留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

竹材纤维定向醇解转化制备乙酰丙酸甲酯的研究

徐杨杨 祝慧敏 李辰 潘晖 冯君锋

徐杨杨, 祝慧敏, 李辰, 潘晖, 冯君锋. 竹材纤维定向醇解转化制备乙酰丙酸甲酯的研究[J]. 燃料化学学报(中英文), 2021, 49(12): 1889-1897. doi: 10.19906/j.cnki.JFCT.2021069
引用本文: 徐杨杨, 祝慧敏, 李辰, 潘晖, 冯君锋. 竹材纤维定向醇解转化制备乙酰丙酸甲酯的研究[J]. 燃料化学学报(中英文), 2021, 49(12): 1889-1897. doi: 10.19906/j.cnki.JFCT.2021069
XU Yang-yang, ZHU Hui-min, LI Chen, PAN Hui, FENG Jun-feng. Study on preparation of methyl levulinate by directional alcoholysis of bamboo biomass[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1889-1897. doi: 10.19906/j.cnki.JFCT.2021069
Citation: XU Yang-yang, ZHU Hui-min, LI Chen, PAN Hui, FENG Jun-feng. Study on preparation of methyl levulinate by directional alcoholysis of bamboo biomass[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1889-1897. doi: 10.19906/j.cnki.JFCT.2021069

竹材纤维定向醇解转化制备乙酰丙酸甲酯的研究

doi: 10.19906/j.cnki.JFCT.2021069
基金项目: 江苏省高等学校大学生创新创业训练计划项目(SPITP 201910298012Z)和江苏省高校自然科学基金(20KJB220010)资助
详细信息
    作者简介:

    徐杨杨(2000-),女,本科生,从事林产化学加工方面的研究。E-mail:Xueyya@163.com

    通讯作者:

    E-mail:hpan@njfu.edu.cn

    2018149@njfu.edu.cn

  • 中图分类号: TQ35; TK5

Study on preparation of methyl levulinate by directional alcoholysis of bamboo biomass

Funds: The project was supported by Jiangsu Student's Platform for Innovation Training Program (SPITP 201910298012Z),Natural Science Fund for Colleges and Universities in Jiangsu Province (20KJB220010)
  • 摘要: 以固体酸为催化剂、二烷氧基甲烷/低碳醇为复合溶剂,考察竹材中纤维素和半纤维素定向醇解的过程。通过调控反应条件(复合溶剂的组成和配比、固体酸催化剂的种类和用量、反应温度和时间),获得最佳反应条件(复合溶剂二甲氧基甲烷/甲醇质量比为5 g∶15 g,硅钨酸的用量为0.002 mol,120 min,200 ℃)下,竹材的转化率为81.53%,乙酰丙酸甲酯的得率为28.39%。同时,研究多种生物质模型化合物(葡萄糖、木糖、5-羟甲基糠醛、糠醛、戊聚糖和微晶纤维素)的转化过程,结合反应过程中间产物的检测结果,推断竹材中半纤维素、纤维素“一步法”定向醇解制备乙酰丙酸酯的过程。
  • FIG. 1155.  FIG. 1155.

    FIG. 1155.  FIG. 1155.

    图  1  不同催化剂用量对竹材中纤维素和半纤维素定向转化过程的影响

    Figure  1  Effect of catalyst amount on directional conversion of cellulose and hemicellulose in bamboo

    Conv.; Furfurals; MLA; Glycosides

    图  2  不同反应时间对竹材中纤维素和半纤维素定向转化过程的影响

    Figure  2  Effect of reaction time on directional conversion of cellulose and hemicellulose in bamboo

    Conv.; Furfurals; MLA; Glycosides

    图  3  不同反应温度对竹材中纤维素和半纤维素定向转化过程的影响

    Figure  3  Effect of reaction temperature on directional conversion of cellulose and hemicellulose in bamboo

    Conv.; Furfurals; MLA; Glycosides

    图  4  不同复合溶剂配比对竹材中纤维素和半纤维素定向转化过程的影响

    Figure  4  Effect of composite solvent ratio on directional conversion of cellulose and hemicellulose in bamboo

    Conv.; Furfurals; MLA; Glycosides

    表  1  生物质原料的元素分析和成分分析

    Table  1  Elemental and compositional properties of the waste lignocellulosic biomass

    MaterialsElement analysis w/%Composition analysis w/%
    CHONSashextractivescelluloseligninholocellulosepentosan
    Bamboo47.894.5547.210.070.281.083.4643.6923.6870.8326.45
    下载: 导出CSV

    表  2  不同溶剂对竹材生物质原料定向转化过程的影响

    Table  2  Effects of different solvents on directional conversion of cellulose and hemicellulose in bamboo

    SolventConv./%Levulinates yield w/%Furfurals yield w/%Glycosides yield w/%Recovery yield w/%Pressure p/MPa
    Methanol 60.72 7.49 20.19 13.64 94.31 4.2
    Dimethoxymethane 55.30 9.66 35.74 7.92 96.57 4.2
    Dioxane 66.83 0.04 0.54 7.13 89.12 3.0
    Dichloromethane 80.25 4.40 15.93 2.49 95.78 4.5
    Dichloroethane 73.94 0.77 26.52 5.87 90.33 3.7
    Diethoxymethane 59.93 5.64 38.81 6.20 91.24 2.8
    Reaction conditions: bamboo 2 g, methanol 10 g, reagent 10 g, amberlyst 15 0.002 mol, sodium chloride 0.2 g, reaction temperature 200 ℃, reaction time 120 min
    下载: 导出CSV

    表  3  不同催化剂对竹材生物质原料定向转化过程的影响

    Table  3  Effects of different electrophiles on directional conversion of cellulose and hemicellulose in bamboo

    CatalystConv./%Levulinates yield w/%Furfurals yield w/%Glycosides yield w/%Pressure p/MPa
    Hydrochloric acid 41.31 6.16 15.73 4.0
    Amberlyst 15 55.30 9.66 35.74 7.92 4.5
    p-Toluenesulfonic acid 69.04 2.30 35.82 8.65 4.3
    Silicotungstic acid 60.91 15.58 23.16 10.21 4.2
    Aluminum chloride 40.67 2.81 24.93 5.78 4.2
    Reaction conditions: bamboo 2 g, methanol 10 g, catalyst 0.002 mol, dimethoxymethane 10 g, sodium chloride 0.2 g, reaction conditions 200 ℃, 120 min
    下载: 导出CSV

    表  4  不同低碳醇对竹材生物质原料定向转化过程的影响

    Table  4  Effects of different alcohol on directional conversion of cellulose and hemicellulose in bamboo

    AlcoholConv./%Levulinates yield w/%Furfurals yield w/%Glycosides yield w/%Recovery yield w/%Pressure p/MPa
    Methanol 60.91 15.58 23.16 10.21 95.30 4.2
    Isopropanol 45.63 5.79 32.59 6.83 91.43 2.5
    Ethanol 54.35 12.32 31.75 9.64 93.22 3.0
    N-butanol 54.28 2.27 28.45 7.75 92.04 2.0
    Reaction conditions: bamboo material 2 g, dimethoxymethane 10 g, lower alcohol 10 g, silicotungstic acid 0.002 mol, sodium chloride 0.2 g, 200 ℃, 120 min
    下载: 导出CSV

    表  5  氯化钠对竹材中纤维素和半纤维素定向转化过程的影响

    Table  5  NaCl amount on directional conversion of cellulose and hemicellulose in bamboo

    AdditivesAlcoholConv./%Levulinates yield/%Furfurals yield/%Glycosides yield/%
    NaCl 0.2 g methanol 50.91 15.58 23.16 8.34
    ethanol 54.52 12.32 31.75 6.20
    No NaCl methanol 61.76 19.80 13.49 15.36
    ethanol 64.05 15.40 11.10 19.88
    Reaction conditions: bamboo 2 g, dimethoxymethane 10 g, alcohol 10 g, silicotungstic acid 0.002 mol, 200 ℃, 120 min
    下载: 导出CSV

    表  6  不同生物质碳水化合物的定向转化

    Table  6  Directional conversion results of different biomass carbohydrates

    Raw materialTemp./℃Conv./%Levulinates yield/%Furfurals yield/%Glycosides yield/%
    Furfural16084.7713.2016.29
    18092.2754.478.56
    5-Hydroxymethyl furfural16093.6169.230.29
    18078.9858.709.25
    Xylose16076.6432.2738.8123.35
    18083.5245.4714.6516.48
    Glucose16096.1046.850.793.90
    18088.8554.542.5411.15
    Pentosan18071.9524.9210.3729.84
    20084.1336.8133.0510.27
    Microcrystalline cellulose18071.8618.6325.2619.78
    20087.7225.5429.3925.61
    Reaction conditions: raw materials 2 g, methanol 10 g, dimethoxymethane 10 g, catalyst 0.002 mol, reaction time 120 min
    下载: 导出CSV
  • [1] ZHANG T. Taking on all of the biomass for conversion[J]. Science,2020,367:1305−1306. doi: 10.1126/science.abb1463
    [2] ZHANG Z, SONG J, HAN B. Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids[J]. Chem Rev,2017,117(10):6834−6880. doi: 10.1021/acs.chemrev.6b00457
    [3] ENNAERT T, VAN AELST J, DIJKMANS J, DE CLERCQ R, SCHUTYSER W, DUSSELIER M, SELS B. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass[J]. Chem Soc Rev,2016,45(3):584−611. doi: 10.1039/C5CS00859J
    [4] CHEN Y W, LEE H V. Recent progress in homogeneous Lewis acid catalysts for the transformation of hemicellulose and cellulose into valuable chemicals, fuels, and nanocellulose[J]. Rev Chem Eng,2020,36(2):215−235. doi: 10.1515/revce-2017-0071
    [5] HAN Y, YE L, GU X, ZHU P, LU X. Lignin-based solid acid catalyst for the conversion of cellulose to levulinic acid using γ-valerolactone as solvent[J]. Ind Crop Prod,2019,127:88−93. doi: 10.1016/j.indcrop.2018.10.058
    [6] 杨佳鑫, 司传领, 刘坤, 刘华玉, 李晓云, 梁敏. 木质纤维生物质制备乙酰丙酸及其应用综述[J]. 林业工程学报,2020,5(5):21−27.

    YANG Jia-xin, SI Chuan-ling, LIU Kun, LIU Hua-yu, LI Xiao-yun, LIANG Min. Production of levulinic acid from lignocellulosic biomass and application[J]. J Forestry Eng,2020,5(5):21−27.
    [7] FENG J, ZHANG L, JIANG J, HSE C, SHUPE T, PAN H. Directional synergistic conversion of lignocellulosic biomass with matching-solvents for added-value chemicals[J]. Green Chem,2019,21(18):4951−4957. doi: 10.1039/C9GC02365H
    [8] ZHU S, GUO J, WANG X, WANG J, FAN W. Alcoholysis: a promising technology for conversion of lignocellulose and platform chemicals[J]. ChemSusChem,2017,10(12):2547−2559. doi: 10.1002/cssc.201700597
    [9] MORAIS A, MATUCHAKI M, ANDREAUS J, BOGEL-LUKASIK R. A green and efficient approach to selective conversion of xylose and biomass hemicellulose into furfural in aqueous media using high-pressure CO2 as a sustainable catalyst[J]. Green Chem,2016,18(10):2985−2994. doi: 10.1039/C6GC00043F
    [10] 孙娇, 王娅莉, 解新安, 黎巍, 李璐, 李雁, 樊荻, 魏星. 纤维素在亚/超临界甲醇中液化条件对主要化合物产物的影响[J]. 燃料化学学报,2017,45:660−668. doi: 10.3969/j.issn.0253-2409.2017.06.003

    SUN Jiao, WANG Ya-li, XIE Xin-an, LI Wei, LI Lu, LI Yan, FAN Di, WEI Xing. Effect of liquefaction parameters of cornstalk cellulose in sub-supercritical methanol on dominant chemical products[J]. J Fuel Chem Technol,2017,45:660−668. doi: 10.3969/j.issn.0253-2409.2017.06.003
    [11] 于杰, 王景芸, 王震, 周明东, 王海彦. 复合分子筛的合成及其在纤维素水解反应中的应用[J]. 燃料化学学报,2018,46(4):419−426. doi: 10.3969/j.issn.0253-2409.2018.04.007

    YU Jie, WANG Jing-yun, WANG Zhen, ZHOU Ming-dong, WANG Hai-yan. Synthesis of composite zeolites and their performance in hydrolysis of cellulose[J]. J Fuel Chem Technol,2018,46(4):419−426. doi: 10.3969/j.issn.0253-2409.2018.04.007
    [12] HEDA J, NPPHADKAR P, BOKADE V. Efficient synergetic combination of H-USY and SnO2 for direct conversion of glucose into ethyl levulinate (biofuel additive)[J]. Energy Fuels,2019,33(3):2319−2327. doi: 10.1021/acs.EnergyFuels.8b04395
    [13] HUANGY B, YANG T, LIN Y T, PAN H. Facile and high-yield synthesis of methyl levulinate from cellulose[J]. Green Chem,2018,20(6):1323−1334. doi: 10.1039/C7GC02883K
    [14] LAPPALAINEN K, DONG Y. Simultaneous production of furfural and levulinic acid from pine sawdust via acid-catalysed mechanical depolymerization and microwave irradiation[J]. Biomass Bioenergy,2019,123:159−165. doi: 10.1016/j.biombioe.2019.02.017
    [15] MIKA L, CSEFALVAY E, NEMETH A. Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability[J]. Chem Rev,2018,118(2):505−613. doi: 10.1021/acs.chemrev.7b00395
    [16] LI X, LU X, NIE S, LIANG M, YU Z, DUAN B, SI C Efficient catalytic production of biomass-derived levulinic acid over phosphotungstic acid in deep eutectic solvent[J]. Ind Crop Prod, 2020, 145, 112−154.
    [17] NEGAHDAR L, DELIDOVICH I, PALKOVITS R. Aqueous-phase hydrolysis of cellulose and hemicelluloses over molecular acidic catalysts: Insights into the kinetics and reaction mechanism[J]. Appl Catal B: Environ,2016,184:285−298. doi: 10.1016/j.apcatb.2015.11.039
    [18] FENG S, WEI R, LEITCH M, XU C. Comparative study on lignocellulose liquefaction in water, ethanol, and water/ethanol mixture: Roles of ethanol and water[J]. Energy,2018,155:234−241. doi: 10.1016/j.energy.2018.05.023
    [19] DU H, MA X, YAN P, JIANG M, ZHAO Z, ZHANG Z C. Catalytic furfural hydrogenation to furfuryl alcohol over Cu/SiO2 catalysts: A comparative study of the preparation methods[J]. Fuel Process Technol,2019,193:221−231. doi: 10.1016/j.fuproc.2019.05.003
    [20] SWEYGERS N, ALEWATERS N, DEWIL R, APPELS L. Microwave effects in the dilute acid hydrolysis of cellulose to 5-hydroxymethylfurfural[J]. Sci Rep-UK,2018,8(1):1−11.
    [21] FENG J, TONG L, ZHU Y, JIANG J, HSE C, PAN H. Efficient utilization and conversion of whole components in waste biomass with one-pot-oriented liquefaction[J]. ACS Sustainable Chem Eng,2019,7:18142−18152. doi: 10.1021/acssuschemeng.9b05272
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  305
  • HTML全文浏览量:  191
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-13
  • 修回日期:  2021-06-10
  • 网络出版日期:  2021-08-10
  • 刊出日期:  2021-12-29

目录

    /

    返回文章
    返回