG Peng-cheng, LI Zhen. Migration and transformation of mercury in WFGD slurry from a coal-fired power unit and the effect of additive on mercury stability in gypsum[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 1022-1033. doi: 10.19906/j.cnki.JFCT.2021055
Citation: SU Yin-jiao, TENG Yang, ZHANG Kai, LI Li-feng, WANG Peng-cheng, LI Zhen. Migration and transformation of mercury in WFGD slurry from a coal-fired power unit and the effect of additive on mercury stability in gypsum[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 1022-1033. doi: 10.19906/j.cnki.JFCT.2021055

燃煤电厂脱硫浆液中汞迁移转化及添加剂对石膏中汞稳定性影响

doi: 10.19906/j.cnki.JFCT.2021055
基金项目: 国家重点研发计划(2020YFB0606201),国家自然科学基金委与山西煤基低碳联合基金重点项目(U1910215)和中央高校基本科研业务费(2019QN020,2019QN019)资助
详细信息
    通讯作者:

    E-mail: kzhang@ncepu.edu.cn

  • 中图分类号: TQ53

Migration and transformation of mercury in WFGD slurry from a coal-fired power unit and the effect of additive on mercury stability in gypsum

Funds: The project was supported by the National Key R&D Program of China (2020YFB0606201), the National Natural Science Foundation of China (U1910215) and the Fundamental Research Funds for the Central Universities (2019QN020,2019QN019)
More Information
  • 摘要: 以某300 MW超低排放燃煤机组现场脱硫浆液为研究对象,考察了浆液中汞迁移转化及添加剂对其影响行为,探讨了固相石膏中汞的热释放特性和环境风险。结果表明温度升高仅导致气相Hg0增加,而浆液pH升高会导致气相和固相中汞含量均有增加,Cl$ {\rm{SO}}^{2-}_{4} $浓度升高既可以抑制浆液中汞还原为Hg0也可以促进固相石膏中汞含量增加,而$ {\rm{SO}}^{2-}_{3} $浓度升高虽然有利于汞富集于固相但会引起Hg2+部分转化为Hg0。Na2S、EDTA-2Na或DTCR-4添加剂与Hg2+反应分别生成HgS、Hg(EDTA)2或[ −Hg-DTCR] −n,使浆液中75%以上汞转移至固相石膏中,并抑制了Hg2+还原为Hg0,其中DTCR-4对汞的固化效果最好,但热稳定性依次为Gypsum + EDTA-2Na < Gypsum + DTCR-4 < Gypsum + Na2S < Gypsum,主要原因是所生成Hg(EDTA)2、[ −Hg-DTCR] −n和HgS(black)的稳定性差异所致。进而采用TCLP、SPLP和MEP三种方法获得了样品中汞的化学稳定性为Gypsum < Gypsum + Na2S < Gypsum + EDTA-2Na < Gypsum + DTCR-4,其原因是石膏中水溶态汞、酸溶态汞和可氧化态汞含量的差异所致。
  • FIG. 808.  FIG. 808.

    FIG. 808.  FIG. 808.

    图  1  脱硫浆液汞迁移转化实验原理及流程图

    Figure  1  Schematic diagram of the migration and transformation of mercury in WFGD slurry

    图  2  温度对脱硫石膏浆液中汞迁移转化的影响

    Figure  2  Effect of temperature on mercury migration and transformation in WFGD slurry

    图  3  浆液pH值对脱硫石膏浆液中汞迁移转化的影响

    Figure  3  Effect of pH value on mercury migration and transformation in WFGD slurry

    图  4  离子浓度对脱硫石膏浆液中汞迁移转化的影响

    Figure  4  Effect of ion concentration on mercury migration and transformation in WFGD slurry

    图  5  Hg2+与EDTA-2Na和DTCR-4的反应产物

    Figure  5  Reaction products of Hg2+ with EDTA-2Na and DTCR-4

    图  6  温度对加入添加剂的脱硫浆液中汞迁移转化的影响

    Figure  6  Effect of temperature on Hg migration and transformation in WFGD slurry with additives

    图  7  pH值对加入添加剂的脱硫浆液中汞迁移转化的影响

    Figure  7  Effect of pH value on Hg migration and transformation in WFGD slurry with additives

    图  8  离子浓度对加入添加剂的脱硫浆液中汞迁移转化的影响

    Figure  8  Effect of ion concentration on Hg migration and transformation in WFGD slurry with additives

    图  9  石膏样品中总汞的热释放谱图

    Figure  9  Thermograms of total Hg in gypsum samples

    图  10  石膏样品中不同形态汞的热释放谱图

    Figure  10  Thermograms of Hg speciation in gypsum samples

    图  11  基于TCLP法、SPLP法和MEP法的汞浸出特性评估

    Figure  11  Leaching Hg assessment by TCLP, SPLP and MEP

    图  12  固体石膏样品中汞的逐级提取结果

    Figure  12  Distribution of Hg fractions in the gypsums by sequential-chemical-extraction method

    表  1  入炉煤的工业分析以及氯和汞含量

    Table  1  Proximate analysis, chlorine and mercury content of feed coal

    Proximate analysis w/%S content/%Cl content/ (mg·kg−1)Hg content/ (mg·kg−1)
    MAVFC
    2.5714.8430.0952.500.370.0780.0621
    not: air drying base
    下载: 导出CSV

    表  2  本研究测量的脱硫浆液基本物性参数

    Table  2  Main properties of WFGD slurry measured in this study

    SampleHg/ (μg·L−1)Temperature/ ℃pHCl/ (mg·L−1)$ {\rm{SO}}^{2-}_{3} $/ (mg·L−1)$ {\rm{SO}}^{2-}_{4} $/ (mg·L−1)
    Slurry157505.8244142961413
    下载: 导出CSV

    表  3  对比的燃煤机组脱硫浆液基本参数[33-35]

    Table  3  Basic properties of desulfurization slurry in coal-fired power units[33-35]

    SampleTemperature/ ℃pHCl/ (mg·L−1)$ {\rm{SO}}^{2-}_{4} $/ (mg·L−1)
    Slurry-1[33]40−505.5−6.57000−20000800−5000
    Slurry-2[34]464.0−6.02000011000
    Slurry-3[35]4.0−5.56000−12000
    下载: 导出CSV

    表  4  含汞化合物的释放温度特征

    Table  4  Release temperatures of Hg-containing compounds

    Hg-containing compoundsTemperature range of Hg release/℃Peak temperature of Hg release/℃
    Hg2Cl2110−220119 ± 10
    HgCl295−350138 ± 4
    HgS(black)150−280220 ± 11
    HgS(red)210−340305 ± 12
    HgO(yellow)250−450284 ± 7
    HgO(red)360−500420 ± 10
    HgSO4495−600560 ± 10
    下载: 导出CSV

    表  5  Hg2+与有机添加剂反应产物中汞的释放温度

    Table  5  Release temperatures of mercury in the reaction products of Hg2+ and organic additives

    Reaction productTemperature range of Hg release/℃Peak temperature of Hg release/℃
    Hg(EDTA)2100−210164 ± 4
    [ −Hg-DTCR] −n105−230186 ± 4
    下载: 导出CSV
  • [1] Minamata Convention on Mercury[S]. United Nations Environment Programme, 2017.
    [2] ZHAO W M, GENG X Z, LU J C, DUAN Y F, LIU S, HU P, XU Y F, HUANG Y J, TAO J, GU X B. Mercury removal performance of brominated biomass activated carbon injection in simulated and coal-fired flue gas[J]. Fuel,2021,285:119131. doi: 10.1016/j.fuel.2020.119131
    [3] 辛凤, 魏书洲, 张军峰, 马斯鸣, 赵永椿, 张军营. 燃煤烟气非碳基吸附剂脱汞研究进展[J]. 燃料化学学报,2020,48(12):1409−1420. doi: 10.3969/j.issn.0253-2409.2020.12.002

    XIN Feng, WEI Shu-zhou, ZHANG Jun-feng, MA Si-ming, ZHAO Yong-chun, ZHANG Jun-yin. Research progress on the removal of mercury from coal-fired flue gas by using non-carbon-based adsorbents[J]. J Fuel Chem and Technol,2020,48(12):1409−1420. doi: 10.3969/j.issn.0253-2409.2020.12.002
    [4] 岳光溪, 周大力, 田文龙, 麻林巍, 刘青, 章景皓, 王志轩, 龙辉, 廖海燕. 中国煤炭清洁燃烧技术路线图的初步探讨[J]. 中国工程科学,2018,20(3):74−79.

    YUE Guang-xi, ZHOU Da-li, TIAN Wen-long, MA Lin-wei, LIU Qin, ZHANG Jin-hao, WANG Zhi-xuan, LONG Hui, LIAO Hai-yan. Preliminary discussion on the technology roadmap of clean coal combustion in China[J]. Strategic Study CAE,2018,20(3):74−79.
    [5] 李晓航, 刘芸, 苏银皎, 滕阳, 关彦军, 张锴. 煤粉炉和循环流化床锅炉飞灰特性对其汞吸附能力的影响[J]. 化工学报,2019,70(3):1075−1082.

    LI Xiao-hang, LIU Xuan, SU Yin-jiao, TENG Yang, GUAN Yan-jun, ZHANG Kai. Difference of fly ash characteristics from PC and CFB boilers and its effect on mercury adsorption capability[J]. J Chem Ind Eng,2019,70(3):1075−1082.
    [6] OTTEN B V, BUITRAGO P A, SENIOR C L, SILCOX G D. Gas-phase oxidation of mercury by bromine and chlorine in flue gas[J]. Energy Fuels,2011,25(8):3530−3536.
    [7] JENNIFER W, ERIK R, YING S C, LIM D H, NEGRIRA A S, KIRCHOFER A, FENG F, LEE K. Mercury adsorption and oxidation in coal combustion and gasification processes[J]. Int J Coal Geol,2012,90−91:4−20. doi: 10.1016/j.coal.2011.12.003
    [8] HAYNES W M E. CRC Handbook of Chemistry and Physics (Internet Version 2016) (96th)[M]. Boca Raton: CRC Press/Taylor and Francis, 2016.
    [9] WU C L, CAO Y, DONG Z B, CHENG C M, LI H X, PAN W P. Evaluation of mercury speciation and removal through air pollution control devices of a 190 MW boiler[J]. J Environ Sci,2010,22(2):277−282. doi: 10.1016/S1001-0742(09)60105-4
    [10] SENIOR C L, HELBLE J J, SAROFIM A F. Emissions of mercury, trace elements, and fine particles from stationary combustion sources[J]. Fuel Process Technol,2002,65−66:263−288.
    [11] NARUHITO O, CARLOS E R, HIROFUMI K, WU S, SANDHYA E. Study of elemental mercury re-emission in a simulated wet scrubber[J]. Fuel,2012,91(1):93−101. doi: 10.1016/j.fuel.2011.06.018
    [12] 毛琳, 张志越, 孙佳兴, 祁东旭, 陈逸鹏, 杨宏旻. 添加剂对抑制模拟脱硫浆液中汞再释放的影响[J]. 燃料化学学报,2018,46(10):1265−1271. doi: 10.3969/j.issn.0253-2409.2018.10.015

    MAO Lin, ZHANG Zhi-yue, SUN Jia-xing, QI Dong-xu, CHEN Yi-peng, YANG Hong-hao. Effects of additives on stabilization and inhibition of mercury re-emission in simulated wet gas desulphurization slurry[J]. J Fuel Chem Technol,2018,46(10):1265−1271. doi: 10.3969/j.issn.0253-2409.2018.10.015
    [13] BARNA H, MELANIE H, GUNTER S. Impact of additives for enhanced sulfur dioxide removal on re-emissions of mercury in wet flue gas desulfurization[J]. Appl Energy,2014,114:485−491. doi: 10.1016/j.apenergy.2013.09.059
    [14] 蒋建国, 王伟, 甄晓月, 杜竹玮. 高分子螯合剂捕集重金属Pb2+的机理研究[J]. 环境科学学报,1997,18(2):31−31+95.

    JAING Jian-guo, WANG Wei, ZHEN Xiao-yue, DU Zhu-wei. Study on mechanism of polymer chelating agent for trapping heavy metal Pb2+[J]. Acta Sci Circum,1997,18(2):31−31+95.
    [15] KRZYZYNSKA R, HUTSON N D, ZHAO Y, SZELIGA Z, REGUCKI P. Mercury removal and its fate in oxidant enhanced wet flue gas desulphurization slurry[J]. Fuel,2018,211:876−882. doi: 10.1016/j.fuel.2017.10.004
    [16] LIU S T, GAO Y, LIU Y C. Investigation on mercury reemission from Limestone-Gypsum wet flue gas desulfurization slurry[J]. The Scientific World J,2014,(3/4):581724.
    [17] SCHUETZE J, KUNTH D, WEISSBACH S, KOESER H. Mercury vapor pressure of flue gas desulfurization scrubber suspensions: effects of pH level, gypsum, and iron[J]. Environ Sci Technol,2012,46(5):3008−3013. doi: 10.1021/es203605h
    [18] OCHOA-GONZÁLEZ R, DIAZ-SOMOANO M, MARTINEZ-TARAZONA M R. Control of Hg0 re-emission from gypsum slurries by means of additives in typical wet scrubber conditions[J]. Fuel,2013,105:112−118. doi: 10.1016/j.fuel.2012.05.044
    [19] 潘杰, 晏乃强, 瞿赞, 徐浩淼, 马永鹏, 陈万苗, 黄文君, 赵松建. 燃煤电厂脱硫石膏中汞的浸出特性研究[J]. 环境科学与技术,2015,38(7):88−92.

    PAN Jie, YAN Nai-qiang, QU Zan, XU Hao-miao, MA Yong-peng, CHEN Miao-wan, HUANG Wen-jun, ZHAO Song-jian. Leaching characteristics of mercury in WFGD gypsum[J]. Environ Sci Technol,2015,38(7):88−92.
    [20] CUI L M, WANG Y G, GAO L, HU L H, YAN L G, WEI Q, DU B. EDTA functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: Adsorption mechanism and separation property[J]. Chem Eng J,2015,281:1−10. doi: 10.1016/j.cej.2015.06.043
    [21] SUN J, CHEN H, QI D, WU H, ZHOU C, YANG H. Enhanced immobilization of mercury (II) from desulphurization wastewater by EDTA functionalized graphene oxide nanoparticles[J]. Environ Technol,2020,41(11):1366−1379.
    [22] 郭敏辉, 于洁, 官宝红. 电石渣脱硫废水中超标重金属的去除[J]. 水处理技术,2014,40(10):28−31.

    GUO Min-hui, YU Jie, GUAN Bao-hong. Heavy metals removal from the carbide slag desulfurization wastewater[J]. Technol Water Treatment,2014,40(10):28−31.
    [23] TANG T M, XU J, LU R J, WO J J. Enhanced Hg2+ removal and Hg0 re-emission control from wet fuel gas desulfurization liquors with additives[J]. Fuel,2010,89(12):3613−3617. doi: 10.1016/j.fuel.2010.07.045
    [24] LE I R, HUANG C H, JEN Y S, YUAN C H, CHEN W H. Adsorption of vapor-phase elemental mercury (Hg0) and mercury chloride (HgCl2) with innovative composite activated carbons impregnated with Na2S and S0 in different sequences[J]. Chem Eng J,2013,229:469−476. doi: 10.1016/j.cej.2013.06.059
    [25] 付康丽, 姚明宇, 钦传光, 程广文, 聂剑平. 巯基聚苯乙烯树脂对FGD系统中Hg2+的脱除性能[J]. 化工学报,2016,67(6):2598−2604.

    FU Kang-li, YAO Ming-yu, QIN Chuan-guang, CHENG Wen-guang, NIE Jian-ping. Hg2+ removal from FGD system by thiol polystyrene resin[J]. J Chem Ind Eng,2016,67(6):2598−2604.
    [26] 郝莹. 燃煤副产物脱硫石膏中重金属富集的地球化学特征及其环境风险[D]. 上海: 上海大学, 2017.

    HAO Yin. Geochemical characteristics and potential risks of heavy metals in desulfurization gypsum from coal-fired power plants[D]. Shanghai: Shanghai University, 2017.
    [27] HJ 2053—2018. 燃煤电厂超低排放烟气治理工程技术规范[S].

    HJ 2053—2018. Technical specifications for flue gas ultra-low emission engineering of coal-fired power plant[S].
    [28] Method 29, Determination of Metals Emissions from Stationary Sources[S].
    [29] 苏银皎, 刘轩, 李丽锋, 李晓航, 姜平, 滕阳, 张锴. 三类煤阶煤中汞的赋存形态分布特征[J]. 化工学报,2019,70(4):1559−1566.

    SU Yin-jiao, LIU Xuan, LI Li-feng, LI Xiao-hang, JIANG Ping, TENG Yang, ZHANG Kai. The distribution characteristics of mercury speciation in coals with three different ranks[J]. J Chem Ind Eng,2019,70(4):1559−1566.
    [30] RUMAVOR M, DIAZ S M, LOPEZ A M A, GONZALEZ R O, TARAZONA M R M. Temperature programmed desorption as a tool for the identification of mercury fate in wet-desulphurization systems[J]. Fuel,2015,148:98−103. doi: 10.1016/j.fuel.2015.01.101
    [31] MARCZAK M, FAUSTYNA W, BURMISTRZ P, STRUGAA A, LECH S. Investigation of subbituminous coal and lignite combustion processes in terms of mercury and arsenic removal[J]. Fuel,2019,251:572−579. doi: 10.1016/j.fuel.2019.04.082
    [32] YUDOVICH Y E, KETRIS M P. Mercury in coal: A review. part 1. geochemistry[J]. Int J Coal Geol,2005,62(3):107−134. doi: 10.1016/j.coal.2004.11.002
    [33] 管一明. 燃煤电厂烟气脱硫废水处理[J]. 电力环境保护,1998,14(1):38−44.

    GUAN Yi-ming. Treatment of flue gas desulfurization wastewater from coal-fired power plants[J]. Electric Power Technol Environ Protect,1998,14(1):38−44.
    [34] 禾志强, 田雁冰, 赵全中, 沈建军. 火力发电厂烟气脱硫废水处理工程实例[J]. 工业用水与废水,2008,39(5):83−85. doi: 10.3969/j.issn.1009-2455.2008.05.023

    HE Zhi-qiang, TIAN Yan-bing, ZHAO Quan-zhong, SHEN Jian-jun. Examples of flue gas desulfurization wastewater treatment project in thermal power plant[J]. Indust Water Wastewater,2008,39(5):83−85. doi: 10.3969/j.issn.1009-2455.2008.05.023
    [35] 吕松力, 斯琴, 李晓楠, 武鸿鹏. 燃煤电厂脱硫废水处理探讨[J]. 电站系统工程,2017,33(3):56−58.

    LV Song-li, SI Qin, LI Xiao-nan, WU Hong-peng. Discussion of FGD waste water treatment method on coal-fired power plant[J]. Power Sys Eng,2017,33(3):56−58.
    [36] LIU Y, WANG Y J, WU Z B, ZHOU S Y, WANG H Q. A mechanism study of chloride and sulfate effects on Hg2+ reduction in sulfite solution[J]. Fuel,2011,90(7):2501−2507. doi: 10.1016/j.fuel.2011.02.036
    [37] CHANG L, ZHAO Y C, ZHANG Y, YU X H, LI Z H, GONG B G, LIU H, WEI S Z, WU H, ZHANG J Y. Mercury species and potential leaching in sludge from coal-fired power plants[J]. J Hazard Mater,2021,403:123927. doi: 10.1016/j.jhazmat.2020.123927
    [38] ZHANG Y S, ZHAO L L, GUO R T, WANG J W, CAO Y, ORNDORFF W, PAN W P. Influences of NO on mercury adsorption characteristics for HBr modified fly ash[J]. Int J Coal Geol,2017,170:77−83. doi: 10.1016/j.coal.2016.10.002
    [39] HAO Y, WU S M, PAN Y, LI Q, ZHOU J Z, XU Y B, QIAN G R. Characterization and leaching toxicities of mercury in flue gas desulfurization gypsum from coal-fired power plants in China[J]. Fuel,2016,177:157−163.
    [40] GB 5085.3—2007. 危险废物鉴别标准-浸出毒性鉴别[S].

    GB 5085.3—2007. Identification standards for hazardous wastes-Identification for extraction toxicity[S].
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  357
  • HTML全文浏览量:  84
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-24
  • 修回日期:  2021-05-07
  • 网络出版日期:  2021-06-01
  • 刊出日期:  2021-07-15

目录

    /

    返回文章
    返回